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ABSTRACT: Accurate in silico predictions of how strongly small
molecules bind to proteins, such as those afforded by relative binding
free energy (RBFE) calculations, can greatly increase the efficiency of
the hit-to-lead and lead optimization stages of the drug discovery
process. The success of such calculations, however, relies heavily on
their precision. Here, we show that a recently developed alchemical
enhanced sampling (ACES) approach can consistently improve the
precision of RBFE calculations on a large and diverse set of proteins
and small molecule ligands. The addition of ACES to conventional
RBFE calculations lowered the average hysteresis by over 35% (0.3−
0.4 kcal/mol) and the average replicate spread by over 25% (0.2−0.3
kcal/mol) across a set of 10 protein targets and 213 small molecules
while maintaining similar or improved accuracy. We show in atomic
detail how ACES improved convergence of several representative RBFE calculations through enhancing the sampling of important
slowly transitioning ligand degrees of freedom.

1. INTRODUCTION
Computational assays for protein−small molecule potency,
such as calculations based on the relative binding free energy
(RBFE) approach, have emerged as powerful tools for
accelerating the hit-to-lead and lead optimization stages of
drug discovery. They rely on physics-based atomistic models
that take advantage of nonphysical (“alchemical”) trans-
formations1,2 to estimate the relative binding affinities of
congeneric small molecules to protein receptors. Historically
plagued by inaccuracies and poor precision due to issues
related to force fields, inadequate simulation times, and
complicated setup,1−7 these calculations have seen tremendous
development in recent years, including advances in force field
development,8−13 computational hardware architectures,14

high-performance software implementations,15−19 and stream-
lined workflows.20−25

Despite recent advancements, however, RBFE calculations
are still expensive computations that are often affected by poor
convergence and large variances in free energy estimates
(especially between independent replicates) that limit
reproducibility and predictive capability. Key contributors to
this variability are (1) instabilities along the alchemical
transformation pathway that can produce first-order phase
transition behavior in the λ-dimension26 and (2) the inability
to sample relevant, but slow, conformational degrees of
freedom during practically accessible simulation time scales.27

Many enhanced sampling approaches that aim at improving
convergence and precision in free energy calculations have
been proposed, including metadynamics,28 enveloping dis-
tribution sampling (EDS/λ-EDS),29,30 parallel or simulated
tempering, orthogonal space random walk (OSRW),31

thermodynamic integration with enhanced sampling
(TIES),32 and several methods based on replica exchange
(RE) framework, such as multiple-replica adaptive biasing
force,33−35 replica exchange with solute-tempering (REST and
REST2),36−38 and the recently developed alchemical enhanced
sampling (ACES) approach.39 Both REST/REST2 and ACES
belong to the category of “Generalized Ensemble Monte
Carlo” methods that achieve enhanced sampling in the
alchemical dimension by scaling specific intra- and intermo-
lecular potential energy terms for a select group of atoms.
These scaled states are then connected to the real states by
Hamiltonian replica exchange networks.
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The ACES method uses robust alchemical transformation
pathways to connect real and enhanced sampling states using
new smoothstep softcore potentials, nonlinear Hamiltonian
mixing, and flexible λ-scheduling capabilities40,41 that have
been integrated into the GPU-accelerated free energy
simulation engine in AMBER18 and available in AMBER22.42

ACES relies on a dual-topology framework that can allow it to
overcome local “hot-spot” problems encountered with REST/
REST2.36−38

Here, we focus on the usefulness of the ACES approach and
demonstrate that ACES noticeably increases the precision of
RBFE calculations across a large and diverse dataset containing
10 different targets and over 200 ligands. For the entire dataset,
we performed multiple independent replicates of RBFE
calculations both with and without ACES, and for each target,
we observed an increase in precision ranging from 0.1 to 1.8
kcal/mol.

The rest of the article is organized as follows: in section 2,
we briefly recapitulate the salient features of the ACES
approach. In section 3, we provide details related to the
computational approaches adopted in this work. In section 4,
we discuss the broad dataset considered in this work and
present the key results obtained with and without the use of
enhanced sampling. In section 4.1, we discuss, in atomic detail,
three case studies that illustrate the importance of enhanced
sampling, and in particular ACES, in RBFE calculations.
Finally, in section 5, we conclude by summarizing the key take
home messages.

2. THE ALCHEMICAL ENHANCED SAMPLING (ACES)
APPROACH

As discussed in the Introduction, there is a rich literature that
describes enhanced sampling (or importance sampling)
methods in the context of alchemical free energy simula-
tions.2,30−39,41 The alchemical enhanced sampling (ACES)
method39 is an integrated approach incorporating the recently
developed robust softcore potentials,40 flexible control of
dummy states,43 interaction energies,44 and the Hamiltonian
replica exchange (HREMD) framework45,46 in alchemical
transformation simulations. While the concept of enhanced
sampling methods leveraging alchemical transformations and
dual-topology frameworks has been explored for many
years,47−49 developing practical and reliable methods for
predicting protein−ligand binding affinities has presented
challenges and remains an active area of research and software
development.48,50,51

The strength of the ACES method lies in the precise
implementation of three fundamental elements.

• Creation of localized (focused) enhanced sampling
states through tuning of intra- and intermolecular energy
terms for selected groups of atoms in the softcore region.

• Design of robust alchemical transformation pathways to
connect real and enhanced sampling end states using
new smoothstep softcore potentials, λ-dependent weight
functions, and flexible λ-scheduling capabilities.

• Construction of efficient HREMD networks to facilitate
Boltzmann sampling of the real state end points and
maintain equilibrium between windows along the
alchemical transformation pathways.

The first element creates a fictitious “enhanced sampling”
state with a barrier-reducing potential energy, whereas the
second and third elements work together to provide a

mechanism to rigorously and efficiently connect the conforma-
tional ensembles of the real state and enhanced sampling state
end points using a Hamiltonian replica exchange (HREMD)
framework.45,46 Specifically, with ACES,39 the enhanced
sampling dummy state is one where all nonbonded interactions
with the environment are turned off using recently introduced
smoothstep softcore potentials,40 and in addition, all internal
electrostatic interactions as well as torsion angle and 1−4
Lennard-Jones terms for rotatable single bonds are turned off
to avoid kinetic traps. Other internal energy terms are retained,
as they help to reduce the volume of relevant phase space that
needs to be sampled. Efficient HREMD networks are created
using a recently introduced optimized phase-space overlap
method.41 In an RBFE calculation between two ligands “A”
and “B”, as the ACES region of the real state for ligand A is
being annihilated with respect to its interactions with the
environment and transformed into an enhanced sampled
dummy state,43 the ACES region of the real state for ligand B
is being created. This concerted counterdiffusion of alchemical
states produces minimal rearrangement of the environment
along the λ path. Further, the computational overhead of
ACES is negligible relative to conventional alchemical free
energy simulations with HREMD. Overall, the ACES method
provides a convincing and comprehensive framework for
enhanced sampling in molecular simulations. It can be
employed as a standalone method for efficient exploration of
conformational space or integrated as an important sampling
technique within alchemical free energy simulations, offering
improved accuracy and reliability in predicting protein−ligand
binding affinities.

3. METHOD
The crystal structures on which the RBFE calculations were
based for the various proteins are: 4DJW for BACE,52 1H1Q
for CDK2,53 2GMX for JNK1,54 4HW3 for MCL1,55 3FLY for
p38,56 2QBS for PTP1B,57 2ZFF for Thrombin,58 4GIH for
Tyk2,59,60 7EW9 for KRAS-G12D61,62 and 7LMD for SARS-
CoV-2.63 The PDBs were processed for MD simulations using
various programs available as part of AmberTools,64

particularly pdb4amber, for cleaning PDB structures, and
tleap, for building topology and parameter files. In certain
cases, specific active site titratable residues were assigned
protonation states based on visual inspection. For a given
protein, 3D structures of the target ligands were generated
based on a maximum common substructure-based 3D
alignment approach with respect to the reference cocrystal
ligand.

The protein systems were modeled using the AMBER
ff14SB force field, while the ligands were parametrized using an
in-house force field parametrization workflow that generates
bespoke ab initio-based force field parameters for small
molecules. In this workflow, each ligand is optimized at the
QM level and then am1-bcc partial charges are derived for the
optimized structure. To obtain the torsional parameters, first
the torsional profile for each rotatable bond in the molecule is
calculated at the QM level. For each torsion, 12 constrained
geometry optimizations are performed at intervals of 30°.
Thereafter, a linear least-squares fitting is performed to derive
MM torsional parameters that closely reproduce the QM
profiles. The QM calculations are performed at the 6-31G**/
B3LYP level of theory. The protein−ligand complexes and
isolated ligands were immersed in separate truncated
octahedral boxes of TIP3P waters,65 with buffer distances of
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10 and 18 Å, respectively. The Monte Carlo barostat and
Langevin thermostat66 with a friction constant of 2.0 ps−1 were
used to maintain constant temperature and pressure,
respectively. SHAKE67,68 and hydrogen mass repartitioning
(HMR)69 were applied to both protein−ligand complex and
ligand topologies. Nonbonded interactions were computed
directly within an 8 Å cutoff, and long-range electrostatic
interactions were evaluated with the particle mesh Ewald
(PME) method70,71 using approximately a 1 Å grid spacing. All
simulations employed a 4 fs time step.

An in-house (TandemAI) FEP workflow was employed to
set up the RBFE calculations. Each system was subjected to a
rigorous equilibration protocol having the following steps: (a)
full system minimization, (b) heating from 0 to 100 K at
constant volume and temperature (NVT) ensemble over 2 ps,
followed by MD at constant pressure and temperature (NPT)
ensemble at 100 K for 2 ps, (c) heating from 100 to 200 K at
constant NVT over 2 ps, followed by MD at constant NPT at
200 K for 2 ps, and (d) heating from 200 to 300 K at constant
NVT over 2 ps, followed by MD at constant NPT at 298 K for
2 ps. For (b−d), positional restraints were imposed on all
protein and ligand heavy atoms. (e) MD at constant NPT at
298 K without restraints for 5 ns. The end structures from the
above protocol were used to generate the hybrid-dual
topologies necessary for RBFE calculations.

All RBFE calculations were performed using 12 λ windows
that were determined using a newly developed approach for
predicting optimal λ schedules for RBFE calculations.41 In this
approach, a series of short simulations are first performed with
a larger number of uniformly spaced λ windows (25 in this
work) that are then analyzed to generate a 2D map of the
phase-space overlap in the λ space. The 2D map O(λ, λ′)
represents a predictive measure of the phase-space overlap
involving the intervals defined by λ and λ′. The final set of 12 λ
windows is then obtained by optimizing an alchemical pathway
on this 2D map such that the phase-space overlaps are equal
between the λ intervals. This optimized λ schedule, maximizing
the phase-space overlap between neighboring windows, leads
to a higher number of end-to-end round trips in HREMD
simulations, which in turn increases the efficiency of ACES.

To obtain the initial structures for the different λ windows, a
fast sequential equilibration was performed starting from λ = 0,
in which at each λ, the system was first minimized, heated to
300 K in 60 ps at constant NVT, and equilibrated at constant
NPT for 60 ps. The end structure was used as an initial seed
for the next λ window. Finally, production runs of 5 ns were
carried out in the NVT ensemble. In both the “ACES” and “no
ACES” sets of simulations, HREMD was employed, and replica
exchanges were attempted every 625 fs. The transformations
were performed with the one-step concerted protocol, using
the modified SSC(2) softcore potentials (m = n = 2, αLJ = 0.5,
αCoul = 1).40 The ACES method39 has been implemented using
the dual-topology framework in AMBER. Here, the trans-
forming region is separated into a “common core” (CC) set of
atoms that share common coordinates and a set of ”softcore”
(SC) atoms that have separable coordinates. It is in the
selection of the SC atoms that enables ACES to achieve
enhanced sampling through the dual topology by coun-
terpoised creation and annihilation of the SC atoms of the end
states. All simulations were performed using the PMEMD.cuda
program that is available as part of the official AMBER22
release42 augmented by the AMBER Drug Discovery Boost
package.44 Network-wide free energy analysis including cycle

closure constraints72 was conducted using FE-ToolKit
distributed with the latest version of AmberTools.64 Error bars
for mean unsigned error (MUE), root mean squared error
(RMSE), spread, and hysteresis represent standard errors of
these metrics within each dataset. The “overall” values along
with their error bars are averages of each of these metrics over
the entire dataset, weighted by the size of each individual
dataset. The following equations are used to calculate the
weighted average and error bar for a particular metric, X:

=
=

X WX
i

n

i iwtd
1 (1)

= =S
W X X

n
( )

( )

1x
i
n

i i
wtd

1 wtd
2

(2)

where X̅wtd is the weighted average, Wi is the weight of a
particular dataset calculated as the ratio of the size of that
dataset to the overall dataset, (Sx̅)wtd is the weighted error bar,
and n is the number of datasets.

The error bars for R2 were calculated using a bootstrapping
approach in which for a particular dataset, at a given time, an
R2 value was calculated by choosing any one of the replicate
runs for each edge within that dataset. The process was
repeated 200 times to obtain the standard error of the
distribution.

4. RESULTS AND DISCUSSION
We considered a diverse dataset containing 213 ligands across
10 different targets forming 345 perturbations. Specifically,
these targets include the BACE, CDK2, JNK1, MCL1, p38,
thrombin, Tyk2, and PTP1B proteins that were part of a well-
known validation study of the FEP+ program from
Schrödinger.25 Additionally, we included two other pharma-
ceutically significant targets: KRAS-G12D, a member of the
KRAS family of proteins that is an important cancer target,61,62

and the main protease (Mpro) of the SARS-CoV-2 virus.63

To assess the impact of ACES, we performed RBFE
computations on the entire dataset with and without the use
of the enhanced sampling approach. As discussed in the
Method section, ACES relies on the creation of focused
enhanced sampling states by scaling certain inter- and
intramolecular energy terms of atoms assigned to the SC
region and then connecting the enhanced and real state
conformational ensembles using alchemical transformation
pathways within an HREMD network. In this study, in
addition to all electrostatic and Lennard-Jones (LJ) energy
terms between the SC region and the environment, the internal
electrostatic and torsion energy terms associated with rotatable
bonds for the atoms in the SC region were also scaled.

While the choice of the atoms to be targeted for enhanced
sampling is problem specific, a good rule-of-thumb is to choose
a minimal set of atoms that can distinguish between different
and potentially important conformational states. In practice,
our automated workflow assigns entire chemical moieties up to
the nearest rotatable bond to the SC region (in our case, atoms
selected for the SC region correspond to those targeted for
enhanced sampling), even if only a part of the chemical moiety
changes during the perturbation. This choice facilitates
enhanced sampling of plausible conformations of the entire
moiety, which may include high-barrier ring flipping or
rotamer transitions. We compared the results obtained from
RBFE calculations with ACES to those obtained from an
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analogous set of RBFE calculations without ACES. The only
difference between these calculations is that the internal
electrostatic and torsion energy terms of the SC region are not
scaled, which prevents the creation of the alchemically
enhanced states. In both sets, we calculated multiple replicates
for each RBFE edge in both forward and reverse directions to
obtain precision estimates.

The results from the RBFE computations on the various
targets with and without ACES are summarized in Table 1.
Across the different datasets, all three metrics related to the
accuracy of the RBFE computations, specifically the Pearson
correlation (R2), mean unsigned error (MUE) and root mean
squared error (RMSE), obtained from simulations using ACES
are either comparable to or slightly better (higher R2, lower
MUE, RMSE) than those obtained using simulations without
ACES, suggesting that with ACES, the accuracy of RBFE
calculations is maintained. Raw ΔΔGs obtained from RBFE
computations with or without ACES achieve an overall MUE
between the predicted and experimental free energies of
approximately 1 kcal/mol across the entire dataset (MUE of
1.02 ± 0.10 without ACES, MUE of 0.91 ± 0.10 with ACES).
Indeed, the MUE is less than 1.5 kcal/mol for 8 out of 10
targets, with the exceptions being KRAS-G12D and SARS-
CoV-2, for both of which the maximum MUE is less than 2
kcal/mol. Overall, these results highlight the predictive nature
of FEP calculations and are comparable to those obtained by
Schrödinger’s FEP+ and other FEP platforms.25,73

The average spread and hysteresis, both measures of
precision in these calculations, are calculated as the average
of the absolute difference between the minimum and
maximum RBFEs obtained for a given perturbation from
independent calculations and the average of the absolute
difference between independent RBFEs computed in the
forward direction and in the reverse direction for a given
perturbation, respectively. With ACES, we observe a systematic
decrease in the spreads for every target in the dataset, with the
calculated spread on each target being, on average, 0.4 kcal/
mol lower than those calculated from simulations without
ACES. The most noticeable change is observed for KRAS-
G12D, where the spread decreases by more than 1.5 kcal/mol
with the use of ACES. The overall average spread and
hysteresis across the entire dataset are 1.02 ± 0.15 and 0.87 ±
0.13, respectively, in RBFEs without ACES. With the use of
ACES, the overall average hysteresis is reduced by 37% (from
0.87 ± 0.13 to 0.55 ± 0.05 kcal/mol), and the overall average
spread is reduced by 25% (from 1.02 ± 0.10 to 0.76 ± 0.06
kcal/mol). This observation is further highlighted in Figure 1a,
which compares the distributions of the standard deviations in
RBFEs obtained with and without ACES on the entire dataset.
The distributions in the ACES simulations are clearly left-
shifted, with the mean shifted by 0.1 kcal/mol, which is
consistent with Table 1. This improvement in precision
afforded by ACES, while it may seem numerically small, is a
significant result; as noted earlier, the “no ACES” simulations
are identical to the ACES simulations, except for the scaling of
the specific SC internal energy terms. For example, the “no
ACES” simulations were still performed with the latest
smoothstep softcore potentials40 and involved conventional
HREMD. Improvement across the board on such a diverse set
of targets over the existing state-of-the-art demonstrates the
broad applicability of the ACES approach in improving
precision in RBFE calculations. T
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We employed a rigorous variational network-wide MBAR
analysis framework with cycle closure constraints (CCC) to
convert the calculated ΔΔG values into absolute ΔG values.
The network-wide MBAR with the CCC approach ensures
that for each thermodynamic cycle in the network, all the
participating free energies (ΔΔGs) sum up to zero, and the
free energy corrections arising from this process are distributed
optimally among the various raw ΔΔGs. For a more
comprehensive understanding of this approach, readers are
referred to the detailed work by Giese et al.72 Figure 1b,c
shows that the absolute ΔG values of all ligands from the
various targets across the dataset are mostly comparable from
calculations with and without ACES (Table S1 in the
Supporting Information).

4.1. Case Studies. In this subsection, we highlight several
problematic transformations in detail. These transformations
posed challenges in traditional HREMD simulations, as they
exhibited convergence issues with different simulations,
yielding disparate free energy values. We found that the
incorporation of ACES, however, proved to be instrumental in
improving the convergence of these transformations.

4.1.1. Case Study 1: 1oiy → 32 in CDK2. The first case
study is the perturbation between 1oiy and 32 in CDK2. We
focused on analyzing the structural and conformational aspects
that contributed to the observed outlier in the absence of
ACES. The structure of this perturbation is depicted in Figure
2a, where the red colored atoms represent the softcore region.
During our simulations without ACES, we identified an outlier
with a calculated ΔΔG = 1.07 kcal/mol among three trials (see
more details in the Supporting Information). This outlier arose
due to the particular conformational behavior of the 1oiy
ligand in CDK2. Specifically, 1oiy was observed to become
trapped in a local minimum, forming a hydrogen bond
between the ligand and an aspartic acid (ASP) residue in the
protein. This interaction greatly favored the transformation,
leading to the exceptionally favorable binding free energy
change (Figure 2b). To further investigate the conformational
sampling and its influence on the outcome, we examined the
torsion distribution in the blue region shown in Figure 2a. The
torsion distribution was obtained from three independent
trials, and the corresponding histogram is displayed in Figure
2c. In the absence of ACES, the torsion distribution exhibited a
propensity to remain in an anti-conformation (around 180°) in
the dummy state. Consequently, the conformation in the real

state also became stuck in an anti-conformation due to the
limited conformational sampling. With the incorporation of
ACES, a remarkable difference was observed in the torsion
distribution. With ACES, the torsion angles were equally
distributed across all angles, indicating a more diverse sampling
in the dummy state. This enhanced sampling allowed for a
broader exploration of the conformational space, enabling the
ligand to escape from the anti-conformational trap and sample
a wider range of conformations in the real state.

4.1.2. Case Study 2: 28 → 47 in MCL1. In the second case
study involving the perturbation between 28 and 47 in MCL1,
we examined the impact of ACES on the conformational
behavior and the resulting calculated binding free energy
values. This perturbation involves two distinct conformations,
namely syn and anti, in ligand 47, as illustrated in Figure 3b. In
the absence of ACES, an outlier among three independent
trials with a calculated ΔΔG of 2.01 kcal/mol was identified. In
contrast, the other two trials yielded ΔΔG values of −0.40 and
−0.76 kcal/mol, as described in more detail in the Supporting
Information. To understand the origin of the outlier and the
influence of conformational sampling, we monitored the
torsion distribution in the blue region of Figure 3a across
three trials. In run 1, ligand 47 remained in the anti-
conformation, while in run 2 and run 3, it predominantly
adopted the syn-conformation. This conformational bias was
reflected in the real state for each run, resulting in distinct
calculated binding free energy values (see the top panel of
Figure 3c. However, with the incorporation of ACES, a
significant improvement in conformational sampling was
observed. The torsion angles became equally distributed across
all angles in the dummy state, as depicted in the bottom panel
of Figure 3c. This enhanced sampling allowed for a more
diverse exploration of the conformational space, enabling the
ligand to escape any conformational traps and sample a wider
range of conformations in the real state. Consequently, the
incorporation of ACES led to more precise and consistent
results for perturbations between 28 and 47 in MCL1. By
promoting more diverse sampling in the dummy state, ACES
facilitated the exploration of multiple conformational states,
resulting in improved accuracy and reliability in the calculated
binding free energy values.

4.1.3. Case Study 3: 23467 → 23469 in PTP1B. In the third
case study involving the perturbation between 23467 and
23469 in the PTP1B protein target, we observed notable

Figure 1. (a) The distribution of standard deviation values among three replicates for the entire dataset25,61−63 with and without ACES. (b)
Correlation plot of calculated and experimental binding free energy values for the entire dataset25,61−63 without ACES. (c) Correlation plot of
calculated and experimental binding free energy values for the entire dataset25,61−63 with ACES.
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differences in the calculated ΔΔG values with and without the
ACES method. Without ACES, the average calculated ΔΔG
was 2.04 ± 1.41 kcal/mol, significantly deviating from the
experimental value of −0.38 kcal/mol by 2.42 kcal/mol.

However, in the presence of ACES, the average calculated
ΔΔG improved to −0.20 ± 0.21 kcal/mol, reducing the
difference to only 0.18 kcal/mol compared to the experimental
value. To gain insights into the underlying reasons for these
discrepancies, we examined the torsion distribution in the blue
region of Figure 4a in the PTP1B protein target for each
independent run with and without ACES, as shown in Figure
4b. Without ACES, the torsion distribution exhibited a high
concentration in the anti-conformation in both the dummy and
real states. This suggests that the system remained trapped in
the initial structure, limiting its conformational exploration. In

Figure 2. (a) Illustration of the CC/SC regions and torsion angle of
the phenyl ring of the 1oiy ligand. The red colored atoms represent
the softcore region, and the blue shadow regions highlight the torsion
angle of the phenyl ring of the ligands. (b) Illustration of the
interaction between 1oiy ligand and CDK2 protein target. (c) Torsion
distribution with and without ACES in CDK2 protein target. The
figure presents the torsion distribution plots obtained from three
independent trials, comparing the results with and without the use of
ACES. The top panel shows the torsion distributions without ACES,
while the bottom panel illustrates the distributions with ACES. The
left column displays the torsion distribution in the dummy state, and
the right column depicts the distribution in the real state.

Figure 3. (a) Illustration of the common core/softcore (CC/SC)
regions and torsion angle of the quinoline ring of ligand 47. The red
colored atoms represent the softcore region, and the blue shadow
regions highlight the torsion angle of the ligands. (b) Illustration of
syn- and anti-conformations of ligand 47 in MCL1. (c) Torsion
distribution with and without ACES in MCL1 protein target. The
figure presents the torsion distribution plots obtained from three
independent trials, comparing the results with and without the use of
ACES. The top panel shows the torsion distributions without ACES,
while the bottom panel illustrates the distributions with ACES. The
left column displays the torsion distribution in the dummy state, while
the right column depicts the distribution in the real state.
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contrast, with the incorporation of ACES, the torsion angles
were evenly distributed across all angles in the dummy state.
This balanced distribution allowed for more diverse sampling
in the enhanced sampling state, facilitating the exploration of a
wider range of conformations in the real state. Consequently,
the torsion distribution in the real state became more similar
among the three independent runs, indicating improved
precision in the results. By leveraging the enhanced sampling
capabilities of ACES, the PTP1B protein target was able to
overcome the limitations of being trapped in a specific
conformation and achieve a more accurate representation of
the true thermodynamics. The more precise results obtained
with ACES demonstrate its effectiveness in enhancing the
convergence and accuracy of the calculated ΔΔG values,
bridging the gap between computational predictions and
experimental observations.

5. CONCLUSION
In this study, the impact of the ACES approach on the
accuracy and precision of RBFE calculations was explored by

performing RBFE calculations on a broad dataset containing
10 protein targets and over 200 ligands, with and without the
use of the ACES. Each RBFE computation was repeated 3
times in the forward direction and once in the reverse direction
to ensure reproducibility of the results and assess precision in
these calculations. Incorporation of ACES was found to have a
minor impact on the overall accuracy of the computed RBFEs;
the MUE, RMSE, and correlation (R2) to experimental data
were comparable between RBFEs performed with and without
ACES. However, the agreement between independent
replicates of RBFEs was found to be systematically higher
across all targets for calculations performed with ACES. While
this result does not lead to a quantitative estimate of the
difference in precision in RBFEs computed with and without
ACES, consistently lower hysteresis and spread in RBFEs with
ACES across all targets strongly suggest that ACES contributes
to improving the precision of the RBFE calculations.

Three case studies were highlighted to investigate problem-
atic transformations in detail. In the first case study involving
the perturbation between 1oiy and 32 in CDK2, the impact of
conformational behavior on the results was analyzed. The
incorporation of ACES facilitated more diverse conformational
sampling, leading to improved accuracy and reliability in the
calculated binding free energy values. In the second case study
involving the perturbation between 28 and 47 in MCL1, the
influence of ACES on conformational behavior and calculated
binding free energy values was examined. The results showed
that ACES allowed for a broader exploration of the
conformational space, resulting in more precise and consistent
results. In the third case study involving the perturbation
between 23467 and 23469 in PTP1B, significant differences
were observed in the calculated ΔΔG values with and without
ACES. The incorporation of ACES improved the agreement
between calculated and experimental values, indicating its
effectiveness in enhancing the convergence and accuracy of the
predictions. Additionally, an efficient RBFE protocol was
proposed to improve the computational efficiency. Instead of
conducting three independent trials for each perturbation, the
protocol involved one forward-direction run and one reverse-
direction run. The results obtained from this more efficient
protocol showed accuracy and precision comparable to those
of the original protocol while significantly reducing computa-
tional resources. Overall, the study demonstrated the benefits
of incorporating ACES and employing cycle closure constraint
analysis in improving the accuracy, precision, and reliability of
the relative binding free energy calculations. The proposed
efficient RBFE protocol provided a streamlined approach
without compromising the quality of the computational
predictions, offering a time- and resource-efficient alternative
for drug discovery applications.

■ ASSOCIATED CONTENT

Data Availability Statement
Details related to the RBFE protocols employed in this study
are provided in the Method section. All protein and ligand
starting structures, including AMBER topology files (that
include protein and ligand forcefield parameters) and restart
files and relevant AMBER input files are made available in
PDB, SDF, PARM7, RST7 and text formats, respectively, on
GitHub (https://github.com/tandemai-inc/aces_submission_
data) and are also deposited in Zenodo (DOI: 10.5281/
zenodo.13305152).

Figure 4. (a) Illustration of the common core/softcore (CC/SC)
regions in perturbations of 23467 and 23469 ligands. The red colored
atoms represent the softcore region, and the blue shadow regions
highlight the torsion angle of the ligands. (b) Torsion distribution
with and without ACES in PTP1B protein target. The figure presents
the torsion distribution plots obtained from three independent trials,
comparing the results with and without the use of ACES. The top
panel shows the torsion distributions without ACES, while the bottom
panel illustrates the distributions with ACES. The left column displays
the torsion distribution in the dummy state, while the right column
depicts the distribution in the real state.
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*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00464.

Summary table for ΔG (kcal/mol) with and without
ACES, summary table for raw ΔΔG (kcal/mol) with and
without ACES, 2D structures of KRAS-G12D and
SARS-CoV-2 datasets, and computational cost compar-
ison between HREMD and ACES (PDF)
Energy data for all datasets (XLSX)
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