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recently been introduced to facilitate importance sampling in free energy Rao X X X
simulations. The method achieves enhanced sampling from Hamiltonian Rig >
pling i X X

replica exchange within a dual topology framework while utilizing new
smoothstep softcore potentials. A common sampling problem encountered in
lead optimization is the functionalization of aromatic rings that exhibit
distinct conformational preferences when interacting with the protein. It is

Alchemical A
=

difficult to converge the distribution of ring conformations due to the long Roz Pl P o
time scale of ring flipping events; however, the ACES method addresses this Ro J >
issue by modeling the syn and anti ring conformations within a dual topology. Burn-in ACES

ACES thereby samples the conformer distributions by alchemically tunneling

between states, as opposed to traversing a physical pathway with a high rotational barrier. We demonstrate the use of ACES to
overcome conformational sampling issues involving ring flipping in ML300-derived noncovalent inhibitors of SARS-CoV-2 Main
Protease (MP™). The demonstrations explore how the use of replica exchange and the choice of softcore selection affects the
convergence of the ring conformation distributions. Furthermore, we examine how the accuracy of the calculated free energies is
affected by the degree of phase space overlap (PSO) between adjacent states (i.e, between neighboring A-windows) and the
Hamiltonian replica exchange acceptance ratios. Both of these factors are sensitive to the spacing between the intermediate states.
We introduce a new method for choosing a schedule of A values. The method analyzes short “burn-in” simulations to construct a 2D
map of the nonlocal PSO. The schedule is obtained by optimizing an alchemical pathway on the 2D map that equalizes the PSO
between the 4 intervals. The optimized phase space overlap A-spacing method (Opt-PSO) leads to more numerous end-to-end single
passes and round trips due to the correlation between PSO and Hamiltonian replica exchange acceptance ratios. The improved
exchange statistics enhance the efficiency of ACES method. The method has been implemented into the FE-ToolKit software
package, which is freely available.

1. INTRODUCTION

Alchemical free energy (AFE) simulations' ~'? play an important
role in computer-aided drug discovery.'' ™" They are used in
lead refinement to predict target binding affinity and selectivity
in order to prioritize proposed compound synthesis and testing.
AFE simulations use an artificial “alchemical” coordinate
(referred to as “4”) to transform one ligand into another in a
relative binding free energy (RBFE) calculation."* Alternatively,
absolute binding free energy calculations'®'” “annihilate” the
ligand by transforming it into a noninteracting “dummy”
state.'™"® The reliability of AFE simulations depends critically
on the ability to robustly sample the important regions of phase
space along the entire alchemical pathway. Although the free
energy is a state function, the convergence of a free energy
estimate is sensitive to the size of the perturbation, the form of
the A-dependent potential energy function, and the methods
used to sample the path.

A vast literature of methods has evolved that seek to improve
the design of alchemical transformation pathways'®~>” and their
sampling.”>*' ™ For more extensive discussion, we refer the
reader to several excellent reviews."*¥*'~* Recently, an
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AlChemically Enhanced Sampling (ACES) method*® has been
introduced that enables focused enhanced sampling of select
regions involving the ligand undergoing alchemical trans-
formation and/or the nearby residues. The foundation of the
method is to create an artificial noninteracting “enhanced-
sampled” state that can be rigorously connected to the
corresponding real state end-point through Hamiltonian replica
exchange.”’ ™ The enhanced sampled state is a selection of
atoms (the ligand, a subset of the ligand, and/or nearby protein
residues) whose intermolecular interactions with the environ-
ment are removed. Furthermore, certain intramolecular energy
terms within the region are scaled (such as electrostatics, and
torsion angle/1—4 Lennard-Jones terms associated with
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Figure 1. Thermodynamic graph showing the transformation among the four ligands®

e

6 designated: 18, 19, 20, and 21. The torsion angle about which

ring flipping occurs is emphasized in bold. The softcore region defined by the MCS/E atom mapping algorithm is highlighted in blue, and those defined

by ACES is highlighted in red.

rotations about single bonds). The idea of creating an enhanced
sampled state and connecting it to the desired real state end-
point with replica exchange is embraced in many other methods,
including REST* and REST2.”" However, a caveat for many of
these approaches is that the enhanced-sampled noninteracting
state may require considerable rearrangement of the environ-
ment. For example, this would occur if an entire ligand in the
binding pocket of a protein were transformed into an enhanced
sampled state. The elimination of the intermolecular inter-
actions creates a void that would need to be (partially) replaced
by solvent and/or accommodated by the rearrangement of the
binding pocket itself (e.g., the closing of flaps) into an apo state.
These conditions greatly increase the sampling requirements
and the number of A-windows connecting it to the real state.
A feature of ACES that distinguishes it from some other
replica exchange methods such as REST/ REST2,°%%! is that it
uses synchronous counterpoised alchemical transformations
between real and enhanced sampled states to reduce the
perturbation on the environment. This is achieved using a dual
topology framework whereby the enhanced sampled regions of
each ligand have separate coordinates—designated the softcore
(SC) region—that do not interact with one another. The
environment, on the other hand, interacts with a weighted
average of both topologies along the alchemical dimension so as
to produce the effect of a fully occupied (transforming) ligand.
The separable topology is key: whereas the environment feels
the effect of both ligands as a weighted average, the SC regions of
the transforming ligands do not feel one another and can thus
adopt different conformations. This allows enhanced sampled
states to “tunnel through” barriers that would otherwise be
encountered in the real state. The general idea of exploiting a
dual-topology framework with alchemical enhanced sampling
has been used in similar contexts®"****7>° and it remains an
active area of research.*””*® It is in the details of how these
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methods are achieved and implemented into performance
software that distinguishes them as evolving practical tools for
drug discovery. Other alternative strategies have also emerged
that have shown considerable promise, including enveloping
distribution sampling®>™>"**** and the alchemical transfer
method 136162

The ACES method further leverages recently developed
optimized alchemical pathways and smoothstep softcore
potentials” to create stable intermediate states and free energy
estimates. Even with these advanced features, the selection of a
larger SC region does come with an increased sampling
requirement, both at the enhanced-sampled end state and
along the A-dimension. A question thus arises as to how one may
best choose the SC region in the ACES method to achieve
optimal importance sampling while minimizing the computa-
tional requirement. This choice will undoubtedly be problem-
specific; the goal in the present work is to study one commonly
occurring scenario involving ring-flipping in ligands to establish
recommended best practices for the ACES SC region in this use
case. We further develop a new technique for determining
optimal phase space overlap A-spacing (Opt-PSO) to improve
the replica-exchange acceptance ratios and sampling efficiency
with ACES.

1.1. Ring Flipping in SARS-CoV-2 Main Protease
Inhibitors. Many drug-like compounds contain a rotatable
ring connected to the molecular scaffold by a single bond. In the
simplest case of a ring possessing C,, symmetry (with one mirror
plane in the plane of the ring and the second mirror plane
containing the single bond and bisecting the ring), a rotation
about the single bond by 180 deg produces an identical
structure. For rings containing asymmetric functional groups,
this rotation can reposition the functional groups while
preserving the overall space filling requirements of the ring.
This transition becomes important in alchemical free energy

https://doi.org/10.1021/acs.jctc.4c00251
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simulations when a functional group on the ring is transformed
from a state that makes a favorable interaction with the protein
to one that is strained or sterically hindered. In this case, the
unfavorable interaction can be alleviated by flipping of the ring.
The time scale required to observe ring flipping events in a
protein environment can be well beyond the sampling
performed in routine molecular dynamics (MD) and alchemical
free energy simulations.

An example of such a situation occurs with the SARS-CoV-2
main protease (MP®). ML300°* is a noncovalent inhibitor
originally discovered to target SARS-CoV-1 MF™. It has gained
much interest due to the overall 96% sequence identity and
100% identity in the active site between SARS-CoV-1 and
SARS-CoV-2 MP® proteins.”” A series of ML-300 derived
compounds were synthesized and tested against SARS-CoV-2
MP™, among which ligand 19 (PDB: 7LMD) and 21 (PDB:
7LMF) showed promising IC4,.%° The high binding affinities
between the ligands and SARS-CoV-2 MP™ (0.106 y M for 19
and 0.063 y M for 21) are attributed to the potential for multiple
H-bonding interactions from heterocyclic azole nitrogens.
There are prospective H-bonds with both the hydroxyl side
chain of Thr25 and the backbone carbonyl of Cys44 in the
crystal structure. However, the binding affinities were drastically
diminished in the N-methyl analogues 18 and 20, due to the
replacement of the —H with —CHj (Figure 1). This underscores
the importance of the presence and nature of a H-bond donor in
the P2, group.66 The steric hindrance presented by the methyl
group leads to poor inhibition against the target protein. Such
hindrance can be alleviated by the flipping of the heterocyclic
azole ring by roughly 180 deg. We use this as an illustrative
example to show how ACES can be used to robustly sample ring
flipping events that occur in RBFE calculations, which leads to
more precise free energy estimates.

The remainder of the paper is organized as follows. The
Methods section begins with a theoretical description of ACES
and the Opt-PSO method for optimizing the A schedule.
Technical details of the implementation, as well as computa-
tional details for the simulations, are provided. The Results and
Discussion section presents a series of demonstrations using
ACES. The first demonstration compares the ability of ACES
and traditional MD to sample ring conformation distribution
functions. The second demonstration applies ACES in the
context of RBFE calculations involving a dense thermodynamic
graph containing closed cycles. The third demonstration uses
the Opt-PSO method (optimized A-spacing) to improve ACES
performance. The Conclusion section summarizes the main
points of the paper and identifies areas of future work.

2. METHODS

2.1. Alchemical Enhanced Sampling Method. We
recently introduced and implemented*® the ACES method in
AMBER which integrates the following novel features:

o Localized enhanced sampling states created through the
tuning of intra- and intermolecular energy terms; i.e.,
noninteracting “dummy” states,'® and the modification of
internal energy terms to eliminate kinetic traps;

Robust alchemical transformation pathways that connect
real and enhanced sampled states using new smoothstep
softcore potentials, nonlinear Hamiltonian mixing, and

flexible A-scheduling capabilities;**

e An efficient HREMD framework that maintains equili-
brium between A-windows connecting the real and
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localized enhanced sampled states within a dual-topology

approach.

The ACES approach®® has advantages due to its dual-topology
nature®’ that allow it to overcome local “hot-spot” problems
encountered with REST/REST2.®” As the ACES region of the A
= O real state (e.g., Ligand 1) is “annihilated”,'® the ACES region
of the 1 = 1 real state (e.g,, Ligand 2) is “created”. Unlike REST?2,
the concerted “counter-diffusion” of alchemical states produces
minimal rearrangement of the environment along the A path.
Furthermore, the computational overhead of the method is
negligible relative to conventional AFE simulations with
HREMD. Although ACES can be used along with REST2,%
which does incur added computational cost, the results suggest
that there is little gain beyond using ACES alone.** The
efficiency and robustness of the ACES approach relies heavily on
the HREMD framework. If the HREMD acceptance ratio is very
small, then there will be too few walker end-to-end “single
passes” and “round trips”®® to adequately connect the enhanced
sampled state and end-state with the correct Boltzmann
distribution. A “single pass” is the traversal of a walker from
the 4 = 0 state to the A = 1 state, or vice versa, through a series of
exchanges between the intermediate A-states. A “round trip” is
similarly the traversal of a walker from the A = 0 to 4 = 1 states
and back to the A = 0 state. The HREMD acceptance ratio is
highly correlated with the “phase space overlap” between
adjacent intermediate states.”””’* In other words, the replica
exchange acceptance ratio is sensitive to the spacing between A-
windows. The next section introduces new methods for
choosing a A-schedule, for a given number of points, that
optimizes the phase space overlap, or alternatively the
Kullback—Leibler divergence of replica exchange acceptance
ratio, and improves the HREMD and ACES efficiency.

2.2. Optimized A-Scheduling Methods. This section
describes new methods for determining optimal spacing A
schedule based on short “burn-in” ACES simulations by creation
of a 2D map in A space. The 2D map O(J, A’) represents a
predictive measure of the phase space overlap involving the
intervals defined by A and A". The goal of the procedure is, for a
desired number of A windows, N, determine the set of 4; values
(i=1,.. N;) that span the range [0, 1] such that the phase space
overlap index is predicted to be uniform for all adjacent intervals
(4; Ai41) and the lowest value maximized. The rationale is that
this schedule should provide improved HREMD and ACES
efficiency, and more robust free energy predictions. The
methods differ by the specific index related to phase space
overlap that is used to create the 2D map. These include the
phase space overlap®~"> (PSO), Kullback—Leibler diver-
gence’> (KL) and replica exchange acceptance ratio®® (AR),
and are described in more detail below.

2.2.1. Optimized Phase Space Overlap A-Scheduling (Opt-
PSO). Let U(x; 4) denote the potential energy of a A-dependent
potential energy function evaluated with the 3N array of atomic
coordinates r. Simulation of U(r; 4,) produces an ensemble of
M structures {ry;,ryy, ..., T -1, T v, ), Where 1y, denotes sample n

from ensemble k. If equilibrium sampling is performed, then the
distribution of energy differences AU;(ry,) = U(ry,; 4;) — U(ry,;
4;) will often be well-approximated by a normal distribution (eq
1) parametrized by the mean (AU;), and standard deviation 6.

1/2
pk(AL]t) = ;2 e_(AUfj_<AUfj>k)2/2(7szk
! e

(1)
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>k = Z AU, (rlcn

()
Y (AU(x,) - (AU,
oy = \/Z j k]vI — ij/k
n=1 k (3)

The overlap of the normal distributions observed from
simulation of states i and j shall be denoted S‘J (a special case of
eq 4) which is used to define an “overlap mdex” (eq 5) that
measures the similarly between the ensembles.

S, = /ﬂi(AUkz)Pj(AUkz) daUy (4)

0; = S"/max(S", i

()

Specifically, the index is the overlap of the distributions using a
normalization convention that ensures 0 < O; < 1 for all ij, and
the self-overlap index is guaranteed to be unity, O; = 1. The
overlap index is a continuous function of the normal distribution
mean and standard deviation values; however, the derivative of
overlap index with respect to a standard deviation is
discontinuous when the normal distributions share the same
standard deviation. The standard deviations are not free
parameters in the Opt-PSO method; their values are determined
from the observations made from short “burn-in” simulations,
described below.

If one performed brief simulations with a schedule consisting
of N, states, then the analysis of these ensembles with eq S
produces a N, X N, symmetric matrix of overlap indexes, whose
diagonal elements are unity. One can approximate the overlap
between any pair of states by concocting a continuous function
O(4, A’) that is parametrized to reproduce O(4, ]) O for all
N, X N, observations while also obeying the secondary property
0O(A, A) = 1 for all continuous values A € [0, 1]. To enforce this
second property, we make use of a coordinate transformation

(eqs 6=7).
u(d, 1) = = A)/\2 (6)

v, M) = (A +A)/N2 (7)

If one visualizes Oj; as a two-dimensional regular grid of values,
then the u- and v-coordinates correspond to the distances
orthogonal and parallel to the diagonal, respectively. An
interpolating function that enforces the second property can
then be written.

o, X) = oA, 2))u(A ) (8)

We use multiquadric radial basis functions (RBF),

o(r) =41+ (€r)2, to model the exponent, z(u, v), where €

=100 is “shape parameter” and r is a Euclidean distance in the
RBF coordinate space.

2(u, v) = ZMWQw—

+(v—

)
9)

The u;; and v;; values are the locations of the observations, and
the values of z(u, v) which cause O(4; 4;) = Oj; are given by z;.
uy = u(4;, 4) (10)
vy = v(4 4) (11)
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z; = —ln(Oij)/u; (12)

The RBF is parametrized to reproduce the z; values by solving
the following set of simultaneous equations for the weights ;.

D AW = %
1 (13)

Infinitely smooth RBFs, such as multiquadrics, are strictly
positive definite functions; therefore, A is invertable and a
unique solution for the weights can be found.

Vkl)z )

The O(4, A') interpolating function is used to predict a A-
schedule with improved ensemble overlaps. Specifically, we fix
the values 4; = 0 and Ay, = 1 and adjust the remaining N, — 2

A(ij),(kl) = 40(\/(%-,- - ”kl)z + (V,-,- - (14)

values in a nonlinear optimization procedure to minimize the
objective function shown in eq 15.

N-1

r'@4) = — (0@)r

i i+1)

i= (15)

The objective function is the variance between the N, — 1
nearest-neighbor overlaps, where (O(A)) is the mean nearest-
neighbor overlap.

1 NG
o)) = O(4;, Aiyy)
(0(2)) I%_IE s »

We optimized eq 15 using the low-storage Broyden-Fletcher-
Goldfarb Shanno algorithm”* implemented in the SciPy
software.”” The derivatives dy?/dA; were approximated from a
central finite difference using a displacement of § X 107°.
2.2.2. Optimized Kullback—Leibler Divergence A-Schedul-
ing (Opt-KL). The Kullback—Leibler (KL) divergence is another
property used to quantify the similarity between distributions.”
Specifically, D(p; || p]) is a statistical measure of how p; differs

from p;.
= [ sy 2o
oo B pl(A (17)

When applied to normal distributions, the integral simplifies to
eq 18.

Uj
) dAU,
Uy '

Gjji + (<A '>i -

2
205,

’]]

(ay)»

D(p,

N | =

1]1

(18)

Kullback—Leibler similarly developed a symmetric form of the
measure, which we denote as Dgy;.””

D 2][p) = 5

[|e)

(19)

Dgyy, is 0 when the two distributions are the same, and it
approaches + oo as their differences increase. Eq 20
exponentiates Dg; to place the domain in the range (0, 1),
arriving at an alternate definition of the overlap index, which we
call the “KL index”.

0, = ¢~ Do (r|) (20)

https://doi.org/10.1021/acs.jctc.4c00251
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The construction of a continuous, nonlocal function of KL index
and its optimization to determine a A-schedule is analogous to
eqs 8—18.

2.2.3. Optimized Replica Exchange Acceptance Ratio A-
Scheduling (Opt-AR). The Opt-AR method makes a direct
estimate of the replica exchange acceptance probability ratio to
optimize a A-schedule. The probability of exchange between
states i and j at time step n is calculated from the Metropolis
criterion at constant temperature.

—ﬁHLK9m1)+[KnM4)}—{U@mﬂ)+LK5M%)H)

= min[l,
(21)

The Opt-AR method replaces the overlap index with a “AR
index” defined by the average exchange probability.

B, = min(1, e

PAUx,)
e —-pA Uf,‘(l'm)

min(M; ,M/)

Hjn

1
g min(Mi, Mj) (22)
Preliminary examination of the AR indexes suggested to us that
the values are modeled slightly better with an exponential (eq
23) rather than a Gaussian (eq 8); however, the differences
between the model functions are quite small because they are
both parametrized to reproduce the observed AR index values.

n=1

O(/l, /1/) — e—z(u(/l,/l’),v(ﬁ,i’))Iu(/l,/l’)l (23)
The exponent is a continuous function calculated from a RBF
(eq 9) whose weights are parametrized (eq 13) to match the
discrete exponent values (eq 24) needed to reproduce the
observed AR indexes, O(4, /1].) = 0.

z; = —In(0;)/luy (24)
The optimization of a schedule from eq 23 is analogous to eqs 15
and 16.

2.3. Computational Details. We describe the relevant
molecular system setup and simulation protocols as follows. All
simulations in the present work were performed with the GPU-
accelerated version of pmemd, as implemented in the AMBER
Drug Discovery Boost package (AMBER DD Boost).”® This
modified software patch has been fully integrated within Amber
since version AMBER22.”” Free energy analysis was performed
using the FE-ToolKit’®”’ software package included in
AmberTools.*

The systems were prepared in accord with our ProFESSA free
energy workflow.”" A few technical points of the system
preparation using our workflow are discussed here. The
calculation of RBFE values for a series of structurally related
ligands can be viewed as a transformation network, where the
nodes of the graph are the physical states and a graph edge is an
alchemical transformation between two states. Technically,
there are two networks corresponding to the ligand trans-
formations performed in aqueous and protein-complexed
environments. Each node of the graph is connected by one-or-
more edges; therefore, to reuse the same physical state in
multiple transformations, each system must be prepared in a
consistent manner. That is to say, each system (for a given
environment) was prepared with the exact same number of
water molecules and Na* and Cl~ ions. Similarly, the unit cell
shape was made consistent because the HREMD simulations
performed with Amber in the NPT ensemble are restricted to
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isotropic fluctuations in the unit cell volume. Upon equilibrating
the physical end-states, the alchemical states along an edge are
prepared using a “2-state” approach.”’ Specifically, the A = 0
alchemical state (containing a dual-topology of the A=0and 4 =
1 physical states) is prepared and equilibrated using a procedure
described in more detail below. The alchemical states
corresponding to 0 < 4 < 0.5 are sequentially equilibrated
from the previous 4 alchemical state, and the remaining states
are similarly equilibrated in a sequential fashion starting from the
A =1 alchemical state. This two-state preparation has previously
been found to remove bias caused by “hysteresis” in the sense
there is no “forward” or “reverse” direction in the simulations.*’
A more detailed discussion of why this is important to obtain
high precision has been described elsewhere."

The protein and the ligand systems were modeled using the
AMBER ff14SB and the GAFF? force fields,*” respectively, and
the condensed phase environment was explicitly modeled with
TIP4P/Ew waters®” with the corresponding Joung—Cheatham
Na* and CI™ ion parameters.**® All simulations were carried
out using a 1 fs integration time step. Constant temperature
simulations were performed with the Langevin thermostat using
a 5 ps~! collision frequency.*® Simulations performed in the
NPT ensemble further used the Monte Carlo barostat to
maintain a pressure of 1 atm. Electrostatics were evaluated with
the particle mesh Ewald (PME) method®”*® using a 1 A grid
spacing and 10 A real-space cutoffs. The Lennard-Jones
interactions were truncated at 10 A and a longrange tail
correction was applied. SHAKE® constraints were applied to
protein covalent bonds involving hydrogen.

2.3.1. System Preparation. We first prepared reference end-
state systems containing ligands 19 and 21, because crystal
structures of these ligands bound to SARS-CoV-2 MP™ are
available (PDB ID 7LMD and 7LMF,’ respectively). Ligands
18 and 20 were then prepared in a consistent way based on the
reference systems. Starting from the crystal structures, the tLeap
program®’ was used to add missing hydrogen atoms and solvate
the protein with 19136 waters to form an orthorhombic cell. A
total 83 Na* and 75 Cl” ions were added to counter balance the
protein charge and reach an approximate physiological
(extracellular) bulk concentration of 0.15 M. For the ligands
in aqueous solution a similar procedure was used: the initial
structures of ligands were taken from the protein complex and
solvated by 4904 waters, 13 Na*, and 13 CI". The end-state
systems for ligands 18 and 20 were setup in a similar fashion
upon replacing the imidazole hydrogen with a methyl group
(Figure 1). Special care was taken to use the same number of
waters, ions, and unit cell.

2.3.2. Relative Binding Free Energy Simulation Protocols.
Following the ProFESSA workflow,*" the positions of the ions
and water molecules were geometry optimized for S000 steps
using the steepest descent method while restraining the solute
heavy-atom positions with a force constant of 5 kcal/mol/A2.
These restraints were then released and the system was
optimized for an additional 5000 steps. Equilibration was
performed in the NPT ensemble for 500 ps while restraining the
solute heavy-atom positions with a force constant of 5 kcal/mol/
A2, Targeted volume MD’® was performed on both end-states to
average the box dimensions for 500 ps in order to generate the
intermediate replicas with the same box shape.

The system was heated at constant volume for S00 ps to
achieve a temperature of 300 K. After heating, a 500 ps
equilibration in the NPT ensemble was performed, followed by 2
ns annealing in the NVT ensemble. The annealing heated the
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Figure 2. Distributions for the torsion, P(y), are obtained from MD (left) and ACES (right) simulations departing independently from initial states
with the torsion () taken to be the value (indicated by dashed vertical lines) obtained from the crystal structures for ligands 19 and 21 (black) and
alternatively flipped by 180 deg (red). Here the ACES simulations are for “self transformations”; e.g., 18 — 18,19 — 19,20 — 20 and 21 — 21. All

results are the average of 4 independent runs (trials).

system from 300 to 600 K in the first S0 ps, maintained a
temperature of 600 K for an additional 100 ps, and then cooled
the system to 300 K over a period of 50 ps. After the annealing
stage, the solute heavy atom restraints were gradually reduced
over a period of 1 ns in the NPT ensemble at 300 K and 1 atm.
The unrestrained system was then equilibrated for an additional
200 ps. The above procedure was performed for the A=0and 1 =
1 physical states. Dual topology structures were prepared, and
the alchemical states were sequentially equilibrated from 4 =0 to
A=0.5 (and from A = 1 to 4 = 0.5). The starting configuration of
each alchemical state is the equilibrated structure of the previous
A state in the sequence. Each alchemical state was minimized
with 5000 steps with the steepest descent method, heated to 300
K over a period of 300 ps at constant volume, and equilibrated
for an additional 2.2 ns at 300 K in the NPT ensemble.

The alchemical transformations were performed using the
modified SSC(2) softcore potential and the one-step concerted
softcore protocol The unitless parameters of the softcore
potential are m = 2, n = 2, @ = 0.5, and f = 1. The
implementation of the SSC(Z) softcore potential in the pmemd
program includes options which control the A-dependence of
the bonded terms crossing the common-core and softcore
regions. Specifically, we set the option gti_add sc = 25 which
scales the energy of those torsions descrlbmg the rotation
around a single-bond.*® This scheme has been found to enhance
the samphng and improve the convergence of the calculated free
energy.”® Unless otherwise stated, the transformations were
performed with 21 4 windows spanning 4 = 0.0 and 4 = 1.0 in
steps of 0.0S.

We compare the enhanced sampling produced by ACES
(which uses HREMD and an extended softcore region) with
traditional sampling (which does not use HREMD and selects a
minimal softcore region). In both cases, the alchemical
transformation of the entire ligand is considered; however, the
ACES softcore selection includes the whole imidazole ring (the
ACES selection in Figure 1), whereas the non-ACES softcore
selection is a subset of the ring determined from the Maximum
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Common Substructure” (MCS) algorithm (the MCS/E
selection in Figure 1). The production simulations were
performed for 6 ns with a 1 fs time step in the NPT ensemble
at 300 K and 1 atm. The ACES simulations attempt HREMD
exchanges every 20 fs. Only the last S ns of each simulation was
included in the analysis. Network-wide MBAR free energy
analysis was performed on the thermodynamlc graph shown in
Figure 1 with cycle closure constraints’* using FE-Too1Ki t.

2.3.3. Comparison of Torsion Angle Distributions. We
compare torsion angle distributions of the imidazole ring
computed from standard MD and ACES sampling to illustrate
the enhanced sampling offered by ACES. These simulations are
not used to estimate the RBFE between different ligands. As
previously discussed, we prepared and equilibrated the SARS-
CoV-2 MP™ system with ligands 18—21. Each of these systems
can be prepared twice: once when the imidazole ring torsion is in
the syn conformation, and another in the anti conformation
(these differ only by a 180° rotation of the ring). We then
performed standard MD of the 4 systems in both the syn and anti
conformations. The production sampling was performed for 6 ns
in the NPT ensemble at 300 K and 1 atm using a 1 fs time step,
and each simulation was repeated 4 times with different
thermostat random number seeds. The imidazole torsion
angle highlighted in Figure 1 was monitored during the last 5
ns of each simulation, and normalized histograms were
constructed to illustrate the torsion angle probability distribu-
tion.

The simulations were repeated using the ACES method in a
manner analogous to the RBFE simulations; however, the two
topologies refer to the same system. The 4 = 0 and A = 1 states
differ only in the initial coordinates: the 4 = 0 state is the syn
conformation and the 4 = 1 state is the anti conformation. This is
referred to as an ACES “self-transformation”. The entire ligand
was included in the alchemical transformation and the softcore
region includes the whole imidazole ring. The two states are
connected by 21 uniformly spaced 4 states. The A states were
equilibrated with the “two-state approach” in a manner
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analogous to the RBFE calculations. The ACES simulations
were performed for 6 ns in the NPT ensemble at 300 K and 1 atm
using a 1 fs time step, the HREMD exchanges were attempted
every 20 fs, and the simulations were performed 4 times with
different thermostat random number seeds. Two sets of
imidazole torsion angle distribution functions were constructed
from the last 5 ns of the A = 0 and 4 = 1 states, respectively.

3. RESULTS AND DISCUSSION

3.1. Improved Sampling of Ring Conformations with
ACES. In this section, we demonstrate that ACES enhances the
sampling of ring conformations relative to conventional MD
simulation for the set of bound SARS-CoV-2 MF* ligands
illustrated in Figure 1. This demonstration is not in the context
of an AFE simulation used to calculate RBFE values. Rather, we
use ACES in a “self-to-self” transformation whereby a bound
ligand is effectively transformed into the same ligand. In this
scenario, there are two copies of the ACES region that are being
simulated, and these copies do not directly interact with one
another. At A = 0, one of those copies represents the real state of
the ligand, whereas the other copy is in a noninteracting dummy
state. In traversing the A-dimension from 0 to 1, the first copy is
transformed from a real state into a noninteracting dummy state
at A = 1, whereas the second copy is transformed from a
noninteracting dummy state into a real state. At each point along
the path, the environment feels the A-dependent weighted sum
of the two transforming regions. This results in a minimal
perturbation to the environment along the A-dimension;
therefore, it requires a modest amount of sampling in
comparison to a larger perturbation.

An advantage of ACES resides in its ability to focus the
enhanced sampling on specific degrees of freedom of interest.
Although conventional MD simulations are commonly used in
protein—ligand binding systems, they are often inefficient at
describing equilibrium distributions between multiple thermally
accessible states. In the present example, the focus is on ring-
flipping conformational events that occur by torsion rotation
about the single bond connecting the imidazole ring and the
molecular scaffold. We examine the distribution of angles of the
torsion highlighted in bold in Figure 1.

Figure 2 compares the ligand torsion angle distribution using
conventional MD (left) and ACES (right) simulations,
departing from the syn and anti conformations. The MD
simulations for each ligand show starkly different torsion angle
distributions depending on the starting point (indicated by the
vertical dashed lines). The distributions clearly indicate that the
populations of the conformational states are biased by their
initial conditions on the time scale of the MD simulations.
Departing from the anti conformation, the peaks remain more
pronounced for the anti state, whereas the reverse is true when
departing from the syn conformation. In extreme cases, such as
for ligand 21, the simulations remain trapped in the initial local
conformational state and are not observed to make any
transitions.

The ACES simulations, on the other hand, show torsion angle
distributions that are virtually indistinguishable regardless of
starting conformation. All 4 ligands produce converged
populations of the syn and anti states. Ligand 20 was the only
ligand that predominantly prefers one conformational state (the
syn state). Nonetheless, unlike the MD results, ACES converges
to the same distribution when departing from either an initial syn
or anti conformation. In the case of ligand 21, whereas the MD
was trapped in an initial conformation and no transitions were
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observed, ACES produces a converged distribution independent
of starting conformation.

Table 1 compares the population syn/anti conformational
states of the ring derived from conventional MD and ACES

Table 1. Ring-Flipping Torsion Angle Distributions from
ACES Enhanced Sampling and Conventional MD“

MD ACES
Ligand Init. Conf. Bl Py Err Po/Poi Err
18 (syn) 0.69/0.31 0.32 0.38/0.62 0.00
18 (anti) 0.11/0.89 027 0.37/0.63 0.00
19 (syn) 0.95/0.05 0.63 0.32/0.68 0.01
19 (anti) 0.29/0.71 0.02 0.30/0.70 0.01
20 (syn) 1.00/0.00 0.08 0.93/0.07 0.00
20 (anti) 0.26/0.74 0.67 0.92/0.08 0.00
21 (syn) 1.00/0.00 0.68 0.32/0.68 0.00
21 (anti) 0.00/1.00 0.32 0.32/0.68 0.00
maE 0.37 0.00
rmsE 0.45 0.01

“P, is the probability of observing the ring torsion angle y in the
range [—90, 90]. P, is the probability of finding it in the range [90,
270]. The probabilities are averages over 4 independent trials. “Init.”
refers to the initial condition of the ring when the simulation began.
The initial anti conformations were taken from the crystallographic
values within PDB ID 7LMD (—170.0° for ligand 18 and 19) and
PDB ID 7LMF (—174.6° for ligand 20 and 21). The initial syn
conformations were defined by adding 180° to the corresponding anti
values. The absolute error (Err) is shown with respect to the average
syn/anti values from the selffACES simulations: ligand 18 (0.38/
0.62), ligand 19 (0.31/0.69), ligand 20 (0.92/0.08) and ligand 21
(0.32/0.68).

simulations departing from different initial conformations. The
results are compared to reference values determined from the
average of 4 independent trials of ACES self-transformation
simulations, where the two end-states started from different
initial conformations. The population errors for MD results are
large: half of the values are over 30% error, and 3 out of 8 values
are over 60% error. The population errors for ACES are all below
2%. This demonstrates the robustness of the ACES method for
sampling conformational states arising from ring-flipping events
for this set of ligands.

3.2. Application of ACES to the Calculation of Relative
Binding Free Energies. In this section, we apply the ACES
method to the calculation of RBFE values for the ligands
illustrated in Figure 1. Recall that the ACES method involves the
selection of an enhanced sampling region (which is transformed
into a noninteracting dummy state using a smoothstep softcore),
and it uses HREMD to rigorously connect the enhanced
sampling dummy state with the real state. We compare the
ACES results to two other approaches: the first alternative does
not use HREMD, and the second alternative uses a smaller
softcore region. The goal is to decouple these two elements and
analyze them separately.

In the first approach, designated “no RE”, we select the same
softcore region as in the ACES approach (shown in Figure 1),
but Hamiltonian replica exchange is not employed. In the
second approach, designated “MCS/E”, we use HREMD but the
softcore region was chosen from the extended maximum
common substructure (MCS/E) “atom-mapping” procedure.”!
Traditional AFE simulations often use a minimal softcore region
to reduce the alchemical perturbation. In contrast, the ACES
approach strategically selects a larger softcore region to enhance
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Figure 3. Profiles of (dU/dA), for the ligand transformations performed in the protein environment. Each transformation was repeated with 4 sets of
simulations. The 4 solid lines are the (dU/dA), averages from each of the 4 trials. The shaded region is the standard deviation of (dU/dA), calculated
from the aggregate sampling, and (o) is the mean value of the standard deviation. A free energy is calculated for each trial by integrating the
corresponding (dU/dA), profile with trapezoidal-rule integration. 6, is the standard deviation of the 4 free energy estimates.

sampling. In the present work, the entire ring up-to the first
rotatable bond connecting it to the common core is selected as
the softcore region. As was shown in the previous section, this
selection enables ACES to sample multiple accessible conforma-
tional states.

Figures 3 and 4 illustrate the (0U/dA), profiles obtained from
the RBFE simulations performed in the protein and aqueous
environments, respectively, using the “no RE”, “MCS/E” and
“ACES” approaches. Each set of simulations was performed 4
times, and the shaded region is the standard deviation of (dU/
0A), obtained from the aggregate sampling. The (o) value is the
mean value of the (0U/dA), standard deviation (averaged of the
A-states). Integration of each trial's (0U/d4), profile yields 4
estimates of the free energy change, and 0, is the standard
deviation of the 4 estimates. All of the profiles appearing in
Figures 3 and 4 vary smoothly; they do not display sudden jumps
analogous to a first-order phase transition. The “no RE” curves
exhibit larger noise between independent lambda windows and
trials. The MCS/E method produces the smallest o values in the
protein environment. The “no RE” and “ACES” simulations
yield larger o values, and they are similar to each other. These
observations are likely a consequence of the softcore region’s
size. The 0, values range from 0.29 to 0.82 kcal/mol (no RE),
0.02—0.38 kcal/mol (MCS/E) and 0.05—0.19 kcal/mol
(ACES) in the protein environment. The average o, value in
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the protein environment is largest when replica exchange is not
used (0.53 kcal/mol). In comparison, the average 5 values of
MCS/E and ACES are 0.19 and 0.11 kcal/mol, respectively. The
(o) values range from 7.7 to 8.9 kcal/mol (no RE), 4.0—6.7 kcal/
mol (MCS/E) and 8.0—9.3 kcal/mol (ACES) in the protein
environment. The (dU/dA), fluctuations are largest for “no RE”
and ACES due to the larger softcore region. Despite these larger
fluctuations, the ACES (dU/dA), profiles produced from
independent trials are remarkably similar, and the standard
deviation of the free energy estimates between independent
trials, oag are comparable to (slightly smaller than) the
corresponding MCS/E values. This result is likely due to the
slightly more consistent ensembles generated from independent
trials using ACES as opposed to MCS/E. The simulations
performed in the aqueous environment display similar trends;
however, the differences are less pronounced.

These results suggest that the use of HREMD is important,
especially when considering a larger softcore region, to reduce
the variance in the free energy estimate between independent
trials. The MCS/E and ACES o, values are often similar;
however, for 18 — 21, 19 — 20, and 20 — 21 the MCS/E values
(0.25,0.38, and 0.28 kcal/mol) are anomalously larger than the
ACES values (0.09, 0.11, and 0.0S kcal/mol). In these cases,
independent MCS/E runs get trapped in local conformational
states. The inadequate conformational sampling leads to larger
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Table 2. Ring-Flipping Torsion Angle Distributions from Alchemical Free Energy Simulations”

no RE MCS/E ACES

Ligand Simulation Bl Py Err Bl Py Err Bl Py Err
18 18 - 19 0.89/0.11 0.52 0.49/0.51 0.11 0.48/0.52 0.10
18 — 20 0.69/0.32 0.32 0.52/0.48 0.15 0.53/0.47 0.15

18 —» 21 0.02/0.98 0.36 0.33/0.67 0.04 0.47/0.53 0.09

19 18 —» 19 0.15/0.85 0.16 0.10/0.90 0.21 0.19/0.81 0.12
19 - 20 0.71/0.29 0.40 0.10/0.90 0.21 0.39/0.61 0.08

19 - 21 0.11/0.90 0.20 0.33/0.67 0.02 0.21/0.79 0.10

20 18 — 20 1.00/0.00 0.08 0.53/0.47 0.39 0.82/0.18 0.11
19 — 20 0.11/0.89 0.81 0.89/0.11 0.03 0.88/0.12 0.04

20 —> 21 1.00/0.00 0.07 0.94/0.06 0.02 0.93/0.07 0.01

21 18 —» 21 0.00/1.00 0.32 0.39/0.61 0.069 0.13/0.87 0.19
19 = 21 0.92/0.08 0.60 0.67/0.33 0.35 0.25/0.75 0.07

20 —> 21 0.28/0.72 0.04 0.21/0.79 0.11 0.22/0.78 0.10

maE 0.32 0.14 0.10
rmsE 0.39 0.19 0.11

“P,,, is the probability of observing the ring torsion angle y in the range [—90, 90]. P,,,; is the probability of finding it in the range [90, 270]. The
probabilities are averages over 4 independent trials. The absolute error (Err) is with respect to the ACES self-transformation reference values listed
in Table 1.

variation in the free energy estimates. To emphasize this point, table lists the probability ratios of syn/anti for each ligand, and
Table 2 compares the population of syn/anti conformational the error is relative to the reference ratios shown in Table 1 (the
states observed within the AFE simulations. Specifically, the average distribution of the ACES self-transformation end-
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Table 3. Relative Binding Free Energy Values (AAG, in kcal/mol) Calculated from Alchemical Free Energy Simulations”

MCS/E

no RE
Simulation AAG, (@) AAG,
18 — 19 -1.73 (0.14) —-1.74
18 — 20 —0.46 (0.14) —0.64
18 - 21 -1.76 (0.12) -1.62
19 — 20 1.27 (0.15) 1.11
19 - 21 —0.030 (0.13) 0.12
20 - 21 —-1.30 (0.13) —0.99
maE 1.068 1.22
rmsE 1.26 1.40

ACES

(Core) AAG, () Expt.
(0.05) —1.84 (0.04) —3.11
(0.07) ~0.76 (0.041) —045
(0.06) ~1.87 (0.04) —342
(0.07) 1.08 (0.04) 2.67
(0.06) ~0.03 (0.03) -031
(0.078) —111 (0.04) 297

1.14

1.30

“The AAG, and o, values (kcal/mol) are the average and standard error of free energy estimates made from 4 independent sets of simulations.
The free energy was calculated by solving the multistate Bennett acceptance ratio (MBAR) equations’" with cycle closure constraints.”” The

experimental free energies (Expt.) are estimates based on the reported ICs, values.

square errors relative to experiment, respectively.
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Figure S. Correlation between phase-space overlap (PSO, bottom) and HREMD acceptance ratio (RE-AR, top) from RBFE simulations of 18 — 21
(left) and 19 — 21 (right) in the protein—ligand environment. The schedules are linear, Golub-Welsch (GW), and the Gauss-Lobatto (GL)
quadrature points. The legend lists the linear correlation coefficient (R?) between PSO and RE-AR for each schedule.

states). The ACES method produces the smallest mean absolute
error (maE) and root-mean-square error (rmsE) values (0.10
and 0.11, respectively). In comparison, the maE and rmsE values
of “MCS/E” (0.14 and 0.19, respectively) and “no RE” (0.32 and
0.39, respectively) are 1.5-to-3 times larger. The “no RE”
simulations exhibit the largest errors in the conformational
populations because they do not take advantage of the enhanced
sampling offered by HREMD. The MCS/E method, which
makes use of HREMD, performs significantly better. It has a
mean absolute error of 14%; however, the error in the
populations can be as large as 39% (ligand 20 in the 18 — 20
alchemical transformation). The ACES approach performs the
best; it has the lowest mean absolute error of 10% and a
maximum error of 19% (ligand 21 in the 18 — 21 alchemical
transformation).

Table 3 lists the RBFE values (AAG,) and standard errors
(64) from four independent trials. The “no RE” results have
considerably larger standard errors (0.12—0.16 kcal/mol)
whereas the maximum standard errors from “MCS/E” and
ACES are 0.08 and 0.04 kcal/mol, respectively. The average
errors with respect to experiment are generally similar between
the methods (maE values 1.1—1.2 kcal/mol). The magnitude of
the experimental RBFE values of 18 — 19, 18 — 21, and 20 —
21 are approximately 3 kcal/mol, whereas the magnitude of the
calculated values are less than 2 kcal/mol. This is likely due to
errors in the force field itself for this system. The maE with
respect to experiment produced by ACES (1.14 kcal/mol) is
slightly less than for “MCS/E” (1.22 kcal/mol); however, the
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maE values are within the standard error estimates and not
statistically distinguishable.

When taken as a whole, the results presented here
demonstrate the advantages of ACES through its use of an
expanded softcore region and HREMD to connect the enhanced
sampling states.

3.3. Improved Sampling Efficiency from Optimized A-
Scheduling. As illustrated in the previous sections, the ACES
approach critically relies on the HREMD framework to facilitate
transfer of diverse structures generated in the noninteracting
dummy state to the real state with the correct Boltzmann
probability. Efficient enhanced sampling is achieved by high-
throughput end-to-end conduction of conformational states.
The most direct measure of the throughput is the average end-
to-end transit time, or so-called “single-pass” time;®® ie., the
average number of MD steps (or sometimes measured in
exchange attempts made at constant time intervals) for a replica
to pass from one end state (4 =0 or 1) to the other (A =1 or 0).
The shorter the average single-pass time, the more single passes
are made and the more complete the HREMD/ACES sampling.
Replica exchange can be hindered by poor acceptance ratios
between A-intervals that are typically related to having poor
phase space overlap®™’* between adjacent windows. Having
even one interval with very low exchange probability (accept-
ance ratio) can produce a bottleneck that prevents enhanced
sampling. Given that the phase space overlaps and related (dU/
0A4), profiles can vary between transformations within a
thermodynamic graph, it is difficult to predict a priori where
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Figure 6. Correlation between the predicted and observed phase-space overlap (PSO) and HREMD acceptance ratio (RE-AR) from the 18 — 21
(left) and 19 — 21 (right) RBFE simulations in the protein—ligand environment. The schedules are linear (top), GL (middle) and Opt-PSO

(bottom). Each schedule consists of 12 A values.

such bottlenecks may occur and how to avoid them in a manner
amenable to automation. Phase space overlap and replica
exchange acceptance ratio are closely related. Both are sensitive
to the alchemical transformation pathway and the spacing
between adjacent A-states.

In this subsection, we present a new method to determine 4-
spacing that optimizes the phase space overlap between adjacent
A-states. The method improves the efficiency of the replica-
exchange in production simulations. We first set out to illustrate
the strong correlation between phase space overlap (PSO) and
Hamiltonian replica-exchange acceptance ratio (RE-AR). We
illustrate that several commonly used A-spacing schedules can
give considerably different PSO and RE-AR profiles, as well as
different average number of end-to-end single-passes and total
round trips. Finally, we illustrate that the new method is able to
predict the PSO. The predicted PSO is used to determine a
schedule of A-states that equalizes the PSO between intervals.
This establishes a new Opt-PSO method for the automated
selection of A-windows based on short burn-in simulations. The
burn-in simulations typically increases the direct computational
cost by less than 5%.

3.3.1. Correlation between Phase Space Overlap and
Replica Exchange Acceptance Ratio. Figure S illustrates the
correlation between PSO and RE-AR. For this demonstration,
we performed 18 — 21 and 19 — 21 AFE simulations in the
protein environment with 12 A-states and 3 A-schedules. The 3
schedules are “linear” (equally spaced A-states), “GW” (Golub-
Welsch quadrature””), and “GL” (Gauss-Lobatto quadrature”).
The GW schedule does not place values at the end-points 4 =
0,1. This choice of A-spacing has been used for thermodynamic
integration,%’95 especially for alchemical transformation path-
ways that exhibit numerical instabilities near the end-points. The
GW schedule should not be used with free energy perturbation
methods that formally require the end-points to be included. In
contrast, the GL schedule does include end-point simulations.
The simulations were performed for 6 ns in the NPT ensemble at
300 K and 1 atm using a 1 fs time step. The PSO and RE-AR
values were obtained by analyzing the last 5 ns of the
simulations. It is clear from Figure 5 that the PSO and RE-AR
are highly correlated for all the A-schedules in both trans-
formations. The linear correlation coeflicients are all greater
than 0.9. This correlation provides motivation that the design of
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a method that optimizes the phase space overlap to further
enhance AFE simulations using ACES.

3.3.2. The Opt-PSO Method. We develop a new method to
determine a A-schedule that optimizes the PSO between
adjacent A-states. The method uses a short “burn-in” ACES
simulation with a uniform A-spacing to quickly accumulate
statistics about the nonlocal PSO. In the present work, the burn-
in simulations were performed for 600 ps with 21 uniformly
spaced A-windows, and the nonlocal PSO was calculated from
the last 500 ps each simulation. The statistics are used to create a
smooth 2D map of the predicted PSO between arbitrary placed
A-states. Given the 2D map and the number desired A-states, a
schedule is optimized, as described in the Methods section. The
optimized schedule is then used to perform production-length
ACES simulations. To make comparison with the results in
Figure 5, we optimized schedules consisting of 12 A-states, and
these schedules were simulated with ACES for 6 ns. The last 5 ns
of each simulation was used to calculate the observed PSO and
RE-AR.

Figure 6 illustrates the PSO and RE-AR for the 18 — 21 (left)
and 19 — 21 (right) RBFE simulations in the protein
environment using several A-schedules. Note that the PSO and
RE-AR are functions of A intervals; the A axis corresponds to the
average of the two A-state values which make up the interval. In
other words, although the A-states span the interval [0, 1] and
contain the end-points of 0 and 1, the lines in Figure 6 do not
extend to 0 and 1 because the interval-averaged values are used
for the A axis. The simulated A values are indicated by vertical
dotted lines. The green dashed lines in each pane are the
predicted PSO of the schedule estimated from nonlocal PSO
function parametrized from the 21-window burn-in simulation.
The black lines are the observed PSO from the simulations
performed with the schedule, and the red lines are the observed
RE-AR. It is clear that the PSO values predicted from the burn-in
simulations are almost identical to the observed PSO values
derived from the production simulation. As illustrated in the
previous section, the observed RE-AR values are strongly
correlated with the observed PSO.

The new Opt-PSO method determines a A-schedule by
minimizing the variance in the PSO between adjacent states.
The predicted PSO of the optimized schedule is shown as the
green dashed line in the bottom panels of Figure 6. The observed
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Table 4. Ring-Flipping Torsion Angle Distributions from Alchemical Free Energy Simulations with Different A-Scheduling”

Linear GL Opt-PSO

Ligand Simulation I L Err Bl P Err Bl P Err
18 18 — 21 0.54/0.46 0.16 0.52/0.48 0.14 0.46/0.54 0.08

19 19 - 21 0.22/0.78 0.09 0.13/0.87 0.18 0.24/0.76 0.07

21 18 —» 21 0.067/0.93 0.25 0.10/0.90 0.22 0.08/0.92 0.24

19 - 21 0.23/0.77 0.09 0.13/0.87 0.19 0.19/0.81 0.13

maE 0.15 0.18 0.13

rmsE 0.32 0.37 0.29

“P,,,, is the probability of observing the ring torsion angle y in the range [—90, 90]. P,,;; is the probability of finding it in the range [90, 270]. The

syn

probabilities are averages over 4 independent ACES trials. The absolute error (Err) is with respect to the ACES self-transformation reference values
listed in Table 1. Results from different 12-point 4 schedules are compared: linear, Gauss-Lobatto quadrature (GL) and optimized phase space

overlap (Opt-PSO).

Table 5. Comparison of HREMD Statistics for ACES RBFE Simulations Using Opt-PSO, Linear, and Gaussian Quadrature 12-

Point Schedules”

RE-AR Single Passes Round Trips AG

Simulation A-spacing Avg. (o) Min Avg. (o) Avg. (o) Avg. (6err)

18 — 21 Complex Linear 0.34 0.28 0.07 252.67 29.17 120.67 14.82 -3.25 0.11
GL 0.44 0.35 0.01 125.67 4.03 57.33 2.36 —-2.93 0.14

Opt-PSO 0.27 0.04 0.20 383.00 39.82 187.00 19.61 =3.12 0.19

Opt-KL 0.22 0.01 0.21 347.67 33.56 169.00 16.31 -3.03 0.05

Opt-AR 0.26 0.01 0.24 336.67 17.31 163.67 9.03 -3.20 0.14

18 — 21 Aqueous Linear 0.42 0.31 0.12 1437.00 31.28 713.00 15.64 —0.87 0.03
GL 0.52 0.40 0.03 732.67 32.89 360.00 16.31 —0.84 0.04

Opt-PSO 0.35 0.07 0.24 2165.33 15.06 1078.33 7.59 —0.85 0.03

Opt-KL 0.34 0.04 0.29 2280.00 52.24 1134.33 26.03 —0.87 0.03

Opt-AR 0.35 0.01 0.32 2293.00 61.65 1140.67 30.62 —-0.89 0.02

19 — 21 Complex Linear 0.37 0.25 0.13 729.33 29.32 359.33 14.82 —7.07 0.10
GL 0.45 0.34 0.03 441.67 30.47 215.67 15.17 —7.16 0.05

Opt-PSO 0.33 0.03 0.27 1202.67 15.80 595.67 8.01 =7.15 0.08

Opt-KL 0.34 0.01 0.33 1252.67 66.68 621.00 33.44 =7.17 0.06

Opt-AR 0.33 0.01 0.31 1194.00 47.59 591.33 24.28 —7.16 0.09

19 — 21 Aqueous Linear 0.43 0.29 0.15 1967.00 11.86 978.00 6.16 —7.16 0.03
GL 0.52 0.39 0.04 1122.33 2.05 555.00 0.82 -7.19 0.03

Opt-PSO 0.38 0.06 0.28 2708.33 16.74 1348.33 8.18 =7.12 0.02

Opt-KL 0.40 0.01 0.39 2832.67 10.96 1411.00 4.97 =722 0.03

Opt-AR 0.38 0.01 0.35 2878.33 26.39 1433.33 13.42 =7.15 0.03

“Each transformation was simulated 4 times, and the RE-AR, single pass, and round trip values were calculated for each trial. The reported values
are the average (Avg.), standard deviation (), and minimum value (Min). The free energy (kcal/mol) of each transformation, AG was calculated
by solving the MBAR equations.”’ The reported free energies are the average (Avg.) and standard error (6,,) from the 4 estimates.

PSO from the production simulation using the Opt-PSO
schedule is shown as the solid black line and it is nearly uniform.
Similarly, the RE-AR (solid red line) is also close to uniform with
respect to the other schedules. These demonstrations provide
important validation of the predictive capability of the Opt-PSO
method.

Table S lists the replica exchange acceptance ratio (average
and minimum values), and the number of single passes and total
round trips’®®” for the 18 — 21 and 19 — 21 transformations in
the protein environment using 12 A points with several A-
schedules. The average value of the RE-AR is highest for GL and
lowest for Opt-PSO; however, merely looking at the average
value is misleading because the linear and GL schedules produce
very large RE-AR values near the end-states and very low values
near A = 0.5. The presence of low RE-AR values causes
“bottlenecks” that inhibits enhanced sampling. If one instead
compares the minimum RE-AR values, Opt-PSO (0.20—0.28)
exhibits larger values than GL (0.01—0.04) and linear (0.07—
0.15) schedules. In other words, the GL and linear A-schedules

exhibit replica exchange bottlenecks in comparison to Opt-PSO.
This translates into the Opt-PSO producing a larger number of
single passes and round trips. For the examples in Table 5, the
Opt-PSO A-schedule produces roughly 50% more singles passes
and round trips than the linear schedule and roughly 200% more
than the GL schedule.

Figure 7 illustrates the ring-flipping torsion angle distributions
for simulations with (top) and without (bottom) HREMD/
ACES using linear, GL and Opt-PSO A-schedules for the 18 —
21 transformation. A complete set of analogous figures for
ligands 18, 19 and 21 from 18 — 21 and 19 — 21
transformations are provided in the Supporting Information.
The real state for ligand 18 corresponds to A = 0, whereas the
enhanced sampling dummy state corresponds to 4 = 1. The
ACES simulations illustrate that the torsion distributions evolve
fairly smoothly from the enhanced sampled state to the real state
with similar final real-state distributions. Comparison with the
corresponding simulations without HREMD illustrate that the
torsion distributions between A states are disconnected and can
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Figure 7. Torsion distributions for all 12 A windows using linear (left), GL (middle) and Opt-PSO (right) A-scheduling from HREMD/ACES (top)
and no-HREMD (noRE, bottom) simulations for ligand 18 in the 18 — 21 protein—ligand environment.

Table 6. HREMD Statistics from ACES RBFE Simulations Using Opt-PSO Schedules of Various Sizes”

RE-AR Single Passes Round Trips AG

Simulation N Avg. (o) Min Avg. (o) Avg. (o) Avg. (Cer)

18 — 21 Complex 8 0.11 0.04 0.04 195.00 5.66 94.33 2.62 —3.09 0.24
12 0.27 0.04 0.20 383.00 39.82 187.00 19.61 -3.12 0.19

16 0.39 0.04 0.33 557.00 37.59 272.33 18.93 —3.04 0.12

20 0.48 0.03 0.42 642.67 13.57 312.67 6.60 -3.20 0.06

24 0.54 0.03 0.49 710.33 72.83 345.67 35.80 -321 0.09

18 — 21 Aqueous 8 0.15 0.03 0.09 1208.00 24.34 601.00 12.03 —0.94 0.03
12 0.35 0.07 0.24 2165.33 15.06 1078.33 7.59 —-0.85 0.03

16 0.49 0.04 0.42 3096.67 2.49 1541.67 0.47 —0.87 0.02

20 0.59 0.03 0.52 3823.33 31.79 1903.33 15.28 —0.87 0.01

24 0.65 0.03 0.60 4521.00 23.28 2249.67 11.47 —0.89 0.01

19 — 21 Complex 8 0.17 0.06 0.04 603.67 37.61 297.67 19.22 —6.99 0.11
12 0.33 0.03 0.27 1202.67 15.80 595.67 8.01 =7.15 0.08

16 0.45 0.02 0.39 1583.33 74.70 784.00 37.50 —7.06 0.10

20 0.53 0.02 0.48 1876.00 86.30 928.33 43.48 =7.11 0.07

24 0.58 0.02 0.55 2114.67 60.61 1066.00 1.63 —7.02 0.02

19 — 21 Aqueous 8 0.19 0.08 0.07 1468.67 32.74 730.00 16.39 -7.20 0.04
12 0.38 0.06 0.28 2708.33 16.74 1348.33 8.18 —7.12 0.02

16 0.52 0.07 0.43 3733.33 18.21 1859.33 8.96 -7.12 0.03

20 0.61 0.07 0.54 4607.00 50.94 2294.00 25.46 —7.18 0.02

24 0.67 0.06 0.61 5327.67 57.28 2652.33 29.01 —7.14 0.01

“N is the number A-states in the schedule. Each transformation was simulated 4 times, and the RE-AR, single pass, and round trip values were
calculated for each trial. The reported values are the average (Avg.), standard dev1at10n (0), and minimum value (Min). The free energy (kcal/mol)
of each transformation, AG was calculated by solving the MBAR equations.’

(6.,) from the 4 estimates.

! The reported free energies are the average (Avg.) and standard error

become trapped. This is exemplified for the real state torsion
distributions in both the linear and Opt-PSO schedules without
HREMD (Figure 7, bottom row). Table 4 compares the P,/

P, values from 18 — 21 and 19 — 21 ACES transformations
using different 12-point A schedules. Overall, the Opt-PSO 4
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schedule has the closest agreement (lowest maE and rmsE
values) with respect to the reference values listed in Table 1.
Table 6 lists replica exchange statistics for 18 — 21 and 19 —
21 transformations using the Opt-PSO method with different
number of 4 points. The average and minimum value for the RE-
AR monotonically increases with the number of 1 states, as do

https://doi.org/10.1021/acs.jctc.4c00251
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Figure 8. Correlation between the Opt-PSO and Opt-KL from the 18 — 21 (top) and 19 — 21 (bottom) RBFE burn-in simulations in both aqueous
and protein—ligand environment. Each schedule consists of 12 1 values.

the number of end-to-end single passes and total round trips.
The free energy values are all within 0.3 kcal/mol, and the
standard error estimates generally decrease with increasing
number of 4 points. Taken together, the results presented here
demonstrate a new procedure for customizing the A-schedule
that increases the efficiency and robustness of alchemical free
energy simulations using ACES.

3.3.3. Alternative Optimized Kullback—Leibler (KL) Diver-
gence and Acceptance Ratio (AR) Methods. In this section we
compare alternative methods to the optimized phase space
overlap (Opt-PSO) based on 2D maps of quantities that
represent the Kullback—Leibler divergence and HREMD
acceptance ratio that we designate Opt-KL and Opt-AR,
respectively. These variations are described in detail in the
Methods section.

A concern regarding the use of the PSO index involves the use
of a max() function in eq S that could introduce numerical
instabilities. As an alternative (suggested in peer review), an
index based on the Kullback—Leibler (KL) divergence was
explored and the resulting 4 schedule designated Opt-KL. For
the systems studies here, this index produced a 12-point Opt-KL
A-schedule that was nearly identical to the Opt-PSO A-schedule
as illustrated in Figure 8. Analysis of A-schedules for different
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number of A points ranging from 8 to 24 shows that only for the
8-point schedule derived from the 18 — 21 burn-in does the R*
correlation between A-schedules drop below 0.9.

In order to gain further insight into the nature of the
differences between the Opt-PSO and Opt-KL 4 schedules, the
2D maps derived from the 18 — 21 and 19 — 21 burn-in
simulations are shown in Figure 9. Using the PSO index as an
example (left column in Figure 9), the way to interpret the 2D
maps are as follows. The value of the 2D map at the point (4, 4,)
is the predicted PSO for the A-interval. The goal than is to
determine a set of N, points such that the value of the PSO is
uniform for all A-intervals, forming an isocontour line in the 2D
map. These points are illustrated N; = 12 as black dots in Figure
9. In order to achieve this, it is desirable that the index being
mapped decays monotonically from the diagonal in both the 4,
and 4, directions such that the solution for the isocontour lines is
unique and continuous.

Examination of Figure 9 shows that the PSO (left) and KL
(middle) maps are quite similar. However, somewhat
disconcerting is that both of these indexes do not monotonically
decay from the diagonal. This implies that, for a fixed values of
Ay, there could be multiple values of 4, that have the same value
of the PSO or KL indexes. This is not a serious issue if the

https://doi.org/10.1021/acs.jctc.4c00251
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Figure 9. 2D maps of phase space overlap (PSO) index of eq S, Kullback—Leibler (KL) divergence index of eq 20, and HREMD acceptance ratio (AR)
index of eq 22 based on the same burn-in simulations for the 18 — 21 and 19 — 21 transformations in the complex and aqueous phase. Black dots are

illustrated for the optimized 12-4 point schedules.

number of A points is large enough such that the A intervals
become sufficiently small. Nonetheless, determination of what
constitutes “sufficiently small” might be difficult to ascertain a
priori for more general cases. To address this issue, we explored
the use of an “acceptance ration” (AR) index closely related to
the Metropolis criterion used in HREMD simulations at
constant temperature. The 2D maps of this index are shown
as the rightmost set of panels in Figure 9 and monotonically
decay. The Opt-AR A-schedules are highly correlated to both the
Opt-PSO and Opt-KL A-schedules as indicated in Table S1 of
the Supporting Information (with exceptions seen only in
certain instances for the 8-point A-schedules).

Table 5 compares the HREMD statistics for the 12-point Opt-
PSO, Opt-KL and Opt-AR A-schedules. The results are all fairly
similar to all three methods performing considerable better than
the linear and GL A schedules. For the systems considered, the
Opt-PSO, Opt-KL and Opt-AR methods appear quite
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comparable with none of them having a significant performance
advantage. Nonetheless, considering the monotonic decay
behavior of the 2D maps using the AR index, the Opt-AR
method may have greater stability and advantages if integrated
into an automated procedure for determination of optimal 4
schedules for alchemical free energy simulations.

4. CONCLUSIONS

The results presented here illustrate the advantages of ACES for
conformational sampling of ring flipping in ML300-derived
noncovalent inhibitors of SARS-CoV-2 MP™, Unlike traditional
MD simulations, ACES is demonstrated to give consistent syn/
anti distributions regardless of starting conformation. The ACES
method is further applied to the calculation of RBFEs, and the
effect of replica exchange and the choice of softcore region was
investigated. The results are used to gain insight into the factors
that enable ACES to improve importance sampling and achieve
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high precision free energy estimates. Furthermore, we examined
how the efliciency of ACES was affected by the degree of phase
space overlap between adjacent states (i.e., between neighboring
A-windows). We developed and tested a new procedure for
customizing the A-schedule from the analysis of short, burn-in
ACES simulations. The method was shown to increase replica
exchange efficiency in alchemical free energy simulations. It
remains to further test the method against a broader range of
relative and absolute binding free energy simulations that
include transformations of ligands forming a congeneric series,
as well as ligands that have different scaffolds. It is through
application of the methods to a diverse series of transformations
that a set of recommended best practices and automated
workflows may emerge.
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