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ABSTRACT: Machine learning potentials (MLPs) have revolutionized
molecular simulation by providing efficient and accurate models for predicting
atomic interactions. MLPs continue to advance and have had profound impact
in applications that include drug discovery, enzyme catalysis, and materials
design. The current landscape of MLP software presents challenges due to the
limited interoperability between packages, which can lead to inconsistent
benchmarking practices and necessitates separate interfaces with molecular dynamics (MD) software. To address these issues, we
present DeePMD-GNN, a plugin for the DeePMD-kit framework that extends its capabilities to support external graph neural
network (GNN) potentials.DeePMD-GNN enables the seamless integration of popular GNN-based models, such as NequIP and
MACE, within the DeePMD-kit ecosystem. Furthermore, the new software infrastructure allows GNN models to be used within
combined quantum mechanical/molecular mechanical (QM/MM) applications using the range corrected ΔMLP formalism.We
demonstrate the application of DeePMD-GNN by performing benchmark calculations of NequIP, MACE, and DPA-2 models
developed under consistent training conditions to ensure fair comparison.

■ INTRODUCTION
In recent years, many machine learning potentials (MLP) have
been developed to model the potential energy of atomistic
systems.1−6 These developments have resulted in numerous
software packages that implement each new MLP;7−19

however, the software is often limited to support only those
MLPs developed within a particular research team. Some of
the popular packages include: DeePMD-kit7,20,21 (used to
develop Deep Potential models22−24), SchNetPack8,16 (used to
develop for SchNet25), TorchANI12 (used to develop various
ANI models26,27), and the NequIP,28 and MACE packages.29

The emergence of separate software ecosystems has several
disadvantages. First, it is inconvenient and inefficient to have
users learn new software with the release of each new MLP.
This has led to the release of support software, such as
MLatom,30 that creates workflows which try to run MLP
packages in a unified way. Second, it is inconvenient and
inefficient to have developers interface each MLP package with
molecular dynamics (MD) software to enable their use in
simulation.14,31,32 Finally, the different infrastructures make it
difficult to train the various models in a consistent manner due
to differences in the optimization algorithms, the definition of
the loss function, the treatment of learning rates and training
steps,4 and the availability of active learning strategies.
The present work introduces the DeePMD-GNN package, a

DeePMD-kit plugin for external graph neural network
potentials. The location of DeePMD-GNN within the broader
DeePMD-kit software ecosystem is illustrated in Figure 1. To
demonstrate its capabilities, we created plugin interfaces for
two popular GNN potentials, NequIP28 and MACE.29 With

the aid of DeePMD-GNN, these models can be trained and
used in the DeePMD-kit package in the same way as other
Deep Potential models to enable a wealth of applications in
chemistry, biology and materials science. Furthermore, the
plugin interface allows the GNN potentials to be used within
range corrected QM/MM-ΔMLP applications.33,34 Semi-
empirical or approximate density-functional tight-binding
methods are computationally efficient, but have inherent
limitations35−37 that prevent them from achieving the accuracy
of much more computationally intensive ab initio QM
methods. The range corrected QM/MM-ΔMLP strategy uses
neural network to introduce short-range nonelectrostatic
corrections to an inexpensive (semiempirical) QM/MM base
model to reproduce target ab initio QM/MM energies and
forces. The DeePMD-GNN plugin greatly extends the
capability of recently developed interoperable software infra-
structure38,39 within Amber40 for design of next-generation
QM/MM-ΔMLP models and their application to biochemical
reactions41,42 and drug discovery.43−45 The new software
interfaces are demonstrated by comparing benchmark
calculations of NequIP,28 MACE,29 and DPA-224 models
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developed with a consistent training strategy. The errors are
compared using structures from the QDπ data set.46

■ SOFTWARE DESCRIPTION
The DeePMD-GNN package is an open-source project hosted
on GitHub and licensed under LGPL-3.0.It is a Python/C++
mixed source project that is packaged with CMake58 and scikit-
build-core.59 The software dependencies include DeePMD-
kit,20 NequIP,28 MACE,29 and PyTorch.48

Software Infrastructure. The software infrastructure used
to train and apply MLPs is illustrated in Figure 2 to highlight
the components provided by the DeePMD-GNN package. The
diagram depicts two use cases: model generation by concurrent
learning and model inference within molecular simulation
applications. The DP-GEN software57 provides an interface to
the DeePMD-kit Python package20 to train a model; that is,
optimize the network parameters. The DeePMD-kit Python
package is interfaced to the external GNN PyTorch software
via a generic model wrapper, and the graph edges are prepared

by a custom C++ operator library provided by DeePMD-
GNN. When the DeePMD-kit Python package has finished the
parametrization, it saves the GNN and its parameters to a
serialized TorchScript model file. To use the trained model in a
molecular simulation, one must run a version of the MD
software that has been interfaced to the DeePMD-kit C/C++
library. The DeePMD-kit C/C++ interface can load and
evaluate the saved TorchScript model file with the aid of the C
++ operator library provided by DeePMD-GNN. Conse-
quently, it is not necessary to implement the C/C++ interface
for each Python-implemented GNN model, thus simplifying
the integration process. The DP-GEN software can also train
models using a query-by-committee active learning strategy
that involves parametrization of several network parameter
sets. DP-GEN will then conduct exploration for additional
training data by using the current model parameters within
MD simulations. If a simulation encounters a sample that
produces significant disagreement between the models, then it
is saved. A subset of the saved samples are selected at random

Figure 1. Location of DeePMD-GNN in the DeePMD-kit software ecosystem. The arrows indicate dependency flow, and red color indicates new
software and interfaces developed in the current work. Software packages shown in the figure include (1) DeePMD-kit20 and DeePMD-GNN, (2)
External GNN software: MACE,29 NequIP,28 and so on, (3) Deep learning framework: TensorFlow,47 PyTorch,48 and JAX,49 (4) Molecular
dynamics packages: LAMMPS,50 i-PI,51 Amber,40 OpenMM,52 CP2K,53 GROMACS,54 ASE,55 and ABACUS,56 (5) Workflow packages: DP-
GEN57 and its next generation, MLatom,30 and DP-TI. (6) Program language API: Python, C, C++, and Node.js.

Figure 2. Software architecture of the DeePMD-GNN package. The boxes represent software components, and the arrows represent dependency
between the software and the flow of data. A → B means that software component A depends on B; A calls B with input data, and B returns the
output back to A.
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for labeling and used to parametrize the network in the next
active learning iteration.

Software Features. The DeePMD-GNN package adapts
the Deep Potential-Range Correction (DPRc) method33 for
use with GNN potentials for the development of range-
corrected GNN models. This method is used to create ΔMLP
corrections for semiempirical quantum models in QM/MM
applications,34,60 where the total potential energy is the sum of
the QM/MM and MLP energies.

= + + +E E E E EQM QM/MM MM MLP (1)

A range-corrected ΔMLP potential corrects both the QM
and the nearby QM/MM interactions in a manner that
produces a smooth potential energy surface as MM atoms
enter and exit the vicinity of the QM region. To use GNN
potentials with this approach, the MM atom energy bias is set
to zero and the GNN topology excludes edges connecting pairs
of MM atoms. The application and comparison of GNN and
Deep Potentials range-corrected ΔMLP QM/MM applications
using the DeePMD-GNN infrastructure will be the subject of
forthcoming work.

■ BENCHMARK COMPARISON OF GRAPH NEURAL
NETWORK MODELS

A key usage of the DeePMD-GNN package is to train and
benchmark different GNN potentials in a consistent manner.
As a brief demonstration, we present benchmark calculations
using the DPA-2,24 MACE,29 and NequIP28 potentials. These
GNNs are trained for use as pure MLPs and QM-ΔMLPs,
where the ΔMLP is a correction to the GFN2-xTB
semiempirical method.61,62

The total energy of the QM-ΔMLP model is the sum of the
GFN2-xTB and MLP energies.

= +E E EGFN2 xTB MLP (2)

The target energy ΔEMLP* to be learned by the ΔMLP model is
the difference between the ab initio reference and GFN2-xTB
methods.

* =E E EMLP ref GFN2 xTB (3)

In the present work, the ab initio reference method is
ωB97M-D3(BJ)/def2-TZVPPD. Each model is trained con-
sistently against the QDπ data set46 which includes energies
and forces calculated with ωB97M-D3(BJ)/def2-TZVPPD63

for over 1.5 million structures that were collected from subsets
of the SPICE64 and ANI,65,66 data sets, in addition to smaller
data sets that include neutral and charged compounds covering
the chemical space of 15 elements: H, Li, C, N, O, F, Na, P, S,
Cl, K, Br, and I. The QDπ data set is split into training and test
sets with a 19:1 ratio. The DPA-2 model is benchmarked at
three different sizes: small (S), medium (M), and large (L).
The DPA-2 (S), DPA-2 (M), and DPA-2 (L) models use 3, 6,
and 12 representation-transformer (reperformer) layers,
respectively. The DPA-2 (M) and DPA-2 (L) model’s
reperformer pair-atom representation is updated with a gated
self-attention layer, whereas the DPA-2 (S) model is not. The
remaining hyperparameters are the same in the model sizes.
Specifically, the representation-initializer layer is encoded from
the local environment within a 6 Å cutoff radius and 1 Å of
smoothing. The reperformer layers are calculated with a 4 Å
cutoff and 1 Å of smoothing. Three-body embedding is
included within a 4 Å cutoff. The embedding network consists
of 3 hidden layers with 25, 50, and 100 neurons. The
embedding submatrix size is 12. The fitting network consists of
3 hidden layers with 240 neurons, and the dimensions of the
invariant single-atom and pair-atom representations are set to
120 and 32, respectively. Furthermore, the localized single-
atom representation update mechanism excludes the self-
attention layer.

The MACE model is benchmarked at two different sizes that
differ only in the maximum rotational order used to

Table 1. Energy (E, in unit kcal/mol) and Force (F, in unit kcal/(mol·Å)) Mean Absolute Errors (MAE) and Root Mean
Square Errors (RMSE) of Several GNN Models against the QDπ Data Seta

Training set Test set

Model E MAE E RMSE F MAE F RMSE E MAE E RMSE F MAE F RMSE t(infer)

Pure MLPs
DPA-2 (S) 3.19 7.26 3.12 8.11 3.19 5.18 3.11 5.94 2728
DPA-2 (M) 2.02 6.28 2.04 7.27 2.02 3.65 2.03 4.70 6996
DPA-2 (L) 1.73 6.07 1.77 7.08 1.75 3.32 1.77 4.43 13713
MACE (S) 2.56 7.03 2.25 7.54 2.55 4.73 2.24 5.09 2585
MACE (M) 1.98 6.62 1.74 7.17 1.97 4.09 1.74 4.54 4723
NequIP 4.49 8.88 3.65 8.79 4.46 7.12 3.64 6.80 1622

QM
GFN2-xTB − − 4.36 9.58 − − 4.38 7.84 4048

QM-ΔMLPs
ΔDPA-2 (S) 1.27 5.70 1.25 6.64 1.27 2.58 1.25 3.82 6776
ΔDPA-2 (M) 0.98 5.57 0.99 6.53 0.98 2.31 0.99 3.63 11044
ΔDPA-2 (L) 0.89 5.54 0.92 6.50 0.89 2.23 0.92 3.58 17761
ΔMACE (S) 1.19 5.71 1.08 6.60 1.19 2.60 1.07 3.73 6633
ΔMACE (M) 0.95 5.61 0.85 6.51 0.95 2.38 0.85 3.57 8771
ΔNequIP 1.75 6.02 1.46 6.79 1.74 3.22 1.45 4.06 5670

aQM-ΔMLP models prefixed by Δ use GFN2-xTB as a base QM model that are supplemented by a ΔMLP correction. Also shown are uncorrected
QM models at the semiempirical GFN2-xTB level. t(infer) is the inference time (s) for the whole training set. The MLPs were evaluated on a single
NVIDIA V100 GPU card, and the GFN2-xTB semiempirical energy was calculated on 32 AMD EPYC 7742 CPU cores.
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communicate equivariant messages. The MACE (S) model’s
message passing mechanism uses a symmetry order of 0 with
256 embedding channels, and the MACE (M) model uses a
symmetry order of 1 with 128 embedding channels. The
remaining hyperparameters are the same between the two
models. The radial features are calculated from a 6 Å cutoff, 8
Bessel functions, and a order 5 polynomial envelope. The
features were fed to a 3-layer perceptron consisting of 64
neurons/layer. The angular description of the environment is
expanded in spherical harmonics to order 3. The MLP is
calculated from 2 message passing layers with a correlation
order of 3.
A single NequIP model is trained. The radial features are

calculated from a 6 Å cutoff, 8 Bessel functions, and embedded
with a 1-layer perceptron consisting of 64 neurons/layer. The
MLP consists of 4 message passing layers using a maximum
irreducible representation order of 2, and the hidden features
were configured to use a maximum order of 1 using 32
channels and both even and odd parity.
All models are trained with the same loss function, learning

rate, training steps, and floating point precision (FP32) using
the Adam stochastic gradient descent method.67 The number
of training steps is set to 1 million. The learning rate
exponentially decays from 10−3 to 3.51 × 10−8. The weighted
contribution of the energy errors to the loss function increases
from 1 eV−2 and 20 eV−2 during the training, whereas the
contributions from the force errors decrease from 100 to 1
eV−2Å2. The batch size is set to ⌈256/N⌉, where N is the
number of atoms in a conformation. In previous studies, MLP
models trained with different random seeds typically yield
similar error statistics.68,69 This consistency indicates that the
randomness inherent in the training process is not significant,
and therefore we do not treat the random seed as a parameter
in this demonstration.
Table 1 shows the energy and force mean absolute errors

(MAE) and root-mean-square errors (RMSE) of the DPA-2,
MACE, and NequIP models against the QDπ data set. The
GFN2-xTB+ΔMLP models are consistently better than the
pure MLP models. This observation is consistent with previous
comparisons that used Deep Potential models.22−24 Among
the pure MLPs, DPA-2 (L) yields the lowest errors, and the
NequIP model produces the largest errors.Among the GFN2-
xTB+ΔMLP models, the ΔDPA-2 (L) and ΔNequIP models
similarly produce the lowest and largest errors, respectively.
Table 1 also shows the inference time needed to calculate

the whole training set with a single NVIDIA V100 GPU card
and 32 AMD EPYC 7742 CPU cores, where the MLP is
evaluated on the GPU and GFN2-xTB is calculated on the
CPUs. The pure MLP models can be ordered from most to
least expensive to evaluate: DPA-2 (L) > DPA-2 (M) > MACE
(M) > DPA-2 (S) > MACE (S) > NequIP. The GFN2-xTB
+ΔMLP models are about 1.5 times more expensive than the
pure MLP models.

■ CONCLUSIONS
The DeePMD-GNN package makes a significant step forward
in addressing key limitations in the current MLP software
ecosystem and advancing the state-of-the-art enabling tech-
nology for molecular simulations using MLPs. By enabling the
integration of external GNN potentials, such as NequIP and
MACE, within the DeePMD-kit framework, it reduces the
need for users to learn multiple software packages and ensures
consistency in benchmarking practices. Furthermore, the

DeePMD-GNN package includes infrastructure allowing the
DeePMD-kit C/C++ library to read and use GNN models
saved as TorchScript files. In this manner, PyTorch
implementations of GNN models become immediately
available in MD software that is interfaced to DeePMD-kit.
The incorporation of the range-corrected ΔMLP strategy
within DeePMD-GNN further allows GNN models to be used
as corrections for semiempirical QM/MM calculations. We
benchmarked several GNNs against the QDπ data set to
highlight the utility of DeePMD-GNN in providing a unified
platform for fair and efficient evaluation of advanced MLP
methods. DeePMD-GNN is also the first plugin developed for
the DeePMD-kit package, and thereby serves as an example for
future development of plugins. Of particular note is the
interface of DeePMD-kit with new software infrastructure in
the Amber software package that enables simulations next-
generation QM/MM-ΔMLP models together with a wide
range of advanced alchemical free energy and free energy
surface methods. While our current implementation leverages
the two most popular and well-established GNN-based
atomistic models, additional models can be easily integrated
into the DeePMD-GNN package, ensuring that the DeePMD-
GNN package remains at the forefront of methodological
advancements. Moreover, as a plugin for DeePMD-kit, our tool
benefits from its evolving features and integrations; any
enhancements introduced by DeePMD-kit will be seamlessly
supported by the plugin without necessitating modifications.
The GNN plugin infrastructure assumes that the MLP is a
short-range nonelectrostatic correction whose input depends
only on the atomic coordinates and elements involved. This
limitation would present challenges in the future if new GNN
potentials are developed that expand the model inputs to
include atomic charges, for example.

We anticipate that DeePMD-GNN will facilitate a wide
range of new applications that leverage GNNs to gain
predictive insight into drug discovery, biocatalysis and
materials design.
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