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This Perspective provides a contextual explanation
of the current state-of-the-art alchemical free energy methods and
their role in drug discovery as well as highlights select emerging
technologies. The narrative attempts to answer basic questions
about what goes on “under the hood” in free energy simulations
and provide general guidelines for how to run simulations and
analyze the results. It is the hope that this work will provide a
valuable introduction to students and scientists in the field.

drug design, lead optimization, binding free energy, molecular simulation, enhanced sampling

his Perspective is a treatise that brings together and appropriate set of coordinates that describe the real chemical

describes the most critical components of alchemical free process being studied. Often a goal of these methods is to
energy (AFE) methods and places them into the context of free determine the minimum free energy pathways between states.
energy simulations used in drug discovery. For broader The pathway establishes the mechanism for the chemical
discussion of methods in the field, the reader is referred to process and thus is of interest together with the free energy
several excellent texts"” and reviews.” " This is an active field values along the path and the associated critical points (e.g.,
with a long history that can be difficult to navigate, especially for transition states and intermediates) from which kinetic
new students and practitioners.'’ This work endeavors to parameters can be determined and predictions can be made.
answer basic questions about what goes on “under the hood” in Example applications'* include the study of catalytic mecha-
free energy simulations and is subjective in the sense that it nisms of enzymes,">® transport of ions throu§h membrane ion
draws from methods that have been developed in the author’s channels,'” or folding of protein'® or RNA'" molecules. This
lab and implemented in the most recent AMBER suite of method can also be used to study binding of small molecules in
programs.,11 including emerging technologies available for host—guest systems20 or to biological targetsu’22 and has the
testing as part of the AMBER Drug Discovery Boost package.'” advantage that it can provide estimates of on/off rates that may

be correlated with drug potency.”

The second category is referred to as “alchemical free energy”
methods™ and is illustrated in Figure 1. Here the primary
interest is in the overall free energy difference for the process and
not the chemical mechanism itself. As the free energy is a state
function, changes in free energy are independent of the path
taken to effect the transition between states. AFE methods
leverage artificial “alchemical” pathways that are more computa-

Molecular dynamics (MD) simulations'” have been traditionally
used to explore the equilibrium and dynamical properties of a
single state of a system. Free energy simulations are a distinct
class of simulations that explore a process whereby one state of
the system changes into a different state. In practice, this usually
implies performing a series of simulations that sample both end
states and usually the free energy surfaces and/or pathways
connecting the states. There are two general categories of free
energy simulations that have been subsequently described.
The first category is referred to as the “free energy surface”
(FES) or “potential of mean force” (PMF) profile methods that
explore a reduced-dimensional free energy profile along some

July 17, 2023
September 12, 2023
September 13, 2023
October 4, 2023

© 2023 The Author. Published b
Ame?icaun C?\remlilcaissgcietz https://doi.org/10.1021/acsphyschemau.3c00033

v ACS Pu bl ications 478 ACS Phys. Chem Au 2023, 3, 478—491


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darrin+M.+York"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsphyschemau.3c00033&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00033?ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00033?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00033?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00033?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/apcach/3/6?ref=pdf
https://pubs.acs.org/toc/apcach/3/6?ref=pdf
https://pubs.acs.org/toc/apcach/3/6?ref=pdf
https://pubs.acs.org/toc/apcach/3/6?ref=pdf
pubs.acs.org/physchemau?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsphyschemau.3c00033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/physchemau?ref=pdf
https://pubs.acs.org/physchemau?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Aqueous Phase

8

0 g

Q
Ligand 1

AGL;?
= AG

- -

) AGhma  DP

) ga €
Ligand 2 -

AAGhing = AGhina — AGlina

1-2

complex

Protein Complex

1\‘
g

2

1-2

— AGY;

Figure 1. Illustration of a thermodynamic cycle for the relative binding free energy (RBFE, AAGy;,4) between two ligands (“Ligand 1” and “Ligand 2”).
The green arrows represent the absolute binding free energy (ABFE, AGy,,4) of each ligand (indicated by the superscript), which involves changing the
environment from unbound in the aqueous phase to bound in a complex with the protein target. These quantities are experimentally measurable but
are challenging to directly compute, as the change in the environment can be considerably complicated. The red arrows represent alchemical
transformations where Ligand 1 is mutated into a similar Ligand 2 in the same environment. These transformations are frequently more amenable to
practical computations. The yellow circles in the figures indicate the region of each ligand that undergoes the most significant changes in the alchemical
transformation and would likely be modeled using a “softcore potential” during the alchemical transformation.

tionally efficient in determining the free energy differences
between end states. In this way, one can gain efficiency and
robustness in the computation of the free energy difference
between states but at the cost of forfeiting information about the
real chemical pathways connecting the states. Example
applications include the transfer of a molecule from one
environment to another (e.g., from the gas phase to aqueous
solution), the change in protonation state of a titratable residue
in a protein or nucleic acid, or the binding of a drug-like
molecule (ligand) to a protein target’ (as is the focus of this
Perspective).

Formally, these two categories of methods share common
theoretical foundations in statistical mechanics and methods for
their solution when one recognizes that the main difference is in
the choice of real (chemical) or artificial (alchemical) pathways
used to connect states. In this way, many of the exact same
underlying techniques can be used for either the FES or AFE
simulations. For example, for either category one can perform
simulations at a set of fixed (constrained) values along the
pathway™ such that the mean values of the derivatives (forces)
at each point along the path can be numerically integrated to
obtain the change in free energy as the reversible work. In the
FES category, this is referred to as a PMF calculation,*® whereas
in the AFE category this is referred to as a thermodynamic
integration (TT) calculation.””*® Alternatively, one can monitor
fluctuations of the pathway coordinates use biasing potentials
(e.g, in a set of “umbrella sampling” simulations™”) and
reassemble the free energy profile from these multiple
distributions using variational approaches such as the unbinned
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weighted histogram analysis method®® (UWHAM), Bennett’s
acceptance ratio (BAR)31 or its multistate generalization
(MBAR)*** or network-wide extensions with cycle closure,”*
and variational free energy profile’™*” (VFEP) methods. In the
first category, these are known as biased sampling/free energy
26,37,38 « 529
profile methods (e.g., “umbrella sampling””” and
;39,40 : :
metadynamics®*"), whereas in the second category, this
approach is encompassed in so-called A-dynamics.*”** The
take-home message here is that FES and AFE methods have the
same foundational underpinnings, and most methods developed
for one category can be transferred in some way to the other.

Computational predictions are a vital part of drug discovery, and
with increasing access to high-performance computing, together
with advances in machine learning technology, the role of these
predictions in computer-aided drug design is increasing at a
rapid pace. Arguably, the most rigorous and, in principle, most
accurate of these methods are AFE simulations for prediction of
the binding affinity of ligands (e.g., small drug-like molecules) to
their macromolecular (e.g,, protein or RNA) targets. Drug
discovery companies use AFE simulations in the lead
optimization phase to predict the RBFEs of proposed ligands
and design selectivity to circumvent off-target effects.”
Predictions are used to prioritize compounds for the next
stage of development:” costly synthesis and testing in the lead
optimization cycle, followed by preclinical drug development
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and, if successful, advancement to clinical trials. As only a small
fraction of trial compounds make it to approved drugs (with an
average cost of getting a new drug to market of over $1 billion) ,43
even small increases in the accuracy of design predictions will
have great impact on the cost and efficiency of drug
development.***

The change in free energy between two thermodynamic states
can be rigorously computed using a free energy perturbation*®
(FEP) or TI*”*® formulation or through nonequilibrium work
(NEW) simulations using the Jarzynski equality’” and its
equation variations.**™>* Both the TI and NEW approaches
require the formulation of a transformation pathway between
states in order to connect them. Only the FEP approach formally
requires performing simulations only of one or both of the
thermodynamic end states in order to obtain the free energy
differences between the states. However, the “end-state-only”
FEP approach is only reliable in practice if the two end states
have large phase space overlap>>™>° (e.g,, as in so-called indirect
reference potential “book-ending” approaches;>® see below).
For ligand—protein binding, the FEP approach requires
breaking down the pathway into smaller A intervals, similar to
the TI method. It should be noted that there exist other
approximate (nonrigorous) “end-state-only” methods that
require sampling only at the two thermodynamic end points,
such as the MM-GB/SA, MM-PB/SA,* and LIE® methods,
which are not discussed in this Perspective.

Hence, for drug discovery applications, the TI, FEP, and
NEW methods all require a parametric pathway to be
introduced to connect thermodynamic states. Often the
parameter in this path is designated by the variable A and varies
between 0 and 1. As the end states are generally chemically
distinct molecules with different compositions, the pathway is
nonphysical and hence referred to as an “alchemical” trans-
formation. This is achieved by defining a A-dependent potential
energy function U(r"; 1), where U(r"; 0) = Uy(r") and U(r"; 1)
= U, (") are the end-state potential energy functions (e.g., think
of them as representing the “Ligand 1” and “Ligand 2” states in
Figure 1), and the parameter A transforms state 0 into state 1 in
such a way as to be continuously differentiable in the interval [0,
1] (e.g., as depicted by the vertical red arrows in Figure 1). Here
the coordinate ¥ represents the N Cartesian coordinates for
each particle as well as any lattice vector information that defines
the periodic boundary conditions for the system. While the free
energy is a state function and formally is invariant to the pathway
connecting states, in practice the TI, FEP, and NEW methods
are all extremely sensitive to the pathway and the phase space
overlap®> " of states along the pathway.

In the TI method, the free energy change, AA_, |, between states
“0” and “1” can be achieved through integration of the
thermodynamic derivative as

ot (dAY ou(r™; )
AAM_fO dﬂ(a)_fo d <7(M >4
>
k=1 i (1)

aU(l‘N; A)
ol
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where the second integral involves the derivative of the potential
energy U with respect to the parameter that smoothly connects
the end states A = 0 and 1 and the averaging brackets indicate
equilibrium sampling of the state characterized by subscript /.
au

For each A-window “A4;”, mean values of < o

> are collected,
n

and the sum in eq 1 indicates numerical integration over M
quadrature points 4, (k = 1, .., M) with associated weights w;.
The weights can be chosen in accord with a particular
quadrature, such as the trapezoidal rule, Simpson’s rule, or
various Gaussian quadrature rules.®! Alternatively, spline
functions®' (e.g., cubic splines) or polynomials®” can be fitted

to the < ?3_51]> profiles and integrated analytically.

In the FEP method, the free energy change can be computed as
M-1

Adg, = Z AAAk_)Ak+1
k=1

(2)
where 4, < 4,1, 4; = 0, and 4y = 1. The interval free energy
change AA, _, ,  can be computed from one of several FEP

equation variations given by

DAy = —f In(ePA0e)

e (3)

designated “forward” exponential averaging,

Ay, = B (P800, *)
designated “reverse” exponential averaging, or
AU, -C
s, =] SO —ON |
* (F(B(C = AUy 1)) it
(8)

designated as the “BAR” method, where AU, .., = U(t™; 4;,;) —
U(r™; A), B = (kyT) ™" is the inverse temperature (where ky is
the Boltzmann constant and T the absolute Kelvin temperature),
flx) = 1/(1 + €*) is a Fermi function, and C is an arbitrary
constant. Formally these expressions are equivalent in the limit
of infinite sampling. The first and second expressions require
conformation sampling (simulation) from one of the two end
states of the interval [4, 4(,,] (as indicated by the subscript on
the averaging bracket) and are sometimes referred to as the
Zwanzig equation’® or “exponential averaging”. The third
expression is the BAR equation’' and requires sampling from
both end states and solving for C such that the first term vanishes
(by equating the numerator and denominator) in order that C
becomes the statistical best (minimal variance) estimate of the
free energy AA, _, ,  for the interval. For MBAR*** analysis,

FEP data consist of an M X M matrix of AUy values (k, k' = 1,
.. M) for each sampling time point (noting that the diagonal
values of this matrix are zero).

In principle, the FEP formula (eq 2) can be applied without
taking recourse into intermediate /A states; i.e., in the limit that M
= 2, only the end states A = 0 and/or 1 need to be sampled (no
intermediate A-window simulations are required). However, in
practice, this “end-state-only” approach is on_lgf feasible if there is
avery high degree of phase space overlap™ ™" between the A = 0
and 1 states (which is not the case for AFE simulations in drug
discovery). Nonetheless, this can be an attractive approach when
one wishes to correct a free energy obtained from simulations
performed by using a “low-level” (computationally efficient)

https://doi.org/10.1021/acsphyschemau.3c00033
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Hamiltonian to a “high-level” (computationally intensive)
Hamiltonian while avoiding the need to perform an expensive
simulation at the high level. These end-state-model Hamiltonian
corrections are sometimes referred to as “book—ending”
corrections”® (as part of an “indirect” AFE approach®”*¥%*~%)
and typically have only modest sampling requirements because
the chemical identity of the species does not change, just the
potential energy model. Even so, often an intermediate low-level
“reference potential” is still needed in order to achieve sufficient
phase space overlap for the calculations to be reliable by
considering only the end states,”® or alternatively, non-
equilibrium methods have been shown to be promis-
ing49’53’63_65 (see below). The take-home message here is that
for AFE calculations typically encountered in drug discovery
(not “book-ending” corrections), the FEP approach requires
simulations of intermediate A states (A-windows) with
essentially the same requirements as for the TI method.

In the NEW methods, the free energy change is computed from
a series of nonequilibrium simulations where the work is
calculated for transforming A from 0 to 1 over a time interval 7.
Here, by “nonequilibrium” simulations it is recognized that the
time interval is not sufficiently long that it can be assumed that
the system has reached equilibrium at every sampled A value in
the interval 0 < 1 < 1. Let us define the work of such a
transformation that departs from starting coordinates r™(0) = ry
at t = 0 and takes place over the time interval [0, 7] as

T N.
W(rd; 1) =/0' IU(r; 4) dA(t) dt ©

oA dt
where in the integral both the coordinates " and A are functions
of time and it is implicit that A will vary from 0 to 1 over the time
interval. If one sets the dA/dt rate to be constant over the interval
(i.e,, dA/dt = 1/7), then the above equation simplifies to

T N.
l/ oU(xr™; A) d&
T Jo oA

_ dU(l‘N; A) dt
0/1 {rN 7} (7)

Here the subscripts {ry, 7} on the averaging brackets emphasize
that the average is taken from a nonequilibrium simulation of
duration 7 departing from initial coordinates ry. In order to
calculate the free energy AA,_,;, one performs a series of short
nonequilibrium work simulations by sampling the initial
conditions {ry} from the equilibrium end-state distribution(s),
and computes the free energy change analogously to eqs 3—5:

W(ry'; )

AA0—>1 = —[}_1 1n<e—/3(W(rf,V;r)>o ©
AA0—>1 = ﬂ_l ln(e/jw(r‘?‘f))l (9)
N
AA0—>1 = _ﬂ—l In {f(ﬂ((W(l'o, T)N_ C))>0
f(B(C = W(ry; )N (10)

where the subscripts in the averaging brackets indicate the
equilibrium end state distribution from which the initial
conditions are sampled for the nonequilibrium simulations.
Equation 8 was the original equality proven by Jarzynski,*” from
which much work has followed, including the formula developed
by Crooks™® (eq 10).
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The nonequilibrium work free energy formulation forms an
elegant connection between the thermodynamic integration and
free energy perturbation formulas. In the limit that the
nonequilibrium work simulation is performed over an infinite
amount of time, such that the equilibrium work is actually
measured (and the results become independent of initial
conditions and do not require averaging), the above formulas
become identical to the thermodynamic integration formula of

eq 1:
N
flcu <0U(r ;/1)>
0 ol
(11)

Alternatively, in the limit that the nonequilibrium work is
performed over a vanishingly short amount of time, such that the
coordinates rV remain fixed, the above formula becomes
identical to the change in potential energy:

lim W("; 7) = AU, (e

lim W(r™; 7) o,1(r™) (12)
where AU, (rY) = U(™;1) — U(N;0). In this limit,
substitution of eq 12 into the nonequilibrium work free energy
equations (eqs 8—10) recovers the free energy perturbation
equations (eqs 3—5).

lim W(rl; 7) =

T— 0

= AA,_,
2

The conservative, and perhaps less satisfactory answer to this
question is almost universally “it is case-dependent”, as each
method has advantages and disadvantages. The more aggressive
answer is “use more than one method at the same time and
perform consistency checks”. What follows is a short discussion
of various pros and cons of the different methods as well as
general recommendations for establishing robust best practices.

The FEP and TI methods are closely related and have similar
computational requirements, and for most codes the overhead
for calculating T1, BAR, and MBAR free energy estimates at the
same time is negligible. MBAR statistics for a particular A-
window k requires evaluation of AUy at other A-windows k' #
k. Not all pairs of state distributions (i.e., not all possible k' # k)
need to be considered in the MBAR analysis (e.g., one could
consider only [k’ — k| < 7 in the analysis, where 7 is an integer
representing the number of nearest-neighbor A-windows). In the
BAR method, only intervals between nearest-neighbor A-
windows are considered. The traditional TI method, on the
other hand, requires 0U/0A statistics only for the A-window
being sampled (although methods have been proposed that
enable additional statistics to be collected at neighboring A-
windows as well°®). For well-behaved calculations, MBAR is
often the most rapidly convergent of the methods; however, for
edge cases, BAR may be more robust. In other cases, the
exponential term in the integrand of the FEP (BAR/MBAR)
methods can become unstable and more difficult to average due
to large fluctuations in the AUy, values, whereas the 0U/dA
integrand in the TI method may be less sensitive and yield more
stable averages. In any case, the statistical quantities required for
the BAR, MBAR, and TI methods are not prohibitive to
compute at the same time (as they typically only have to be
collected every 1000 time steps or so). It is thus recommended
that free energies be calculated from all three analysis methods
and used as a consistency check that can help to flag potential

https://doi.org/10.1021/acsphyschemau.3c00033
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problematic edge cases. If, for example, the differences between
TI, BAR, and MBAR free energy values are larger than their
corresponding statistical error estimates, then likely there is a
problem in the calculation that needs to be addressed (see
below).

As mentioned previously, the NEW methods form a conceptual
connection between the TI and FEP methods, but aspects of
their practical application can be different. NEW methods have
been successfully applied to a number of problems, most notably
single-molecule force microscopy®” and related physical and
chemical processes and MM — QM transformations in “book-
ending” corrections.””****7% Ony fairly recently have NEW
methods seen application in direct AFE simulations for drug
discovery,® and hence, they are currently less mature than TI
and FEP methods and have less well-demonstrated behavior.
NEW calculations critically depend on the ability to first
sufficiently sample the equilibrium end state distributions that
are then used to launch short nonequilibrium switching
simulations. The switching time, together with the number of
switches (i.e., the number of initial conditions sampled from the
equilibrium end state distribution), determines the reliability of
the resulting free energy estimate. In practice, the switching time
depends on how quickly the environment is able to relax and
accommodate the A perturbation and how much this relaxation
affects the free energy estimate. These properties can vary widely
between aqueous and protein environments and even more so
between relative and absolute binding free energy calculations,
often in ways that are not easily predictable. These issues not
withstanding, a computational advantage of the NEW methods
is that the ensemble of switching simulations are all independent
of one another and can be performed in parallel. As the switching
simulations are themselves short with respect to those needed by
TI and FEP methods, this can translate into potentially very
short wall-clock turnaround for users that have substantial on-
demand parallel resources such as are available on the cloud
(albeit for a high price tag). However, a significant advantage of
current TT and FEP methods over the NEW methods is that the
former are easily integrated with modern enhanced equilibrium
sampling methods such as the ACES® approach discussed
below. It is likely that as NEW approaches for AFE calculations
continue to evolve they will become an increasingly important
tool. As the field is still in the early stages in this regard, the
remainder of this Perspective will focus on practical aspects of
the more established equilibrium TI and FEP approaches used
for drug discovery applications.

There are many steps that go into a setting up AFE simulations
in a drug discovery workflow,” ranging from developing
structural models for the protein target (if full experimental
structures have not been determined at sufficiently high
resolution) and ranking docking poses for proposed ligands at
the start to making predictions about off-target binding in order
to engineer selectivity. In this Perspective, discussion is focused
on AFE simulations (RBFE or ABFE) for a set of ligands binding
to a single protein target, where the presumed starting point is
that reliable starting structures have been prepared for each
ligand—protein complex and relaxed and equilibrated in a
realistic solvated environment under relevant conditions of
temperature, pressure, pH, and ionic strength. The same starting
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point must also exist for the unbound ligands in aqueous
solution as part of the thermodynamic cycle (Figure 1) and, in
the case of ABFE calculations, also the unbound (apo) state of
the target. To arrive at such a starting point requires practical
considerations that have been discussed in detail elsewhere™”%”"
and are now only briefly mentioned.

First, one should endeavor to depart from a high-fidelity
structure of the protein (or other biological target molecule)
obtained from experiment (e.g., X-ray crystallography, NMR, or
cryo-EM), preferably in ligand-bound form so as to provide
information about the ligand binding mode and any target
rearrangement that might be induced upon binding. If such
structures are not available, then recourse can be taken into
homology or integrative structural modeling’>~"* or computa-
tional predictions (e.g., Rosetta’® or AlphaFold2’®””). In real-
world drug discovery applications, it is unlikely that structures
exist for the ligand—protein complexes for which binding
affinities are to be predicted, and initial structures typically come
from docking and scoring procedures’”’ ™' or alignment of
ligands of a congeneric series with the known structure of the
most chemically similar cocrystallized lig7and based on shape
similarity, followed by energy refinement.”’ The next goal is to
generate a realiable model of the conformational ensemble in a
realistic environment under relevant temperature, pressure, pH,
and ionic strength conditions. Here it is important to ensure that
all residues and functional groups of both ligands and target are
in their most probable tautomeric form/protonation state®”
(which may differ in different environments). Further, it is
important to include placement of key water molecules and ions,
e.g., solvent components observed crystallographically or
predicted by computational methods.”*"*® One common
mistake made in calculations is to neutralize a charged protein
or nucleic acid with only minimal counterions, as opposed to
additionally adding a background of (counterion/co-ion) salt at
relevant concentration (e.g., 0.14 M). Not only is this unrealistic,
it is also more difficult to sample.””*® Once the solvation
environment has been established, carefully controlled molec-
ular dynamics procedures using appropriate force fields for the
target, ligands, and solvation environment are typically used to
allow relaxation of the solvent and ultimately the ligand/target
structures (e.g., from their experimental crystal environments)
to aqueous solution under constant temperature and pressure
conditions. As more than half of drug targets are membrane
proteins, additional considerations are needed for AFE
simulations in these more complex heterogeneous environ-
ments.*" !

Once the individual ligand—protein complexes have been
prepared and equilibrated in a realistic environment under
relevant conditions, AFE simulations can be performed to obtain
the relative or absolute binding free energy. This is the main
focus of the current Perspective. The following are decisions the
practitioner needs to make prior to setting out to run a set of
AFE calculations:

e How to construct the thermodynamic graph network.

e How to define the alchemical transformation pathways.

e How to optimize alchemical enhanced sampling.
Each of these is considered in more detail below. It should be
emphasized that for each of these topics, there are different
strategies that can be taken and different methods that can be
brought to bear to solve the problem. In the present discussion,

emphasis is placed on those methods for which the author has
had first-hand experience in developing and/or applying.
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Nonetheless, there are alternative methods and approaches that
are likely equally effective but that are not reviewed here.

The construction of thermodynamic graph networks is a topic
for which there are many different strategies.”” Early strategies
built upon the idea that networks of ligands would be connected
using a minimal spanning tree (smallest number of edges) to
reduce computational cost, and the edges would be chosen to
avoid large perturbations (i.e, connect/transform the most
structurally similar ligands). In such transformations, a
maximum common substructure” between two ligands was
often identified to define the atom mapping procedure, i.e., the
mapping of each atom in one ligand to a structually similar atom
in the second ligand (the equivalent mapped atoms would
usually share the same coordinates during the transformation).
By maximizing the common substructure, the number of
remaining atoms would be minimized. These atoms would
have to be either created or annihilated in the transformation
and often required the use of specialized “softcore” potentials
and treatment with separable coordinates during the trans-
formation.

With the concurrent advancement of new AFE methods, high-
performance computing hardware, and efficient software
implementations, this once established paradigm is now being
revisited to some degree. As will be discussed in more detail
below, the construction of more “dense” thermodynamic graph
networks”* enables analysis of cycle closure conditions as well as
integration of experimental free energy contraints for known
ligands. Network AFE simulations can be performed adaptively
with resources allocated dynamically in order to improve
precision of the free energy predictions.”>”® Further, the choice
of atoms treated by softcore potentials and using a dual topology
are leveraged in alchemical enhanced sampling methods such as
ACES.” Hence, while large perturbations should still be avoided
if possible, it is sometimes advantageous to choose a smaller
“common substructure” or “common core” region (and hence a
larger region treated with softcore potentials and separate
coordinates within the dual topology) in order that flexible
substituents (such as functional groups or rings attached to the
common core by single bonds) can be selected for enhanced
sampling. These will be discussed in more detail below.

RBFE or ABFE? When constructing a thermodynamic graph
network, one consideration is whether to use relative or absolute
binding free energy calculations or a combination of the two. In
the case of ABFE calculations, the entire ligand is in some way
“annihilated”, or more precisely, it is transformed into a
noninteracting “dummy atom” state,”” ™% which creates a void
space that the environment must then strive to fill during the
transformation. Further, specialized restraints need to be
imposed in the dummy state such that the noninteracting
ligand remains bound in the pocket so that it will retain better
phase space overlap with the neighboring 1 states.'*”'°" One
might naively argue that ABFE calculations are more preferable
as they are not subject to “cycle closure conditions”, as are RBFE
calculations in thermodynamic graph networks that contain
redundancies in path connections. However, the reality is that
ABFE simulations are much more computationally intensive, as
the nature of the transformations is much larger, and the fact that
the consistency of results cannot be checked with cycle closure
conditions is a significant concern rather than an advantage of
the method.

RBFE calculations, on the other hand, enable dense
thermodynamic graphs to be constucted and cycle closure
conditions to be leveraged to increase overall calculation
precision and potentially accuracy as well in the case of inclusion
of experimental free energy constraints for known ligands.**”*
‘When RBFE calculations are being performed optimally, there is
only modest rearrangement of the environment along the
alchemical transformation pathway and minimal generation of
void space that needs to be occupied by the environment.
Moreover, RBFE simulations do not have the same issues as
ABFE simulations of maintaining position in the binding pocket
when the ligand is in the pure dummy atom state, as such a state
does not exist for the RBFE case where there is a shared
“common core” of atoms.'’” Alternatively stated, as the two
ligand real-state end points are stably bound in an RBFE
simulation, the corresponding partial dummy state ligand also
will remain bound, as it shares a common core of atoms with the
bound ligand that prevents it from diffusing away.

In some cases, RBFE calculations can be performed even
when the ligands do not share a “common core” (where atoms in
one ligand cannot be directly mapped into those of the other)
but are nonetheless similar in overall shape and binding mode
(i.e, there is substantial overlap of the ligand shapes and
excluded volumes). In this situation, one can perform RBFE
simulations as counterpoised ABFE simulations,'” ie., two
ABFE transformations performed in opposite directions along
the A dimension within the same simulation. This method will
retain the advantage that there is minimal relaxation of the
environment and need to occupy void space that is created
during the transformation; however, as the ligands no longer
share a common core of atoms, Boresch-type restraints'*”'*’
must be imposed to prevent the dummy atom states’ from
drifting out of the binding pocket. This form of RBFE
calculation between ligands that do not share a common core
will be referred to as “core-hopping RBFE”.

Hence, the following is a hierarchy of complexity of AFE
calculations of ligands and recommendations of what type of
calculation (RBFE, core-hopping RBFE, or ABFE) to perform:

e RBFE: For transformations between ligands that share a
common core of atoms (molecular scaffold), such as a
congeneric series, and have similar binding modes, i.e., the
ligands have strongly overlapping shapes and excluded
volumes when bound.

e Core-hopping RBFE: For transformations between
ligands that do not share a common core of atoms
(molecular scaffold) but have similar shapes and binding
modes, ie. the ligands have strongly overlapping
excluded volumes when bound but lack a straightforward
atom mapping to a common core.

e ABFE: For transformations of a single ligand for which no
other ligand has a similar shape and binding mode, i.e., no
other ligand has a strongly overlapping excluded volume
when bound.

e ABFE: For transformations of a single representative
ligand within a subnetwork of RBFE calculations such that
the relative binding free energy values can be connected to
those of other ligand subnetworks for which RBFE
calculations between subnetworks are not practical (e.g.,
that have different/nonoverlapping binding modes).

It should be mentioned that there are emerging methods that
may further modify the above paradigm. One such promising
method is the alchemical transfer method (ATM),'”* a novel
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approach based on a coordinate transformation that swaps the
positions of two ligands. The method has been tested
successfully on ligands with diverse scaffolds and offers the
advantage of being applicable with any potential energy
function.'9>'°

There are many strategies for performing free energy
simulations”®'?” and in turn for choosing appropriate
alchemical transformation pathways. Here the focus is on
“concerted” alchemical transformations (sometimes referred to
as “one-step” or “unified” procedures) where all nonbonded
terms (e.g., electrostatic and Lennard-Jones) occur synchro-
nously. This differs from “stepwise” transformations (sometimes
referred to as “multistep” or “split” procedures), where
transformation of electrostatic and Lennard-Jones terms occur
asynchronously, for example, in a three-step “decharge/LJ/
recharge” transformation. Concerted transformations are
particularly useful in RBFE calculations, as they avoid weakly
bound states that may require additional restraints and are easily
integrated with enhanced sampling tools such as replica
exchange and ACES. Formally, the lines that separate concerted
and stepwise transformations are somewhat arbitrary and can be
tuned by so-called “A-scheduling”, where different energy terms
can be turned oft/on independently over different subintervals
of the global [0, 1] 1 interval.'>'**

Alchemical free energy simulations typically require at least
some atoms to be effectively created or annihilated during the
transformation process. This is achieved by transforming atoms
into so-called “dummy atoms”””~** that do not interact with the
real atoms of the physical system except through select bonded
interactions such that they do not introduce a net potential of
mean force on any of the real atoms. Transformations of real
atoms into dummy atoms can be especially challenging if there is
poor phase space overlap of neighboring states along the
transformation coordinate,”®>%7%10%109 giving rise to chronic
problems such as end-point catastrophes, particle collapses, and
large gradient jumps.'”” This issue can also occur in trans-
formations between two real atoms that have significantly
different force field parameters.

A number of strategies have been explored to develop stable
transformation pathways in alchemical free energy simulations,
including the use of so-called “softcore potentials” with
separation-shifted scaling,"'°~"'* parameter interpolation,' "
short-range switching,''* or capping the short-range inter-
actions''>"'® and nonlinear mixing of the end-point poten-
tials."""~'*" Recent studies have shown that adverse effects of
these problematic transitions can lead to large variance and in
some cases order/disorder transitions along the alchemical path
that can hinder sampling and convergence of free energy
estimates.' ' Very recently, a A-enveloping distribution sampling
method,'*”'**'** which is related to approaches to optimize
minimum-variance pathways in alchemical transforma-
tions,'**"'*® has been explored as an alternative coupling
scheme to more conventional A-intermediate states.

Recently, we developed a new framework'” for the design of
optimized alchemical transformation pathways.'>” The methods
extended and improved the use of so-called “smoothstep”
softcore potentials'*® to address chronic problems of particle
collapse and large gradient jumps.'”” Important improvements
include (1) consistent power scaling of Coulomb (Coul) and
Lennard-Jones (L]) interactions with unitless control parame-
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ters to maintain balance of electrostatic attractions and exchange
repulsions, (2) introduction of a pairwise form based on the 1]
contact radius for the effective interaction distance with
separation-shifted scaling, and (3) rigorous smoothing of the
softcore potential at the nonbonded cutoff boundary. The new
softcore potentials and optimized alchemical transformation
pathways'*” improve phase space overlap between neighboring
states and have been leveraged in the development of the new
alchemical enhanced sampling (ACES) method® for accel-
erated convergence of conformational ensembles and free
energy estimates.

The term “enhanced sampling” has been used in many
contexts.'””'*” As the dynamic degrees of freedom in a
molecular simulation are usually the atomic positions, sampling
is intimately connected to different conformations of the system.
It is important to distinguish “conformational sampling” of a
target distribution from “conformational searching” for a
structural ensemble or pathway that optimally satisfies some
property of interest that is part of the search criteria (e.g., a stable
docking pose, metal ion binding site, or protein/nucleic acid
conformational state). In the context of free energy simulations,
enhanced sampling implies sampling in regions that contribute
substantially to the free energy change of interest but that are
only seldom visited by Boltzmann sampling (e.g., by conven-
tional molecular dynamics) of any one state along the
transformation pathway. This subclass of methods is referred
to as “importance sampling” methods. As an example, if a ligand
can adopt multiple orientations in the binding pocket of a
protein, then a method able to sample each with the correct
occupation is important to obtain an accurate estimate of the
binding free energy. On the other hand, an enhanced sampling
method used to study protein folding pathways that explore
conformations of folded and unfolded states likely would be
counterproductive to the sampling needed to converge the free
energy estimate for ligand—protein binding where only the
folded state significantly contributes. In this sense, importance
sampling must focus on the degrees of freedom responsible for
converging the free energy change of interest while avoiding
unnecessary “‘enhanced sampling” of other degrees of free-
dom. 138

There is a vast array of enhanced sampling methods for AFE
simulations, > "3>132 7130139140 iy ding replica exchange
(RE)"*'~"" and multiple-replica strategies that use adaptive
biasing forces,"** umbrella sampling (US),””'** parallel or
simulated tempering,'*"'*>'**'*” metadynamics,"** self-guided
molecular dynamics,'*” replica exchange with solute tempering
(REST"*® or REST2'*'), multicanonical algorithm
(MUCA),">*™"** orthogonal space random walk (OSRW),"**
J-enveloping distribution sampling (EDS/A-EDS),'>>!**1%¢
thermodynamic integration with enhanced sampling (TIES),
and others,>5413%134153,157,158

We recently introduced®” an ACES method in AMBER that
integrates the following novel features:

e Localized enhanced sampling states through tuning of
intra- and intermolecular energy terms, e.g., noninteract-
. » 99 . e 1
ing “dummy” states”” with modified internal energy terms
that eliminate kinetic traps;

e Robust alchemical transformation pathways to connect
real and enhanced sampling states using new smoothstep
softcore potentials, nonlinear Hamiltonian mixing, and
flexible A-scheduling capabilities; '
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e Efficient Hamiltonian replica exchange MD (HREMD)
frameworks that maintain equilibrium between A4-
windows and enable enhanced sampling.

The ACES approach® has advantages due to its dual-
topology nature'” that allows it to overcome local “hot spot”
problems encountered with REST/REST2.'’ As the ACES
region of the 4 = 0 real state (e.g, Ligand 1) is being
“annihilated” with respect to its interactions with the environ-
ment and transformation into an enhanced-sampled “dummy”
state,” the ACES region of the 4 = 1 real state (e.g., Ligand 2) is
being “created”. This concerted “counterdiffusion” of alchemical
states produces minimal rearrangement of the environment
along the A path. Further, the computational overhead of the
method is negligible relative to more conventional AFE
simulations with HREMD. Although ACES can be used along
with REST?2-like methods added to further enhance sampling of
the end states (which incurs added computational cost), results
suggest that there is little gain beyond using ACES alone.””

Enhanced sampling methods such as ACES can reduce issues
associated with ligands that exhibit multiple orientations or
binding poses, especially when the free energy barriers between
these conformational states are sufficiently low that intercon-
version is observed within the time scale of the simulations. On
the other hand, if this cannot be achieved, then alternative
strategies need to be pursued.”’ One straightforward, albeit
time-consuming, way to deal with this situation is to calculate
the free energy associated with each binding mode separately
and use Boltzmann weighting to account for their collective free
energy.161 Emerging end-state alchemical reservoir methods will
enable the precalculation of multiple ligand binding modes that
can be integrated with existing enhanced sampling methods,
such as ACES.

The following are some general recommendations for setting up
and running simulations (further details are outlined in a
recently reported workflow”"):

e Carefully equilibrate each end state (node) prior to
setting up an alchemical transformation (edge) simulation
between the nodes. Use the same equilibrated structures
of a given node consistently for any edge containing the
node.

e Construct “dense” thermodynamic graphs that have
sufficient redundancy to enable network-wide analysis™*
of cycle closure conditions and yield meaningful internal
consistency checks.

e Use optimized alchemical transformation gathways,
including smoothstep softcore potentials'®* and, if
necessary, advanced A scheduling features in order to
maximize phase space overlap between windows.

e Apply robust enhanced sampling methods such as
ACES® that leverage an HREMD framework to ensure
that different A-windows are kept in equilibrium.

Simulation results should be tested for convergence through
block analysis, and statistical error estimates should be
made ¥ 71 that include multiple independent trials of
ACES runs. The next section discusses potential caveats and
offers suggestions for analysis to help troubleshoot and improve
the reliability of predicted results.
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AFE simulations, aside from issues associated with the accuracy
of the force fields used, can encounter a number of caveats that
limit their predictive capability. In what follows, we consider the
most common use case in drug discovery: AFE simulations for a
set of ligands arranged in a thermodynamic graph network,
where the nodes in the graph represent real states and edges that
connect nodes represent alchemical transformations between
the real states. The real states thus form the “end states” (or
“real-state end points”) for a given alchemical transformation.
Within this context, the following are some guiding principles:

e Are the end-state (node) conformational ensembles and
associated energy distributions correct and consistent
within the network, ie., are they the same for every
connecting alchemical transformation (every edge
containing the same node)?

e For a given alchemical transformation (edge), are the A-
window simulations sampling consistent conformational
ensembles and energy distributions, i.e. are the A-
windows in equilibrium with one another?

e For the degree of sampling that is achieved, is the
alchemical transformation pathway stable, i.e., do the dU/
04 distributions fluctuate stably (i.e., appear unimodal
with small variance and show no signs of phase transition
behavior in the A-dimension) and is there sufficient phase
space overlap between A-windows to allow a reliable
estimate of the free energy?

Of these guiding principles, often the most difficult one to
correct is the first. In typical calculations, edges are computed in
separate (independent) simulations, e.g., a HREMD simulation
using ACES or the REST/REST2 method. For example,
consider a particular node (“node 1”) that is connected to
three other nodes (“nodes 2, 3, and 4”) in a thermodynamic
graph, and let us label the edges connecting to node 1 as “edge
(1-2), edge (1-3), and edge (1—4)”. Suppose that for each
edge an HREMD simulation is performed such that the A-
windows, including the end states, are in equilibrium with one
another. If simulations for each edge are performed separately,
then it is not guaranteed (or even probable) that the end state
distributions for node 1 derived independently from edge (1—
2), edge (1-3), and edge (1—4) HREMD simulations will be
statistically indistinguishable. In principle, one could set up a
large network of HREMD simulations, where the edges are
connected through a common node. This strategy imposes a
constraint that the entire network of HREMD simulations be
run in some way synchronously (even if exchanges are made
asynchronously) and does not easily allow for the network to be
extended to include new edges and nodes. An alternate strategy
is to precompute the end state (node) distributions and store
them as end-state alchemical reservoirs and then use them as
ensemble baths for each node (i.e., have the reservoirs
exchanging at the end state during an edge transformation so
as to ensure a consistent end state distribution). A technical
challenge arises as to how to rigorously map the set of
noninteracting “dummy atoms” that are needed for an
alchemical (edge) tansformation onto a reservoir conformation
where such dummy atoms are not present. These end-state
reservoir methods are forthcoming and promise to considerably
enhance the level of precision achievable in AFE simulations for
drug discovery.
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Once a strategy has been decided in terms of construction of a
thermodynamic graph network, atom mapping procedure, and
alchemical transformation pathway, the following are some
valuable checks that can be performed:

e Perform comprehensive statistical error analy-
sis P21 (of both correlated data samples and
independent trials) such as block bootstrapping and
forward/reverse sampling.

e Compare TI and MBAR free energy estimates for
consistency within their estimated statistical errors.”* If
the variance between estimates is outside of reasonable
error bounds, this is suggestive of problems that need to
be addressed. Tracking how the MBAR result changes by
progressively removing states in the analysis (approaching
the BAR limit) could offer additional insight into the
stability of the free energy estimate.

o Analyze the (0U/0A), profiles as a function of A and the
variance at each A-window. Windows that exhibit kinks
and/or deviations from otherwise smooth profiles or that
have anomalously large variances or bimodal 0U/dA
distributions are likely problematic. A possible solution is
to find a more suitable alchemical transformation pathway
by considering alternative softcore potentials, atom
mapping, 4 scheduling (which may include sequential
creation/annihilation of functional groups one at a time as
opposed to all at once), or introduction of new chemical
or alchemical intermediates (i.e, new nodes in the
thermodynamic graph).

e Analyze phase space overlap, HREMD acceptance ratios,
and round-trip statistics. Phase space overlap is typically
correlated with the HREMD acceptance ratios and should
never dip to values close to zero (values below 0.2 are of
concern). HREMD simulations should see many walkers
making “round trips” from one real state to the other and
back again. Two common origins of poor phase space
overlap are (1) the spacing between A windows is too large
and (2) first-order phase transitions in the A-dimension
can result in bimodal dU/0A distributions. In the first case,
a possible solution is to find more optimal 4 spacing such
that the phase space overlap is larger and more uniform,
and if needed, increase the number of A-windows
appropriately. In the second case, it may be necessary to
introduce new chemical or alchemical intermediates to
further break up edges that exhibit these phase transitions.

e Analyze cycle closure conditions as independent con-
sistency checks and perform Lagrange multiplier analysis
to identify potentially problematic edges. If such an edge
is identified, consider excluding it in the analysis (which
might require adding a new edge to reconnect a node that
was severed).

There are a vast number of outstanding issues that are being
actively addressed by a variety of groups at the forefront of the
field. Some selected for mention here include the following:

e Methods to handle interfacial and buried (kinetically
trapped) water molecules that can fluctuate in occupancy
upon binding.** %

e Charge-changing liégand perturbations and counterbal-
ancing salt effects.'®> "%
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82,170 . 171
»*’" and protonation states "~ of

82,172,173

e Alternative tautomers

both ligand and target molecules.

e Binding sites involving metal—ligand interactions.!”*'73

e 176,177
e Covalent inhibition.” "™

As the methods evolve to meet these and other challenges, it will
become increasingly important to perform large-scale assess-
ments'’®'”” and conduct community-wide blind chal-
lenges. #0181

Emerging technologies that promise to improve the accuracy
and precision of AFE calculations in drug discovery include the
development of end-state ensemble reservoirs that can be used
within networks to ensure consistent end states as well as
continued evolution of sampling methods. Finally, there are a
number of exciting advances in the development of new force
fields that promise higher levels of accuracy, most notably
classical polarizable force fields'®*~'*® and machine learning
potentials (MLPs).'*”~"° Of particular promise are the new
methods that combine fast, approximate quantum-mechanical
(QM) models with MLP corrections to achieve high accuracy
(QM/A-MLPs)."7>'171%¢ Thege methods are “universal” in
the sense that unlike molecular mechanical force fields
(including polarizable force fields), they do not assume a
predetermined bonding topology and are able to accurately
model different tautomers and protonation states. This is highly
significant, as 30% of the compounds in vendor databases and
21% drug databases have potential tautomers'*”'”® and it has
been estimated that up to 95% of drug molecules contain
ionizable groups.'”’

What is clear is that there is a driving need to continue to
advance the state-of-the-art AFE simulations to improve both
precision and accuracy to meet the evolving challenges in the
design of new therapeutics. It is our hope that the current
Perspective is useful in providing some insight into modern
alchemical free energy methods and their role in drug discovery.
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