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ABSTRACT: Accurate and efficient calculation of alchemical free energies is a critical challenge in
computational chemistry, frequently hindered by the inherent limitations of conventional
thermodynamic integration (TI) methods. These limitations include poor phase-space overlap
between discrete alchemical states, inefficient allocation of computational resources, and a
fundamental time scale separation between alchemical transformations and molecular conforma-
tional sampling, which collectively lead to slow convergence and high statistical uncertainty. This
work presents sampling adaptive thermodynamic integration (SAMTI), a unified computational
framework designed to systematically overcome these challenges. SAMTI synergistically integrates
four components: (1) serial tempering (ST) with a fine-grained alchemical grid to ensure phase-
space continuity; (2) variance adaptive resampling (VAR) to dynamically allocate computational
effort to high-uncertainty regions; (3) replica exchange (RE) to enhance conformational sampling;
and (4) alchemical enhanced sampling (ACES) to resolve kinetic bottlenecks by selectively scaling
torsional energy barriers. We evaluated SAMTI’s performance against conventional TI across a
benchmark suite of eight molecular systems of increasing complexity, including ion solvation, small
molecule annihilation, and challenging protein−ligand transformations. The results demonstrate that SAMTI variants reduce
statistical error by 40−75% and, for the most complex systems, the complete ST+VAR+RE (mACES) configuration consistently
achieves chemical accuracy (σΔG < 0.1 kcal/mol) within 10 ns of the total simulation time, a challenging task for conventional
methods. Despite using a finer alchemical discretization, SAMTI achieves superior computational efficiency through adaptive
resource allocation and faster convergence while automating the optimization of the alchemical pathway. By providing a robust,
automated, and reliable solution to both alchemical and conformational sampling challenges, SAMTI establishes a new benchmark
for free energy calculations, positioning it as a powerful tool for accelerating molecular design in drug discovery and materials
science.

1. INTRODUCTION
Molecular dynamics (MD) simulations have been pivotal in
computational chemistry since their initial demonstration,1

offering atomistic-level insights into chemical and biological
processes.2−6 Among the applications that entail significant
computational challenges are free energy calculations,7−10 which
are utilized in drug design, catalyst development, and the
characterization of thermodynamic properties.11−16 Recent
perspectives and best-practice reviews provide comprehensive
guidance for modern alchemical free energy applications in drug
discovery, including methodological overviews, software
advances, and community recommendations.16−19

Thermodynamic Integration (TI) is a rigorously exact
method for calculating free energy differences between chemical
states.20 Although Kirkwood established the theoretical
foundation, subsequent methodological advancements, such as
the development of soft core potentials to address end point
singularities, have expanded its applicability. Nonetheless, TI

continues to pose practical challenges.21−24 The method is
based on the following relationship:

=G
U( )

d
0

1

(1)

where U(λ) represents the potential energy as a function of the
alchemical coupling parameter λ, and ⟨·⟩λ denotes the ensemble
average for a given λ. Despite its strong theoretical basis, TI
encounters practical issues that impact its accuracy and
computational efficiency, particularly in relation to phase
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space sampling, phase overlapping, and convergence of the
calculated free energy.
1.1. Fundamental Challenges in Free Energy Calcu-

lations. 1.1.1. Sampling Limitations in Molecular Simula-
tions. Molecular dynamics (MD) simulations are proficient in
modeling time-dependent behaviors; however, they face
challenges in sampling infrequently occurring conformational
states that are separated by substantial activation energies.10,25,26

This limitation is particularly pronounced in free energy
calculations, where the incomplete sampling of high-energy
states leads to slow convergence and estimates with high
variance, especially in the context of complex molecular
transformations.27−29

Monte Carlo (MC) methods can complement MD by
sampling equilibrium properties through moves that do not
necessarily adhere to physical pathways. However, their
efficiency may be compromised in dense systems due to high
rejection rates of proposed moves.26,30 Temporal correlations in
MD trajectories further complicate sampling, necessitating a
balance between simulating dynamic processes and achieving
statistical convergence.25 In alchemical free energy calculations,
which involve simulating nonphysical intermediate states along
the λ coordinate, sufficient sampling in each λ window is
essential.26,31

Several specialized techniques, such as replica exchange
molecular dynamics (REMD),32−34 metadynamics,35 and
adaptive biasing force (ABF), address these limitations by
enhancing sampling over activation energies.31,36 Hybrid MD-
MC methods integrate features of both simulation types to
improve sampling efficiency while maintaining the ability to
generate dynamic information.26,37,38

1.1.2. Bottlenecks in Alchemical Free Energy. Window-
based alchemical free energy simulations, such as thermody-
namic integration (TI) calculations, are highly sensitive to the
choice of λ discretization schemes (λ-spacing), which can
present challenges for accurate free energy estimation.
Insufficient phase space overlap between adjacent λ windows
may result in sampling discontinuities, potentially introducing
systematic errors in free energy calculations and increasing the
variance of the derivative U , thereby adversely affecting
convergence rates.27,39,40 This issue stems from inadequate
exploration of transitional states between the initial and final
thermodynamic states, which is particularly pertinent to
complex biomolecular systems. Conversely, an excessively fine
discretization of λ can lead to substantial computational costs
without corresponding improvements in accuracy. The difficulty
is exacerbated for nonlinear energy landscapes, such as those
encountered during particle creation or annihilation or with the
use of soft core potentials, where the energy barriers may
necessitate a higher density of λ points in specific regions.
Identifying these high variance regions prior to simulation is
often challenging, potentially requiring computationally in-
tensive iterative optimization procedures that increase overall
computational cost.24,41

Moreover, the optimal λ distribution is highly system-
dependent, varying considerably, for instance, between solvation
systems and protein−ligand binding systems. This variability is
also influenced by the selected alchemical pathway, such as
linear coupling, soft core potentials, or other transformation
protocols, which affect the free energy landscape. Consequently,
TI protocols optimized for specific systems often exhibit limited
transferability and may necessitate substantial recalibration of

new molecular systems. This lack of generalizability can be a
limitation in high-throughput drug discovery applications where
standardized protocols are frequently employed.42 The
combined challenges of optimal spacing determination, variance
reduction, and system-specific optimization underscore the
need for TI frameworks with enhanced adaptability that can
address these issues with reduced manual intervention.
1.2. Established Strategies for Addressing Challenges

in Alchemical Free Energy Simulations. 1.2.1. Enhanced
Sampling Techniques. Specialized sampling strategies have
been developed to address convergence challenges in
thermodynamic integration (TI). One such strategy is
Hamiltonian replica exchange (HRE), which enhances config-
urational sampling by simultaneously executing multiple
molecular dynamics simulations at distinct alchemical coupling
parameter (λ) values. Exchange moves between adjacent
replicas are performed using Monte Carlo criteria to promote
overlap in phase space.33,43,44 This mechanism facilitates the
movement of molecular configurations across the λ range,
enabling the system to overcome kinetic barriers and improve
the convergence properties. However, HRE typically incurs a
computational cost that scales linearly with the number of
replicas, presenting limitations for large systems or high-
throughput workflows.

An alternative approach is serial tempering, wherein a single
replica transitions between λ states based on predefined
statistical weights. This method can reduce computational
resource demands while retaining some of the enhanced
sampling benefits associated with replica exchange.45,46 None-
theless, determining optimal weighting schemes remains a key
challenge, often requiring manual tuning to ensure uniform state
visitation. The absence of automated robust schemes for weight
adaptation has limited the widespread application of serial
tempering despite its potential advantages.
1.2.2. Optimal Usage of Computational Resources. A

significant advancement in contemporary free energy calcu-
lations is the dynamic optimization of computational resources
through automated, data-driven workflows. These method-
ologies aim to mitigate the substantial costs associated with
fixed-length simulations by determining optimal stopping points
in real-time. For example, the convergence-adaptive roundtrip
(CAR) method developed by Yao et al. employs ongoing
convergence analysis to automatically adjust simulation
durations, thereby facilitating the rapid propagation of
conformations and reportedly achieving an over 8-fold increase
in the speed of FEP calculations.47 Similarly, Koby et al. have
introduced an iterative thermodynamic integration workflow
that utilizes automatic equilibration detection and convergence
testing with statistical metrics such as the Jensen-Shannon
distance. This approach allows each alchemical window’s
simulation to conclude once a predefined precision is attained,
a strategy demonstrated to reduce computational costs by over
85% while maintaining accuracy.48 Collectively, these adaptive
strategies represent a pivotal shift toward intelligent resource
allocation, enabling a more targeted and efficient use of
computational power, which is essential for high-throughput
drug discovery applications.
1.2.3. λ-Dynamics and Continuous Alchemical Coordinate

Sampling. A distinct alternative to discrete λ-window methods
is λ-dynamics, in which the alchemical coupling parameter λ is
treated as a continuous dynamical variable that evolves alongside
the system’s coordinates.49 This formulation allows for direct
sampling over the entire alchemical space within a single
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trajectory, eliminating the need for predefined λ windows.
Multistate λ-dynamics (MSLD) further extends this concept by
allowing multiple ligand transformations to be sampled
concurrently, thereby increasing computational efficiency in
relative binding free energy calculations.50,51 In these
implementations, each ligand is associated with a distinct λ
variable, and transitions between chemical states occur
dynamically.
While λ-dynamics avoids the sampling discontinuities

associated with window-based methods, it introduces new
requirements related to the design of the λ potential energy
surface. Inadequate exploration of the λ dimension can lead to
sampling inefficiencies, necessitating the use of biasing
techniques such as adaptive biasing force (ABF) or metady-
namics to improve coverage.31 Recent hybrid approaches like
Lambda-ABF-OPES have demonstrated significant improve-
ments, achieving up to 9-fold enhancement in sampling
efficiency by combining adaptive biasing with on-the-fly
probability enhanced sampling.52 Furthermore, well-tempered
metadynamics combined with λ-ABF (WTM-λABF) has shown
the capability to handle transformations with up to 1000
intermediates efficiently.53 When appropriately parametrized, λ-
dynamics offers a flexible framework for continuous-state
alchemical simulations, particularly when integrated with
adaptive or automated sampling enhancements.
1.2.4. Advances in λ-Dynamics and Adaptive Biasing.

Recent methodological advancements have aimed to enhance
both the statistical efficiency and computational feasibility of λ-
dynamics-based free energy estimation. Ding et al. introduced a
Gibbs sampler-based λ-dynamics (GSLD) framework, wherein
λ can bemodeled as either a continuous or discrete variable.54 In
GSLD, the joint distribution of atomic coordinates and λ is
sampled through alternating updates of coordinates and λ. A
significant contribution of this work was the Rao-Blackwell
estimator (RBE), which estimates free energies based on the

trajectory of atomic coordinates rather than λ transitions,
resulting in variance reduction in certain instances. Further-
more, the authors demonstrated that the multistate Bennett
acceptance ratio (MBAR) and unbinned weighted histogram
analysis method (UWHAM) equations can be derived as special
cases of RBE. For continuous λ variants, the method facilitates
the simultaneous evaluation of multiple ligand transformations
by using automatically generated biasing potentials derived via a
Wang−Landau-type algorithm.

To address the high free energy barriers encountered in
multisite alchemical simulations, Hayes et al. developed an
adaptive landscape flattening (ALF) method.55 This technique
introduces system-specific biasing potentials, including fixed,
quadratic, and end point trap terms, to mitigate barriers
associated with significant structural perturbations, such as
those involving changes in ligand volume or flexibility. The bias
coefficients are iteratively optimized based on sampling
feedback. The approach also incorporates solutions to common
error sources, including end point trapping (addressed by sharp
bias terms) and solvent-related artifacts from hard-core
potentials (resolved via a novel soft-core potential that applies
λ-dependent remapping within a restricted distance range).

More recently, Robo et al. introduced a dynamic biasing
extension of GSLD, termed LaDyBUGS (bias-updated Gibbs
sampling λ-dynamics).56 This method continuously updates
biasing potentials during the simulation, eliminating the need for
separate presimulation bias estimation. The sampling protocol
alternates between molecular dynamics of atomic coordinates at
fixed λ and resampling of λ based on potential energies of all
available alchemical states. Following each λ resampling step,
bias potentials are updated by using free energy estimates
derived from FastMBAR, with initial flat biases progressively
refined as the simulation advances. The LaDyBUGS algorithm is
implemented in OpenMM and enables efficient sampling of

Figure 1. SAMTI workflow with integrated components. ST (Serial Tempering) orchestrates the core loop (left panel): Init scans all λ and constructs
an initial bias F(λ); at fixed λi the simulation (i) computes ⟨∂U/∂λ⟩i, (ii) updates F(λ) by integrating ∂U/∂λ, and (iii) evaluates MC jump probabilities
from the current bias, performs an MC jump λi → λj, and iterates. VAR (green) estimates Var(λi) and adds a variance-weighted contribution to the
jump probabilities when enabled (adaptive resource allocation). RE (blue) runs parallel replicas and attempts to exchange full states between replicas
at set intervals when enabled. ACES (red) scales selected torsional terms (Hamiltonian modification; γ-scaling) to lower conformational barriers,
strengthening both the ST loop and RE efficiency when enabled. Colored arrows match the component contributions (green = VAR, blue = RE, red =
ACES); ST remains the primary driver, while the other modules are optional.
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multiple ligand states by leveraging a strongly connected graph
representation of transformation pathways.
1.2.5. Advances in λ Protocol Optimization. Recent

methodological advancements have focused on dynamic
optimization of λ spacing and the allocation of computational
resources during simulations. Adaptive Lambda Scheduling
(ALS) exemplifies this approach by adjusting λ distributions
based on ongoing assessments of the free energy landscape,
thereby enhancing efficiency in relative binding free energy
(RBFE) calculations.57 Similarly, the automated adaptive λ
method for relative free energy perturbation (RFEP) developed
by Zeng et al. employs initial short simulations to identify
regions of interest, followed by a split and merge algorithm that
allocates more sampling to high-variance λ windows and less to
converged regions.58 Complementary approaches include
methods for optimizing alchemical intermediate spacing based
on thermodynamic length principles.59 Additionally, Zhang et
al. extended the alchemical enhanced sampling (ACES)
method,61 by integrating it with optimized phase space overlap
(Opt PSO) criteria, designing λ spacing to maximize exchange
acceptance rates between adjacent states.61 Concurrently, the λ
adaptive biasing force (λ-ABF) framework by Lagarder̀e et al.
combines adaptive biasing with λ dynamics, offering a method
that dynamically applies biasing forces along the alchemical
coordinate to accelerate convergence.31 Collectively, these
methodologies signify a shift toward more autonomous λ
optimization, reducing the necessity for manual intervention
and enhancing computational efficiency across various molec-
ular systems.
1.3. Summary of Current Limitations.Despite decades of

development, conventional thermodynamic integration meth-
ods are hindered by three fundamental limitations that
significantly affect accuracy and efficiency: (1) Phase space
overlap problems: Sparse λ discretization (typically 10−30
windows) results in inadequate overlap between adjacent states,
leading to sampling discontinuities and systematic errors, while
dense discretization becomes computationally prohibitive; (2)
Inefficient resource allocation: Uniform sampling allocation
results in wasted computational effort in converged regions
while undersampling high-variance regions where accuracy is
most critical; and (3) Conformational sampling bottlenecks:
Slow torsional motions and kinetic barriers create convergence
failures that cannot be resolved by alchemical sampling
improvements alone.
These limitations become increasingly pronounced for

complex biomolecular transformations, where conventional
methods often necessitate impractically long simulations to
achieve chemical accuracy (σΔG < 0.1 kcal/mol), often incurring
significant supercomputer time and still failing to converge.
Existing enhancement strategies typically address only one
limitation at a time, failing to capture the synergistic benefits
possible from integrated solutions.
1.4. Proposed Solution: SAMTI. To systematically address

the persistent challenges in thermodynamic integration, we
introduce the SAMTI approach (Figure 1). SAMTI is an
integrated computational framework that systematically ad-
dresses the three primary limitations of conventional TI: (1)
inadequate phase-space overlap between adjacent λ windows,
addressed by the ST (serial tempering) component using fine-
grained λ grids; (2) inefficient resource allocation, addressed
by the VAR (Variance Adaptive Resampling) component that
dynamically prioritizes high-uncertainty regions; and (3) poor
conformational sampling, addressed by the RE (Replica

Exchange) component that enhances exploration of complex
energy landscapes. By adapting to system-specific free energy
landscapes and variance distributions, SAMTI is designed to
achieve improved convergence rates while maintaining accuracy
standards relevant for computational chemistry and drug
discovery applications. Figure 1 provides a schematic overview
of the SAMTI framework’s four integrated components and
their workflow, illustrating how initialization, adaptive sampling
(ST+VAR), replica exchange (RE), and alchemical enhanced
sampling (ACES) work together to achieve robust free energy
calculations.
1.4.1. ST (Serial Tempering). The Serial Tempering (ST)

component is conceptually inspired by prior developments in
enhanced sampling methodologies, including serial temper-
ing,45,46 adaptive biasing techniques,62 and bias-updated λ-
dynamics frameworks such as GSLD54 and LaDyBUGS.56 The
ST protocol employs a finely discretized λ grid�typically
comprising 100−200 windows�to enhance phase space
overlap along the alchemical pathway. Sampling is performed
via a serial tempering approach,63 which alternates between
molecular dynamics at fixed λ values and Monte Carlo
transitions in λ space.

The ST algorithm comprises four stages: (1) an initial scan to
estimate an empirical free energy profile over the discretized λ
space; (2) calculation of exchange probabilities between
adjacent λ states using instantaneous potential energies, guided
by the current free energy estimate as a biasing potential; (3)
refinement of the free energy profile based on empirical
visitation statistics; and (4) dynamic updating of transition
weights to achieve approximately uniform sampling across all λ
windows. This iterative scheme is intended to adaptively
optimize sampling efficiency during the course of a single
simulation, thereby reducing the dependence on manual tuning
of λ spacings and facilitating a thorough exploration of both
configurational and alchemical spaces.
1.4.2. VAR (Variance Adaptive Resampling). The VAR

component implements a variance-responsive procedure that
dynamically allocates computational resources based on the
uncertainty in U measurements. Grounded in the statistical
principle of variance-weighted sampling, also known as optimal
allocation or Neyman allocation,64−67 VAR constructs an
adaptive biasing potential where sampling probabilities are
inversely weighted by the local variance of the energy derivative.
This approach allocates more sampling effort to regions of high
uncertainty, where U exhibits larger fluctuations and less
sampling in low-variance regions that are closer to convergence.
Variance estimates are updated during the simulations, forming
a feedback mechanism for the progressive optimization of
resource allocation. When combined with ST, this ST+VAR
composite is designed to promote uniform λ space coverage and
reduce the aggregate uncertainty in free energy estimates, aiming
for improved convergence relative to fixed-weight sampling
approaches.
1.4.3. RE (Replica Exchange Enhancement). The RE

component enhances parallel efficiency by concurrently
executing multiple independent ST or ST+VAR simulations
with periodic attempts at replica exchange based on a
generalized ensemble framework. This parallel architecture
provides two main advantages: (1) replicas periodically
exchange conformational states using a Hamiltonian-based
Metropolis criterion, which can allow conformations to
overcome local energy minima by transitioning to different λ
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environments; and (2) the independent sampling trajectories
can collectively explore a broader region of phase space
compared to single replica approaches. The exchange
mechanism is designed for low communication overhead to
maintain computational efficiency while improving conforma-
tional sampling. RE is designed for scalability on high-
performance computing resources, enabling SAMTI to be
applied to more complex biomolecular systems by increasing the
number of replicas without requiring algorithmic modifications.
This combination of improved sampling and parallel efficiency
makes RE suitable for systems characterized by complex energy
landscapes or slow conformational transitions.
1.4.4. ACES (Alchemical Enhanced Sampling). A primary

challenge identified in complex ligand transformations is the
temporal disparity between the alchemical and conformational
sampling. Although enhanced sampling along the λ coordinate
can mitigate issues related to variance and phase-space overlap,
conformational barriers with time scales surpassing the duration
of simulations necessitate further enhancement. The ACES
(alchemical enhanced sampling) component, derived from the
methodology of Lee et al.,60 addresses this challenge by
selectively scaling torsional potential energy terms to generate
enhanced sampling states that facilitate conformational
transitions otherwise kinetically hindered within simulation
time scales.61,68 ACES can be applied to target individual critical
torsions (sACES) or multiple cooperative torsional coordinates
(mACES), contingent upon the complexity of the conforma-
tional change requisite for alchemical transformation.
We propose that the synergistic integration of these four

components will yield significant advancements over traditional
thermodynamic integration methods: (1) Statistical accuracy:
The integration of fine-grained λ-spacing (ST), variance-
proportional resource allocation (VAR), enhanced conforma-
tional sampling (RE), and conformational barrier reduction
(ACES) will result in a marked reduction in statistical errors
compared to conventional 21-window TI methods; (2)
Computational efficiency: Despite utilizing 5× more λ
windows, adaptive resource allocation and accelerated con-
vergence will sustain comparable or enhanced computational
efficiency per unit accuracy; and (3) Systematic performance
scaling: Improvements will scale with molecular complexity,
with the comprehensive ST+VAR+RE (mACES) configuration
offering the most substantial benefits for challenging trans-
formations involving conformational barriers.
This paper delineates SAMTI’s complete theoretical frame-

work (Section 2), implementation specifics (Section 3), and
performance evaluation across eight molecular systems, ranging
from simple ion solvation to complex protein−ligand trans-
formations with enhanced sampling protocols (Section 4). We
demonstrate that the synergistic combination of all four
components (ST, VAR, RE, and ACES) within the complete
ST+VAR+RE (mACES) configuration achieves a significant
reduction in statistical errors compared with conventional 21-
window TI methods, with the complete framework consistently
attaining high accuracy for complex transformations. Section 5
discusses the relative contributions of each component and
establishes ST+VAR+RE with ACES as a comprehensive
solution for addressing both alchemical and conformational
sampling challenges.
To elucidate how SAMTI addresses these multidimensional

sampling challenges at a fundamental level, the following section
establishes the mathematical foundations underlying SAMTI’s
four components and their integration. We commence with the

statistical mechanics basis of thermodynamic integration,
develop the theoretical framework for each adaptive component,
and conclude with an algorithmic implementation framework
that bridges theory and practice.

2. THEORY
2.1. Statistical Mechanics Foundation of Thermody-

namic Integration. The theoretical basis of thermodynamic
integration is derived from the work of Kirkwood et al., which
relates free energy differences to ensemble averages of
Hamiltonian derivatives. For a system described by a
parameter-dependent Hamiltonian H(r, λ) that transforms
continuously between states λ = 0 and λ = 1, the Helmholtz free
energy difference is given by the integral relationship:

= =G G G
H r

(1) (0)
( , )

d
0

1

(2)

where ⟨·⟩λ represents the canonical ensemble average evaluated
at a fixed λ value.20 This formulation converts the free energy
calculation into an integration problem along an alchemical
pathway, forming the basis for TI methodologies. The ensemble
average at each intermediate λ state is defined by the
configurational integral:

=H e

e

r

r

d

d

H H

H

r r

r

( , ) ( , )

( , )
(3)

where β = (kBT)−1, with kB being the Boltzmann constant and T
the absolute temperature, and r denotes the coordinates of the
system in configuration space. This derivative ensemble average
corresponds to a generalized force along the alchemical
coordinate, and its statistical convergence affects the accuracy
of the free energy estimates. The Hamiltonian often takes the
functional form H(r, λ) = (1 − λ)H0(r) + λH1(r) for linear
interpolation between end points. Soft core potentials are
frequently used to prevent singularities, for instance, during
particle creation or annihilation processes.22,24,41 The theoreti-
cal validity of TI depends on the continuous differentiability of
the Hamiltonian with respect to λ and ergodic sampling at all
intermediate states. These conditions can be difficult to satisfy in
complex biomolecular systems with complex energy landscapes.
2.2. SAMTI Theoretical Framework. 2.2.1. ST Compo-

nent Theory. The Serial Tempering (ST) component is an
implementation of Gibbs sampling, adapted from temperature-
based serial tempering45 to operate along the alchemical
coordinate λ. ST alternates between two modes: (1) molecular
dynamics propagation at fixed λ values for configurational
exploration, and (2) Monte Carlo style λ jumps subject to
adaptive biasing potentials. This dual sampling strategy is
designed to promote exploration of both the conformational and
alchemical dimensions.

The ST algorithm alternates between two distinct phases:
Phase 1: Sequential Scanning − The system systematically

visits λ windows in order (λ1 → λ2 →··· → λN → λ1) to build
initial bias estimates and establish basic connectivity.
Phase 2: Biased Monte Carlo Jumps − After sufficient

scanning, the algorithm switches to Monte Carlo λ jumps using
accumulated bias potentials. The normalized (“heat-bath”)
jump probability from current state λi to candidate state λj is
calculated as
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where logP(λj) = −β[U(r, λj) − U(r, λi) + Fj − Fi] represents the
log-probability including both energetic and bias contributions.
(An equivalent pairwise Metropolis acceptance using the same
energy-plus-bias difference yields the same stationary distribu-
tion; the normalized form is used here for convenience and
efficient multitarget proposals.)
2.2.2. Biasing Potential Construction. The biasing potential

in ST is constructed as the negative of the free energy function
obtained by integrating the thermodynamic derivative along the
alchemical coordinate:

=F
U

di
0

i

(5)

This biasing potential effectively flattens the free energy
landscape, enabling uniform sampling across all of the λ
windows. The integration is performed using Simpson’s rule
for numerical accuracy:
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where Δλ = 0.01 is the spacing between adjacent windows (as
described in Methods Section 3.2). The biasing potential
compensates for the intrinsic free energy differences between λ
states, allowing the system to explore all regions of alchemical
space with equal probability. This approach eliminates the need
for iterative feedback mechanisms, as the bias is directly derived
from the underlying thermodynamics.
2.2.3. Practical Considerations and Relation to Parallel

Tempering. Compared to parallel tempering, this serial
implementation does not require simultaneous replica simu-
lations, which can reduce overhead while retaining phase-space
mixing between thermodynamic states. In the full SAMTI
framework, multiple independent ST simulations may still be
run in parallel when combined with a replica exchange (RE).
The efficiency of λ-space exploration depends on the frequency
of jump attempts and the magnitude of λ steps, which together
trade off diffusion rate versus acceptance probability.
2.2.4. VAR Component Theory. The variable adaptive

response (VAR) component employs a resource allocation
strategy that emphasizes sampling in areas characterized by high
statistical uncertainty, drawing on optimal allocation principles
from sampling theory.
The VAR algorithm persistently evaluates the local variance of

the thermodynamic derivative:

= U UVar ( / ) /i i i
2 2

(7)

This variance estimate directly quantifies the statistical
uncertainty in the integrand and serves as the foundation for
resource allocation. The variance estimates are updated
dynamically during the simulation by using a running average
over the accumulated sampling history at each λ window,
allowing the algorithm to adapt to evolving statistical properties
as conformational sampling progresses.
2.2.5. Target Probability Calculation. The VAR algorithm

determines target probabilities that are directly proportional to
the local variance:

=P ( )
Var

Vari
i

j j
target

(8)

The modified jumping probability incorporating variance
weighting is calculated as

=( ) ( ) ( )
P P

P

P ( )i j i j
j

i
jump jump

target

target (9)

where Pjump(λi → λj) is the base ST jump probability from eq 3.
The practical implementation of this variance-weighted
probability adjustment, including the minimum probability
constraint, is detailed in Methods Section 3.2. This direct
proportionality to variance facilitates optimal resource allocation
for minimizing integration variance under the premise that
sampling effort should be concentrated where statistical
uncertainty is greatest.
2.2.6. Theoretical Foundation for Variance-Based Opti-

mization. The effectiveness of the VAR can be understood
through error propagation theory. For a discretized thermody-
namic integration with Nλ windows, the total variance of ΔG is
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where Δλi is the λ interval for window i, Ni is the number of
uncorrelated samples in window i, and σi

2 is the variance of ∂U/
∂λ in window i.

The VAR strategy minimizes σΔG
2 by distributing computa-

tional effort proportional to local variance:Ni ∝ σi
2 (for constant

Δλi). This allocation equalizes the contribution
N

i i

i

2

across all

windows, ensuring uniform marginal reduction in variance per
unit computational effort. This theoretical framework estab-
lishes VAR’s advantage over uniform sampling, particularly for
systems with heterogeneous variance profiles along the
alchemical coordinate.
2.2.7. RE Component Theory. The replica exchange (RE)

component enhances SAMTI by introducing a parallel frame-
work wherein multiple independent simulations, or replicas, are
executed concurrently with periodic exchanges of configura-
tions. The probability of exchange between configuration rm at
λm and configuration rn at λn is determined by the Metropolis
criterion, which relies solely on the true potential energies:

=P Umin(1, exp( ))mnexchange (11)

Here, ΔUmn = U(rn, λm) + U(rm, λn) − U(rm, λm) − U(rn, λn)
represents the potential energy difference for the exchange.
Importantly, no biasing potentials are incorporated into the
exchange criterion, ensuring that the replica exchange samples
from the true thermodynamic ensemble and maintain a detailed
balance. This exchange mechanism offers two primary
advantages: (1) configurations residing in local minima at one
λ value may transition to another λ environment where energy
barriers differ, potentially facilitating escape from these minima
and (2) conformational states explored by different replicas can
be exchanged within the ensemble. Exchange attempts typically
occur between adjacent replicas in λ space to sustain higher
acceptance probabilities, although alternative exchange schemes
can be implemented. RE can function with minimal
communication overhead because exchanges are generally
attempted infrequently relative to local sampling steps. The
replica framework also permits asynchronous adaptation of
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biasing potentials, wherein each replica updates its bias
parameters, and convergence statistics may be shared periodi-
cally. This combination of enhanced conformational sampling
and parallel execution renders RE suitable for complex
biomolecular systems with slow degrees of freedom or kinetic
traps that present challenges for single replica approaches.
2.2.8. ACES Component Theory. The ACES component

addresses a fundamental limitation in free energy calculations:
the sampling of slow conformational degrees of freedom that
creates kinetic barriers and conformational traps. ACES operates
by creating nonphysical enhanced sampling states where specific
potential energy barriers are systematically removed, enabling
comprehensive exploration of conformational space that would
otherwise be kinetically inaccessible on simulation time scales.
2.2.9. Theoretical Framework. ACES creates enhanced

sampling states through the selective scaling of torsional
potential energy terms according to

= ×V V( )torsion torsion,original (12)

In this context, γ denotes the enhanced sampling coordinate.
At γ = 0, corresponding to dummy states, torsional barriers are
entirely removed, facilitating barrier-free rotation. Conversely, at
γ = 1, the original torsional potential is completely reinstated.
This scaling mechanism permits the system to explore
conformational spaces that would otherwise be kinetically
inaccessible at a physical state of γ = 1. It is necessary to adjust
the scaling of the torsion potentials when employing different λ-
scheduling schemes.41 In the common direct-mapping schedule,
the torsion-scaling coordinate follows the alchemical parameter
(γ(λ) = λ), but more general λ-scheduling mappings γ(λ) (e.g.,
nonlinear or piecewise forms) may be used to tailor barrier
suppression while TI is still performed along λ.
The ACES methodology can target individual critical torsions

(sACES) or multiple cooperative torsional coordinates
(mACES), depending on the complexity of the conformational
barriers present in the molecular transformation. The choice
between sACES and mACES implementations is determined by
the number and coupling of the slow conformational degrees of
freedom identified in the system.
2.2.10. Hamiltonian Replica Exchange Integration. The

HRE framework enables a counterdiffusion of replicas between
the real state and the barrier-free dummy state along the γ
pathway. This process ensures that the extensive conformational
diversity explored in the enhanced-sampling state is effectively
transmitted to the physical end states, thereby allowing them to
attain a proper Boltzmann-weighted equilibrium distribution.
The replica exchange mechanism follows the standard

Metropolis criterion applied to total Hamiltonian differences
between the physical and enhanced sampling states. The
practical implementation of ACES within the SAMTI frame-
work, including torsion selection criteria and integration with ST
+VAR+RE components, is detailed in Methods Section 3.2.
Importantly, free energy calculations integrate solely along the

physical alchemical coordinate, as ACES dummy states serve
exclusively as enhanced sampling intermediates rather than
thermodynamically meaningful states. This ensures that the
computed free energies remain physically meaningful while
benefiting from an enhanced conformational exploration.
2.3. SAMTI Framework Integration. The theoretical

underpinning of SAMTI’s efficacy is rooted in the synergistic
integration of its four components: ST facilitates adaptive
exploration of alchemical space; VAR optimizes resource
allocation based on statistical uncertainty; RE enhances

conformational sampling through parallelization; and ACES
surmounts kinetic barriers in slow conformational degrees of
freedom. The practical implementation details of how these
components are integrated are delineated in the Methods
section.
2.4. Algorithmic Implementation Framework. The

transition from the theoretical framework to the computational
algorithm necessitates careful consideration of numerical
implementation, convergence criteria, and parameter selection.
This section provides the algorithmic foundation that bridges
the theoretical development with the practical implementation
described in the Methods section.
2.4.1. SAMTI Master Algorithm. The overall SAMTI

algorithm integrates the four components through a hierarchical
control structure:
Algorithm 1: Complete SAMTI Master Algorithm
1. Initialize λ grid with Nλ windows (including ACES

dummy states if applicable)
2. Perform preliminary scan to estimate initial free energy

profile Fi
(0)

3. Initialize variance estimates σi
(0) from preliminary data

4. For replica r = 1 to Nrep:
• Launch ST+VAR simulation at replica-specific λ

distribution
5. While simulation not converged:

• For each replica in parallel:
• Perform Ncycle MD steps at current λ state
• Attempt λ jump using current biases (ST

component)
• Update local statistics for bias and variance

estimation
• If adaptation interval reached:

• Update variance estimates σi (VAR compo-
nent)

• Update bias potentials Fi using integrated ST
+VAR approach

• Attempt replica exchanges between λ states
(RE component)

6. Compute final free energy using thermodynamic
integration along physical λ coordinate

Following the establishment of the theoretical framework and
algorithmic structure for the comprehensive SAMTI framework,
we next elucidate the translation of these concepts into practical
implementation.We provide a detailed account of the parameter
optimization strategies, initialization protocols, and molecular
dynamics setup that ensure robust performance across diverse
chemical environments. This implementation section also
introduces the eight molecular test systems employed to
comprehensively evaluate SAMTI’s capabilities across various
transformation types and complexity levels, ranging from simple
three-component systems to the complete ST+VAR+RE
+mACES framework, addressing both alchemical and conforma-
tional sampling challenges.

3. METHODS
3.1. Molecular Systems and Simulation Protocols.

Eight molecular systems were selected to evaluate SAMTI’s
performance across a range of transformation types and
chemical complexities. All molecular dynamics (MD) simu-
lations were performed using a modified version of the AMBER
24 package69,70 which implements the SAMTI framework.
3.1.1. Test Systems. The test suite included:
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• Na+ Solvation: An electrostatic decoupling (Na+ →
dummy) in a 18,034-atom TIP3P water box, serving as a
baseline for electrostatic transformations.

• 7CPI Disappearance: Simultaneous van der Waals and
electrostatic decoupling of 7-chloro-1H-indole-2-carbox-
ylic acid phenyl ester in a 14,329-atom TIP4P-EW water
box, testing performance on nonbonded interactions with
anisotropic solvation.

• Tyk2 Ligand Transformation (Aqueous andComplex):
The relative transformation of ejm42 → ejm55 (Figure 2)

was studied both in aqueous solution (17,216 atoms,
TIP4P-EW) and within the Tyk2 protein binding site.
The protein system was prepared from PDB ID 7L0D,
with acetyl and N-methylamide caps at the N- and C-
termini, respectively. The solvated protein system
contained 87,584 atoms in a TIP4P-EW water box.
These systems assess performance on relative free energy
calculations with topological changes in both simple and
complex biological environments.

• ACES Variants: To evaluate enhanced sampling
capabilities, the Tyk2 transformations incorporated
alchemical enhanced sampling (ACES). The sACES
variants targeted a single flexible dihedral angle, while the
mACES variants targeted two angles. Both were applied
in aqueous and protein-bound environments, yielding
four additional test cases.

3.1.2. System Equilibration Protocol. The following steps
were undertaken for the Tyk2-ligand complex system to ensure
thorough equilibration: Initially, the energy was minimized
using the steepest descent method for 5000 steps, followed by
another 5000 steps with the conjugate gradient method to
remove any unfavorable contacts. Subsequently, the system was
gradually heated from 0 to 300 K in increments of 50 K, with
each increment held for 25 ps (150 ps total heating time) while
maintaining the canonical ensemble (NVT). During this heating
phase, all heavy atoms of the protein−ligand complexes were
positionally restrained with a harmonic force constant of 5 kcal
mol−1 Å−2 to their energy-minimized configurations. This was
followed by a series of NVT equilibration runs with
progressively reduced positional restraint force constants of 2,
1, 0.5, 0.1, and finally, 0 kcal mol−1 Å−2. Density was then
equilibrated through a 1 ns simulation under isothermal−
isobaric (NPT) conditions.

For other systems, 2000 energy minimization steps, followed
by 1 ns of NVT, and 1 ns of NPT, were performed before
production runs.
3.1.3. Simulation Protocol. All simulations employed the

NPT ensemble at 298 K and 1 bar. Force field parameters
comprised AMBER99SB-ILDN for proteins71 and GAFF2 for
ligands,72 with system-specific water models (TIP3P73 or
TIP4P-EW74). Alchemical transformations employed SSC2
soft-core potentials.41,75

All NPT simulations employed Langevin dynamics76,77 as a
thermostat with a collision frequency of 5 ps−1, and the Monte
Carlo barostat78 with a pressure relaxation time of 2 ps for
temperature and pressure control, respectively. When applied,
SHAKE79 constrained bonds involving hydrogen atoms with a
tolerance of 10−5 Å. A cutoff radius of 9 Å was used for all short-
ranged nonbonded interactions, while long-range electrostatic
interactions were treated using the particle mesh Ewald (PME)
algorithm.80,81 Periodic boundary conditions were enforced in
all simulations.
3.2. SAMTI Implementation and Parameters. The

SAMTI framework utilized 101 equally spaced λ windows (Δλ
= 0.01) encompassing the entire alchemical transformation.
Initial conformations were generated through 1 ns of
equilibration at the λ = 0 and λ = 1 end states, with intermediate
states created via linear interpolation of Hamiltonian parame-
ters. A preliminary 20 ps scan at each λ value established the
initial free energy profile for adaptive biasing by providing rough
estimates of ⟨∂U/∂λ⟩ at all λ values, which were integrated to
obtain an approximate free energy profile F(λ) along the
alchemical coordinate. This profile serves as the negative of the
initial biasing potential: Vbias (λ) = − F(λ).
3.2.1. Component Configuration. The four SAMTI

components were implemented in AMBER as follows:

• Serial Tempering (ST): Implemented via the custom
SAMTI flag sams_type = 2 in modified AMBER 24, ST
initially conducted a 500,000-step sequential scan across
all λ windows to construct the bias potential, then
transitioned to biased Monte Carlo jumps attempted
every 100 steps (0.2 ps).

• Variance Adaptive Resampling (VAR): Enabled via the
custom SAMTI flag sams_variance = 1 in modified
AMBER 24, VAR dynamically adjusted the target
distribution to be proportional to the local variance of
∂U/∂λ, automatically allocating computational resources
to regions of highest statistical uncertainty. The
implementation follows a two-step process: (1) initial
probabilities are calculated as Pi ∝ Vari where Vari is the
variance of ∂U/∂λ at window i, then (2) a minimum
probability constraint is applied as Pi = max(0.1 × Pi,max,
Pi) where Pi,max is the highest probability among all
windows, followed by renormalization to ensure ∑iPi = 1.

• Replica Exchange (RE): In the ST+RE configuration,
eight independent ST simulations were run in parallel
(replicas). Every 100 steps (0.2 ps), a replica exchange
was attempted between adjacent pairs of these independ-
ent simulations (1↔2, 3↔4, 5↔6, 7↔8). The exchange
involves swapping the entire state (coordinates, velocities,
and current λ value) between the two replicas based on a
Metropolis criterion. This allows for a more global
exploration of the conformational and alchemical space.
The “replica-specific λ distribution” refers to the λ

Figure 2. Alchemical transformation of ligand ejm_42 to ejm_55,
which is the focus of the ACES simulations. The atoms included in the
softcore region for the enhanced sampling protocols are highlighted.
The blue-circled atoms are those involved in the standard trans-
formation (i.e., soft core regions for sACES). When ACES is on, the
torsion involving these atoms is scaled. The yellow-circled atoms are
additional atoms added to the softcore regions for the mACES
condition, where an additional torsion is scaled.
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probability distribution sampled by each independent ST
replica.

• Alchemical Enhanced Sampling (ACES): For Tyk2
systems, ACES (enabled via the standard AMBER 24 flag
gti_add_sc = 25) was implemented as Hamiltonian
replica exchange between two states (physical and
dummy) within each replica. Selected torsional potentials
were scaled according toVtorsion(γ) = γ × Vtorsion,original. At γ
= 0 (dummy state), torsional barriers are completely
eliminated, enabling barrier-free rotation, while at γ = 1
the original torsional potential is fully restored. Exchanges
between the twoHamiltonian states were attempted every
100 steps (0.2 ps). Importantly, the overall number of
concurrent replicas remained unchanged across config-
urations: SAMTI used 8 replicas (independent simu-
lations), and TI used 21 replicas (windows). This
approach follows the methodology developed by Lee et
al.60 Torsion selection: for the ligand transformation
studied here, two torsional angles were chosen based on
prior experience and benchmarking, which showed they
dominate relevant conformational sampling;68 a general
protocol for identifying such torsions is beyond the scope
of this work.

3.3. Benchmarking and Analysis. 3.3.1. Reference
Methods. SAMTI’s performance was benchmarked against
two conventional TI implementations:

• 21W: Standard TI using 21 equally spaced λ windows.
• 21W+RE: A 21-window TI enhanced with Hamiltonian

replica exchange across all 21 replicas (windows), with
exchange attempts every 0.2 ps.

All reference simulations utilized the same molecular dynamics
(MD) protocols as the SAMTI runs to ensure direct
comparability. While alternative postprocessing methods, such
as the Bennett acceptance ratio (BAR)82 or the multistate
Bennett acceptance ratio (MBAR),40 could be applied to these
reference trajectories, we anticipate similar conclusions
regarding SAMTI’s performance advantages. This is because
the fundamental sampling limitations addressed by SAMTI’s
adaptive components remain independent of the integration
method employed.
Each system and method was simulated for a cumulative

duration of 50 ns, with data recorded at intermediate points (2,
3, 6, 10, 20, 30, and 50 ns) to assess convergence. The 50 ns
duration represents the total simulation time: for SAMTI-type
simulations, it refers to the total simulation time traversing the
entire λ axis; for conventional TI-type simulations, it refers to a
total of 50 ns of simulation time distributed across the 21
windows (2.38 ns per window). For the analysis of each
simulation time length, the initial 10% of the data was discarded
uniformly across all SAMTI and conventional TI methods, and
the remaining 90% was utilized for analysis. For instance, in the
analysis of 50 ns simulations, the first 5 ns of data points were
discarded, and the remaining 45 ns were used for analysis.
All simulations were conducted on the nodes of the Amarel

cluster at Rutgers, with 4 or 8 Titan and Ampere GPU
accelerators on each node. Each simulation condition was run on
a single node. For SAMTI simulations, 8 independent
simulations were evenly distributed across the available 4 or 8
GPUs on each node. For conventional TI simulations, the 21 λ
windows were evenly distributed across the available 4 or 8
GPUs on each node.

3.3.2. Conformational Sampling Diagnostic. To evaluate
the thoroughness of conformational sampling, we compared the
internal precision of individual simulations with the external
reproducibility across independent replicates. For a well-
converged set of n = 8 simulations, the average standard error
calculated from within each run, ⟨SE⟩, should approximate the
standard deviation of the mean values calculated across the n
independent runs, σA̅.

The standard error for simulation i is calculated as

=
N

SEi
i

ieff, (13)

where σi is the standard deviation of ⟨dU/dλ⟩ within run i and
Neff,i is the effective number of independent samples accounting
for autocorrelation. The average standard error is then
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where A̅i is the time-averaged ⟨dU/dλ⟩ from simulation i and
= =A A

n i
n
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1

1 .
A significant discrepancy (⟨SE⟩ ≪ σA̅) indicates that

individual trajectories are confined to metastable states,
suggesting incomplete sampling. In this study, the observable
of interest was the ensemble average ⟨dU/dλ⟩ at each λ state.
The condition ⟨SE⟩ ≈ σA̅ was employed as a necessary criterion
for confirming robust conformational sampling.

Having established the theoretical foundations and imple-
mentation methodology, the subsequent section presents
comprehensive performance results demonstrating how SAM-
TI’s four adaptive components systematically address the
limitations of conventional TI methods.

4. RESULTS
4.1. Overview. SAMTI exhibits systematic enhancements in

convergence properties and statistical accuracy relative to
conventional 21-window TI methodologies across all test
systems. The performance improvements scale systematically
with molecular complexity, delineating distinct performance
regimes: (1) simple systems (Na+ solvation, 7CPI annihilation)
demonstrate systematic performance enhancements, with
SAMTI variants achieving competitive or superior convergence
compared to conventional methods; (2) aqueous trans-
formations (42→55aq family) reveal significant performance
disparities, with SAMTI achieving convergence where conven-
tional methods do not; and (3) protein-bound transformations
(42→55com family) exhibit the most substantial benefits, with
ST+VAR+RE providing reliable convergence and the complete
ST+VAR+RE (mACES) framework delivering optimal per-
formance with fastest convergence rates in the most challenging
systems (Table 1).
4.2. SAMTI Performance across System Complexity.

4.2.1. Simple Systems: Establishing SAMTI Foundations. The
Na+ solvation system (Figure 3) exemplifies the fundamental
advantages of SAMTI in a basic molecular context. As indicated
in the tabulated results (Figure 3a), SAMTI variants consistently
achieve lower statistical uncertainties compared with traditional
methods: ST alone results in a final uncertainty of 0.051 kcal/
mol, whereas ST+VAR+RE reduces this to 0.031 kcal/mol,
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which is comparable to the 21W result of 0.031 kcal/mol. The
convergence plots (Figure 3b) illustrate a systematically faster
approach to equilibrium values, with SAMTI methods
demonstrating smooth monotonic convergence, in contrast to
the irregular fluctuations observed in conventional TI.
Importantly, the Na+ system demonstrates excellent sampling

efficiency across all methods, with ⟨SE⟩ ≈ σΔG relationships
observed consistently. This near-equality validates both the

robustness of the sampling efficiency diagnostic and confirms
the minimal conformational sampling challenges inherent in the
Na+ decharging process. The absence of significant conforma-
tional barriers in this simple electrostatic transformation allows
all methods to achieve adequate sampling, providing an ideal
baseline for evaluating the statistical framework.

The 7CPI annihilation system (Figure 4) exhibits increased
complexity due to heterogeneous solvation environments, which
pose challenges to conventional TI methodologies. The
performance data (Figure 4a) highlight the pronounced
advantages of SAMTI, with ST+VAR achieving an uncertainty
of 0.036 kcal/mol compared to 0.067 kcal/mol for 21W at 50 ns,
indicating an improvement of approximately 45%. The temporal
evolution (Figure 4b) illustrates that conventional methods
require more than 40 ns to attain the accuracy that SAMTI
variants achieve within 20 ns.

Grid resolution does not alter these conclusions: a control
calculation employing a denser 201-window layout (7CPI_200)
reproduces the 50 ns free energy estimates within the combined
statistical uncertainty (see the Supporting Information).
4.2.2. Intermediate Complexity: Aqueous Ligand Trans-

formations.The 42→55aq transformation (Figure 5) represents
a notable increase inmolecular complexity, involving topological

Table 1. Method Abbreviations Are Used in Convergence
Analysis Figures

method description

ST serial tempering with fine-grained λ spacing (101 windows)
ST+VAR ST with variance adaptive resampling for optimal

computational resource allocation based on ∂U/∂λ
variance

ST+RE ST with replica exchange for enhanced conformational
sampling

ST+VAR+RE complete three-component framework combining ST, VAR,
and RE

21W conventional 21-window thermodynamic integration
(uniform spacing)

21W+RE conventional 21W with high-frequency replica exchange

Figure 3. Convergence analysis for the Na+ solvation system. (a) Performance summary: Averaged free energy differences ⟨ΔG⟩ and standard
deviations σΔG (kcal/mol) from 8 independent simulations (upper section); average standard errors ⟨SE⟩ from individual simulations (middle
section); sampling quality ratio σΔG/⟨SE⟩ (lower section, red if >2.0, bold red if >5.0). The inequality ⟨SE⟩ ≤ σΔG serves as a conformational sampling
diagnostic: equality indicates all replicates sample identical conformational ensembles, while inequality reveals incomplete exploration. (b) Temporal
convergence: Upper panel shows σΔG (inter-replicate variability), lower panel shows ⟨SE⟩ (average within-simulation uncertainty) versus simulation
time. Methods (Table 1): ST, ST+VAR, ST+RE, ST+VAR+RE, 21W, 21W+RE. Na+ observations: The decharging process represents an ideal
validation case with minimal conformational barriers. SAMTI variants achieve lower uncertainties (ST+VAR+RE: 0.031 kcal/mol) compared with
conventional methods (21W: 0.067 kcal/mol) with faster convergence trajectories. Sampling quality ratios (0.75−1.73) indicate excellent
conformational sampling across all methods, confirming adequate sampling in this simple electrostatic transformation.
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changes that pose significant challenges for sampling. The
quantitative results (Figure 5a) indicate substantial performance
disparities: while conventional methods exhibit large uncertain-
ties and poor convergence, ST+VAR achieves an impressive
precision of 0.013 kcal/mol in 50 ns. The convergence behavior
(Figure 5b) reveals the most pronounced performance gaps
observed in our test suite, with SAMTI variants converging
smoothly, whereas conventional TI methods display persistent
oscillations and poor statistical behavior.
Importantly, this system exposes severe sampling issues in

standard SAMTI variants (ST, ST+VAR) and conventional
methods (21W) when ACES enhancement is not utilized.
Sampling quality ratios exceeding 5.0 (bold red in Figure 5a)
reveal that different simulation replicas are exploring distinct
conformational regions rather than achieving comprehensive
sampling. However, ST+VAR+RE demonstrates acceptable
conformational sampling (ratio = 0.92 at 50 ns) despite the
conformational complexity, although convergence is slower than
with ACES enhancement. These results underscore the
fundamental limitation of alchemical methods when faced
with slow conformational degrees of freedom and demonstrate
that replica exchange partially mitigates sampling deficiencies,
even without targeted conformational modifications.

4.2.3. High Complexity: Protein-Bound Ligand Systems.
The transition to protein-bound environments significantly
increases sampling complexity, as evidenced by the 42→55com
system (Figure 6). The tabulated data (Figure 6a) indicate that
only advanced SAMTI variants achieve reliable convergence,
with ST+VAR+RE reaching an uncertainty of 0.013 kcal/mol,
whereas conventional methods exhibit substantially larger
statistical errors. The temporal analysis (Figure 6b) demon-
strates that the protein binding site introduces additional
sampling challenges, which SAMTI components effectively
address through enhanced phase space exploration and adaptive
resource allocation.

Analogous to the aqueous system, the 42→55com trans-
formation without ACES reveals significant sampling deficien-
cies, with large deviations between ⟨SE⟩ and σΔG indicating
incomplete conformational exploration. The divergent results
between SAMTI variants and conventional TI further highlight
the fundamental challenges posed by coupled alchemical and
conformational sampling in complex biomolecular environ-
ments.
4.3. Component Analysis: Systematic Performance

Improvements. The modular architecture of SAMTI facili-
tates a systematic assessment of the contributions of the
individual components. An analysis encompassing all eight

Figure 4.Convergence analysis of the 7CPI annihilation system. (a) Performance summary: Averaged ⟨ΔG⟩ and σΔG (kcal/mol) from 8 independent
simulations (upper section); ⟨SE⟩ from individual simulations (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower section, red if >2.0, bold red if
>5.0). Sampling diagnostics: ⟨SE⟩ ≤ σΔG (equality = identical conformational sampling). (b) Temporal convergence: σΔG (upper) and ⟨SE⟩ (lower)
versus time. Methods (Table 1): ST, ST+VAR, ST+RE, ST+VAR+RE, 21W, 21W+RE. 7CPI observations: The heterogeneous solvation
environment creates significant challenges for conventional methods. SAMTI demonstrates pronounced advantages: ST+VAR achieves 0.036 kcal/
mol uncertainty versus 0.067 kcal/mol for 21W at 50 ns (45% improvement). Temporal analysis reveals conventional methods require >40 ns to
achieve accuracy SAMTI variants reach within 20 ns. Sampling quality ratios (1.02−1.21) indicate excellent conformational sampling across all
methods.
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systems indicates that each component confers distinct
performance enhancements that correlate with molecular
complexity: ST yields a 30−50% improvement over the
baseline; VAR contributes an additional 15−25% enhancement
in heterogeneous systems; RE achieves 20−40% gains in
complex environments; and ACES addresses limitations in
conformational sampling beyond the alchemical coordinate.
4.3.1. VAR Component: Adaptive Resource Allocation. The

VAR component demonstrates its effectiveness through
adaptive sampling density redistribution, as shown in Figure 7.
For the Na+ system, VAR concentrates sampling in the high-
variance middle region (λ ≈ 0.3−0.6), achieving a 4.2×
concentration ratio compared to uniform sampling. In the
42→55aq,sACES system, VAR redistributes sampling toward
regions of statistical uncertainty, demonstrating how the
algorithm automatically detects high-variance λ windows and
proportionally allocates computational effort according to
Neyman optimal allocation principles (tsampling(λ) ∝ σ2(λ)).
4.4. Addressing Conformational Sampling Limita-

tions. The 42→55 ligand transformation reveals fundamental
limitations of both SAMTI and conventional TI methods when
confronted with large conformational changes involving slow
torsional degrees of freedom. This analysis examines how ACES
integration extends SAMTI’s capabilities to address conforma-
tional sampling bottlenecks, as demonstrated across the

complete family of ACES-enhanced systems (Figures 2 and
8−11).
4.4.1. Conformational Sampling Limitations in Standard

Methods. In the absence of ACES enhancement, the 42→55
transformation demonstrates inadequate conformational sam-
pling for standard SAMTI variants. The sampling quality
diagnostic (⟨SE⟩ ≪ σΔG) indicates that simulation replicas
explore distinct conformational regions rather than achieving
equilibrium sampling.

For the standard 42→55aq and 42→55com systems, basic
SAMTI variants (ST, ST+VAR) and conventional methods
(21W) exhibit catastrophic sampling deficiencies with quality
ratios exceeding 5.0 (bold red in the tables). In contrast, ST
+VAR+RE achieves acceptable conformational sampling with
ratios near unity (0.92−1.44 at 50 ns), demonstrating that
replica exchange effectively addresses the fundamental time
scale separation between alchemical and conformational
coordinates. However, ACES enhancement dramatically accel-
erates convergence: ST+VAR+RE requires 30−50 ns to achieve
sub-0.02 kcal/mol precision, whereas ST+VAR+RE (sACES)
achieves similar precision within 10−20 ns, representing 2−3×
speedup. This performance difference arises from kinetic
barriers associated with torsional rotation that are reduced
through ACES modifications rather than overcome through
enhanced sampling alone.

Figure 5. Convergence analysis for the 42→55aq aqueous ligand transformation. (a) Performance summary: Averaged ⟨ΔG⟩ and σΔG (kcal/mol)
from 8 independent simulations (upper section); ⟨SE⟩ from individual simulations (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower section,
red if >2.0, bold red if >5.0). Sampling diagnostic: ⟨SE⟩ ≤ σΔG. (b) Temporal convergence: σΔG (upper) and ⟨SE⟩ (lower) versus time. Methods
(Table 1): ST, ST+VAR, ST+RE, ST+VAR+RE, 21W, 21W+RE. 42→55aq observations: This topologically challenging transformation represents a
notable molecular complexity. Performance disparities become dramatic: ST+VAR achieves exceptional precision (0.013 kcal/mol at 50 ns), while
conventional methods exhibit large uncertainties with persistent oscillations. Critical conformational sampling limitation: Significant deviations
between ⟨SE⟩ and σΔG reveal severe sampling deficiencies without ACES enhancement, with replicas exploring distinct conformational regions rather
than comprehensive sampling.
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Figure 6. Convergence analysis for the 42→55com protein-bound ligand transformation. (a) Performance summary: Averaged ⟨ΔG⟩ and σΔG (kcal/
mol) from 8 independent simulations (upper section); ⟨SE⟩ from individual simulations (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower
section, red if >2.0, bold red if >5.0). Sampling diagnostic: ⟨SE⟩ ≤ σΔG. (b) Temporal convergence: σΔG (upper) and ⟨SE⟩ (lower) versus time.
Methods (Table 1): ST, ST+VAR, ST+RE, ST+VAR+RE, 21W, 21W+RE. 42→55com observations: Protein binding sites dramatically increase
sampling complexity. Only advanced SAMTI variants achieve reliable convergence (ST+VAR+RE: 0.013 kcal/mol uncertainty), while conventional
methods exhibit substantially larger errors. SAMTI components effectively address protein-induced challenges through an enhanced phase space
exploration. Large deviations between ⟨SE⟩ and σΔG indicate incomplete conformational exploration without ACES, highlighting fundamental
challenges of coupled alchemical and conformational sampling in complex biomolecular environments.

Figure 7. VAR component effectiveness was demonstrated through λ sampling distributions. The figure compares normalized sampling densities
across λ windows for methods with (ST+VAR+RE, black solid lines) and without (ST+RE, red solid lines) variance adaptive resampling. Left panel
shows the Na+ system where VAR concentrates sampling in the high-variance middle region (λ ≈ 0.3−0.6), achieving a 4.2× concentration ratio
compared to uniform sampling. Right panel shows the 42→55aq,sACES system where VAR redistributes sampling toward regions of statistical
uncertainty, demonstrating adaptive resource allocation. The contrasting patterns illustrate VAR’s mechanism: automatic detection of high-variance
regions and proportional allocation of computational effort, implementing Neyman optimal allocation principles.
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4.4.2. Cooperative Conformational Transitions and Time
Scale Analysis. The enhanced performance of mACES relative
to sACES underscores the significance of cooperative conforma-
tional changes in the 42→55 transformation. A systematic
comparison across ACES variants illustrates this progression:
sACES systems (Figures 8 and 9) exhibit notable improvements
over standard methods, whereas mACES systems (Figures 10
and 11) achieve even more pronounced convergence enhance-
ments. While sACES addresses the primary torsional barrier,
mACES facilitates the coordinated rotation of multiple dihedral
angles, enabling a more comprehensive exploration of
conformationally relevant states.
Statistical analysis indicates that mACES systems achieve

convergence approximately 2−3 times faster than sACES
systems and 5−10 times faster than standard methods,
attributed to enhanced sampling of cooperative motions crucial
for ligand transformation but kinetically hindered in standard
simulations. The comparison among standard, sACES, and
mACES variants reveals a clear hierarchy of conformational
sampling requirements. Standard SAMTI methods excel in
addressing sampling challenges along the alchemical coordinate
but are inadequate for systems with low conformational degrees
of freedom. The 42→55 transformation represents a challenging
test case where conformational barriers (characteristic times of
∼10−20 ns) significantly exceed typical alchemical simulation
lengths.
4.5. Validation of Methodological Unbiasedness.

Having established SAMTI’s systematic performance advan-

tages and identified conformational sampling as a key challenge,
we now address a fundamental question: do the observed ⟨ΔG⟩
differences between SAMTI and conventional TI reflect true
methodological bias or simply different convergence rates?
Three complementary validation approaches using eight
independent simulations per method distinguish these possibil-
ities: (i) temporal convergence analysis tracking whether
methods approach the same limiting value at long times; (ii)
inter-replicate consistency using the sampling quality ratio σΔG/
⟨SE⟩,83,84 where values near unity indicate excellent conforma-
tional sampling and values exceeding 2.0 reveal severe
deficiencies; and (iii) method consensus across the complexity
spectrum (see theSupporting Information for complete
diagnostic data). Convergence analysis plots with error bars
were generated for all eight systems; three representative
examples are presented below, with the remaining five systems
provided in the Supporting Information (Figures S2−S6).
4.5.1. Simple Systems: Establishing Method Equivalence.

The Na+ solvation system provides the ideal reference case for
validating unbiasedness (Figure 12). At 50 ns, all six methods
converge to statistically equivalent values, spanning only 0.025
kcal/mol (75.064−75.089 kcal/mol, with a maximum deviation
of 0.024 kcal/mol), which is well within the combined 95%
confidence interval of 0.088 kcal/mol. Sampling quality ratios of
0.75−1.73 indicate excellent conformational sampling across all
methods. The 7CPI system similarly validates unbiasedness,
with all methods achieving ratios of 1.02−1.21 and converging
to statistically equivalent values. These results confirm that

Figure 8.Convergence analysis for the 42→55aq,sACES system (single-torsion ACES). (a) Performance summary: Averaged ⟨ΔG⟩ and σΔG (kcal/mol)
from 8 simulations (upper section); ⟨SE⟩ (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower section, red if >2.0, bold red if >5.0). Sampling
diagnostic: ⟨SE⟩ ≤ σΔG. (b) Temporal convergence: σΔG and ⟨SE⟩ versus time.Methods (Table 1): ST, ST+VAR, ST+RE, ST+VAR+RE, 21W, 21W
+RE. sACES observations: Single-torsion ACES effectively addresses the primary torsional barrier in the 42→55 transformation, achieving
substantially improved conformational convergence. Thermodynamic integration with replica exchange markedly diminishes sampling errors,
demonstrating a synergistic advantage when conformational barriers are reduced through ACES modifications.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c05358
J. Phys. Chem. B 2025, 129, 13063−13087

13076

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.5c05358/suppl_file/jp5c05358_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.5c05358/suppl_file/jp5c05358_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05358?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05358?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05358?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c05358?fig=fig8&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c05358?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


SAMTI’s adaptive components do not introduce systematic
bias; performance differences reflect statistical efficiency gains
rather than convergence to incorrect values.
4.5.2. Intermediate Complexity: Distinguishing Bias from

Convergence. The 42→55com transformation without ACES
(Figure 13) reveals the distinction between bias and incomplete
convergence. At 50 ns, SAMTI variants (−16.98 to−17.15 kcal/
mol) and conventional methods (−15.46 to −15.66 kcal/mol)
show a 1.5 kcal/mol offset. However, three observations confirm
this reflects convergence rates, not bias: (1) all SAMTI variants
converge to mutually consistent values despite different adaptive
components; (2) conventional methods drift continuously
toward SAMTI values without plateauing; (3) sampling quality
ratios (1.33−26.15) reveal severe conformational sampling
deficiencies in both SAMTI and conventional methods, with ST
+VAR exhibiting catastrophic failure (ratio 26.15). These large
ratios confirm observed differences arise from incomplete
sampling affecting all methods, not SAMTI-specific bias.
4.5.3. High Complexity: Validation through Enhanced

Sampling. The 42→55com,mACES system (Figure 14) provides
the most compelling unbiasedness evidence. At 50 ns,
conventional methods show poor sampling (ratios 3.06 for
21W, 1.31 for 21W+RE) with large uncertainties and continued
drift. SAMTI without ACES exhibits catastrophic failures (ratios
19.09−26.15), where replicates are trapped in distinct
conformational basins. Only ST+VAR+RE (mACES) achieves
reliable convergence (σΔG = 0.041 kcal/mol, ratio of 1.98). The
systematic improvement with successive SAMTI components�

from ratio 26.15 (no ACES) to 1.43 (sACES) to 1.98
(mACES)�without shifts in limiting free energy values
among well-sampled methods, demonstrates that enhancements
accelerate convergence to the correct thermodynamic value
rather than introducing bias.
4.5.4. Summary. Comprehensive analysis across the

complexity spectrum confirms SAMTI’s unbiasedness. For
well-sampled systems (Na+, 7CPI), all methods converge to
statistically identical values (maximum deviations of 0.024 and
0.132 kcal/mol, respectively, within combined uncertainties).
For complex systems, the sampling quality ratio (σΔG/⟨SE⟩)
provides robust convergence diagnostics: ratios below 1.5
indicate reliable estimates, while ratios exceeding 2.0 reveal
inadequate sampling. Complete diagnostic data for all 48
combinations (8 systems × 6 methods) are provided in the
Supporting Information. The observed ⟨ΔG⟩ differences reflect
convergence rates, not systematic bias; SAMTI achieves faster,
more reliable convergence to correct thermodynamic values.
4.6. Computational Analysis. 4.6.1. Sampling Efficiency.

The sampling quality diagnostic (⟨SE⟩ ≤ σΔG) provides insights
into conformational sampling quality, with ratios approaching
unity indicating complete exploration and larger ratios revealing
sampling deficiencies. We also assessed the sensitivity of the
sampling-efficiency analysis to the sampling interval used to
estimate the autocorrelations and Neff. Recomputing Neff(λ) at
0.2, 0.4, 1.0, and 2.0 ps for Na+ and 42→55com,sACES yields
consistent profiles and conclusions across frequencies (Support-

Figure 9. Convergence analysis for the 42→55com,sACES system (single-torsion ACES, protein-bound). (a) Performance summary: Averaged ⟨ΔG⟩
and σΔG (kcal/mol) from 8 simulations (upper section); ⟨SE⟩ (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower section, red if >2.0, bold red if
>5.0). Sampling diagnostic: ⟨SE⟩ ≤ σΔG. (b) Temporal convergence: σΔG and ⟨SE⟩ versus time.Methods (Table 1): ST, ST+VAR, ST+RE, ST+VAR
+RE, 21W, 21W+RE. sACES+protein observations: SAMTI components with sACES address both alchemical and conformational sampling
challenges in complex biomolecular environments. Protein binding site complexity reduces replica exchange efficacy compared to an aqueous
environment, underscoring the necessity of considering system complexity when assessing enhanced sampling strategies.
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ing Information, Figure S1), confirming that the 0.2 ps baseline
used throughout does not inflate Neff.
4.6.1.1. Autocorrelation Analysis Method. The effective

sample size (Neff) is determined using autocorrelation-based
statistical inefficiency analysis. The statistical inefficiency factor g
is calculated as

= +
=

g 1 2
k

k

k
1

cutoff

(15)

where ρk represents the autocorrelation function at lag k. The
autocorrelation function measures the correlation between the
time series of ∂U/∂λ and a lagged version of itself. For a time
series Xt, the autocorrelation at lag k is given by

= +X X
X

Cov( , )
Var( )k

t t k
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The summation in the calculation of g is truncated at a cutoff
kcutoff where the autocorrelation function has decayed to zero.
The effective sample size is then computed as Neff = N/g, where
N is the total number of samples. The sampling efficiency η is
defined as the ratio η = Neff/N = 1/g, with values approaching
unity indicating optimal sampling independence. This approach
provides a robust assessment of sampling independence by
accounting for temporal correlations in the ∂U/∂λ time series. A
higher sampling efficiency indicates that the samples are less
correlated and therefore provide more information about the
underlying distribution.

4.6.1.2. Effective Sample Size and Statistical Inefficiency
Results. The analysis of effective sample sizes (Neff), determined
by using this autocorrelation-based statistical inefficiency
method, reveals fundamental differences in sampling quality
between SAMTI and conventional TI methods. A comprehen-
sive comparison across all eight molecular systems (Figure 15)
demonstrates systematic efficiency advantages for ST-based
approaches.
4.6.1.3. Subpicosecond Sampling Requirements. The

observation of (η ≈ 1.0) across most λ points indicates that
the autocorrelation time of ∂U/∂λ fluctuations often approaches
or exceeds this subpicosecond time scale. This finding
challenges the conventional understanding of 1−5 ps sampling
frequency and suggests that the energy fluctuations driving free
energy convergence exhibit significant correlation structures at
much shorter time scales than previously recognized.
4.6.1.4. Method-Specific Sampling Performance. ST-based

methods exhibit superior sampling efficiency, with mean Neff
values ranging from 0.91 to 0.94 across all λ points, in contrast to
the 0.30−0.50 range observed in conventional TI methods. This
significant disparity is directly associated with the ⟨SE⟩ ≤ σΔG
relationship: systems with high Neff values demonstrate ⟨SE⟩ ≈
σΔG, indicating comprehensive conformational sampling, where-
as systems with low Neff values show ⟨SE⟩ ≪ σΔG, indicating
incomplete sampling.
4.6.1.5. Origin of ST Efficiency. The enhanced sampling

efficiency of ST methods is attributed to the bias potential,
which flattens the effective potential energy surface along the

Figure 10.Convergence analysis for the 42→55aq,mACES system (multiple-torsion ACES). (a) Performance summary: Averaged ⟨ΔG⟩ and σΔG (kcal/
mol) from 8 simulations (upper section); ⟨SE⟩ (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower section, red if >2.0, bold red if >5.0).
Sampling diagnostic: ⟨SE⟩ ≤ σΔG. (b) Temporal convergence: σΔG and ⟨SE⟩ versus time.Methods (Table 1): ST, ST+VAR, ST+RE, ST+VAR+RE,
21W, 21W+RE.mACES observations: Multiple-torsion ACES facilitates coordinated rotation of multiple dihedral angles, enabling a comprehensive
exploration of conformationally relevant states. System consistently achieves σΔG < 0.1 kcal/mol within 10 ns, representing most reliable convergence
among all tested methods with 2−3× faster convergence than sACES and 5−10× faster than standard methods.
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Figure 11. Convergence analysis for the 42→55com,mACES system (multiple-torsion ACES, protein-bound). (a) Performance summary: Averaged
⟨ΔG⟩ and σΔG (kcal/mol) from 8 simulations (upper section); ⟨SE⟩ (middle section); sampling quality ratio σΔG/⟨SE⟩ (lower section, red if >2.0, bold
red if >5.0). Sampling diagnostic: ⟨SE⟩ ≤ σΔG. (b) Temporal convergence: σΔG and ⟨SE⟩ versus time.Methods (Table 1): ST, ST+VAR, ST+RE, ST
+VAR+RE, 21W, 21W+RE. mACES+protein observations: Most challenging transformation in the test suite, representing the ultimate test of the
SAMTI framework. ST+VAR+RE (mACES) provides only a reliable pathway to chemical accuracy (0.041 kcal/mol at 50 ns) in complex biomolecular
transformations. Replica exchange provides measurable benefits for conventional methods, but fundamental advantages of the adaptive SAMTI
framework are preserved even with enhanced conformational sampling.

Figure 12. Unbiasedness validation for Na+ solvation. All methods converge to statistically equivalent values (75.06−75.09 kcal/mol) with sampling
quality ratios of 0.75−1.73, confirming SAMTI introduces no systematic bias. Error bars represent the standard error across eight independent
simulations.
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alchemical coordinate. This flattening reduces energetic barriers
between different λ states, resulting in higher acceptance rates
for Monte Carlo moves along the λ axis and improved sampling
of subpicosecond dynamics. In contrast, conventional TI
methods, which lack this bias potential, exhibit lower acceptance
rates and necessitate finer temporal resolution to achieve an
equivalent correlation capture.
It is important to note that for the ST+VAR+RE method, the

sampling efficiency may appear lower in certain low-variance λ
regions. This is an expected and intended consequence of the
VAR component, which adaptively allocates more computa-

tional effort to high-variance regions. While this may lead to a
localized decrease in sampling efficiency in some windows, it
results in a more significant reduction in the overall uncertainty
of the calculated free energy, which is the primary goal of the
SAMTI framework.
4.6.1.6. Replica Exchange Effectiveness.The effectiveness of

replica exchange is highly dependent on the system complexity
and acceptance rates. For simple systems, such as Na+ solvation,
the benefits of RE are modest, whereas more complex protein−
ligand systems show more substantial improvements (42→
55com: 0.89−0.95).

Figure 13.Distinguishing bias from incomplete convergence in 42→55com. SAMTI variants show internal consistency (−16.98 to −17.15 kcal/mol),
while conventional methods drift continuously (−15.46 to −15.66 kcal/mol). Sampling quality ratios (1.33−26.15) confirm differences arise from
incomplete conformational sampling, not systematic bias.

Figure 14. Unbiasedness validation for the most challenging 42→55com,mACES transformation. Only ST+VAR+RE (mACES) achieves adequate
sampling (σΔG = 0.041 kcal/mol, ratio 1.98). Systematic improvement (ratios of 19.09−26.15 without ACES to 1.31−1.98 with mACES) without
shifts in limiting values demonstrates SAMTI accelerates convergence without introducing bias.
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4.6.1.7. Connection to Convergence Quality. The correla-
tion between high Neff and rapid convergence is evident across
all systems. Methods achieving Neff > 0.9 consistently
demonstrate ⟨SE⟩ ≈ σΔG relationships and superior convergence
properties. Conversely, methods with Neff < 0.5 exhibit ⟨SE⟩ ≪
σΔG and require extended simulation times to achieve
comparable accuracy.
4.6.2. Computational Cost. Computational cost assessment

for free energy calculations must account for both the per-replica
efficiency and the number of parallel replicas required. Table 2
presents measured performance (nanoseconds/day) from
representative SAMTI and conventional TI runs for two systems
spanning the complexity spectrum: Na+ solvation and the
protein−ligand transformation 42→55com,sACES. For each
method configuration, we report (1) per-replica average ns/
day derived from AMBER’s total wall-time metric, (2) total
parallel throughput (raw) accounting for concurrent replica
execution (8 replicas for SAMTI methods; 21 windows for TI
methods), and (3) replica-exchange acceptance probability for
RE-enabled methods. Rows marked with an asterisk in Table 2
denote SAMTI 42→55com,sACES runs performed on 4-GPUA100
nodes; all other runs used 8-GPU RTX 3090 nodes.
4.6.2.1. AMBER Reporting Limitations. AMBER does not

provide detailed timing breakdowns for individual computa-
tional stages (prescan, bias construction, replica exchange
bookkeeping, logging, production MD). Instead, the software
reports only total wall time, from which the average nano-
second/day performance metric is calculated. For the 50 ns
simulations analyzed here, setup overhead (equilibration, initial
energy minimization) requires only a few seconds and is
negligible compared to the multihour production runs.
Furthermore, itemized per-stage timing is not meaningfully

separable because multiple stages execute concurrently: GPU
kernels handle force evaluation and integration, while CPU
threads manage replica exchange proposals, bias updates, and I/
O operations. Any attempt to partition the wall time into
sequential components would therefore misrepresent the actual
parallel execution model.
4.6.2.2. Performance Variability and Load Balancing. All

measurements were obtained on a campus shared computing
cluster where multiple users’ jobs compete for node resources.
Absolute throughput values are therefore subject to background

Figure 15. Sampling efficiency analysis across the complete alchemical coordinate. Layout: Eight molecular systems arranged in 2 × 4 format. Top
row: Na+ solvation, 42→55aq, 42→55aq,sACES, and 42→55aq,mACES systems. Bottom row: 7CPI annihilation, 42→55com, 42→55com,sACES, and 42→
55com,mACES systems. Each panel: Sampling efficiency (η = Neff/N) vs λ, with values approaching 1.0 indicating optimal sampling independence.
Method comparison: ST-based methods (solid lines) consistently achieve η ≈ 1.0, while conventional TI methods (dashed lines) show systematically
lower values. The progression from simple to complex systems demonstrates increasing performance divergence, with ST methods maintaining
superior sampling efficiency through the flat potential energy surface achieved by bias potentials. The apparent dips in efficiency for ST+VAR+RE in
some regions are an expected consequence of the VAR component, which prioritizes the sampling of high-variance regions to reduce the overall free
energy uncertainty.

Table 2. Performance Comparison (ns·day−1)a

system method Avg (ns day−1) Thru (raw) RE acc.

Na ST 370.53 2964.2 n/a
Na ST+VAR 376.62 3013.0 n/a
Na ST+RE 310.26 2482.1 0.130
Na ST+VAR+RE 310.06 2480.5 0.114
Na 21W 154.35 3241.4 n/a
Na 21W+RE 105.56 2216.9 0.503
42→55com,sACES* ST 67.04 536.3 n/a
42→55com,sACES* ST+VAR 64.92 519.3 n/a
42→55com,sACES* ST+RE 65.84 526.7 0.185
42→55com,sACES* ST+VAR+RE 82.68 661.4 0.140
42→55com,sACES 21W 56.23 1180.8 n/a
42→55com,sACES 21W+RE 44.76 940.1 0.422

aFor each configuration, we report per-replica average nanosecond
day−1 (from AMBER total wall-time), total parallel throughput (raw),
and replica-exchange acceptance probability for RE-enabled runs.
SAMTI runs use 8 concurrent replicas; TI runs use 21. Rows marked
with an asterisk indicate SAMTI 42→55com,sACES runs performed on 4-
GPU A100 nodes; all other runs used 8-GPU RTX 3090 nodes.
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load fluctuations and queue placement variability, making
precise cost comparisons difficult. Most calculations utilized 8-
GPU RTX 3090 nodes; the SAMTI 42→55com,sACES runs were
performed on 4-GPU A100 nodes (marked with * in Table 2).
For conventional 21-window TI methods, GPU counts that do
not divide evenly by 21 create load imbalance, leading to
underutilization and suboptimal aggregate throughput that does
not scale linearly with the window count. SAMTI methods with
8 replicas achieve better load distribution on common 4- or 8-
GPU configurations.
4.6.2.3. Accuracy versus Cost. While per-replica nano-

seconds per day provides a direct performance metric,
translating this into an “accuracy-versus-cost” curve requires
quantifying accuracy gains, which can only be assessed
qualitatively in this context. As demonstrated throughout the
Results section, SAMTI methods achieve substantially lower
statistical uncertainty (σΔG) than conventional approaches at
equivalent simulation lengths. However, the magnitude of
improvement varies by system complexity, transformation type,
and convergence regime (early-stage rapid improvement vs late-
stage asymptotic behavior). Rather than prescribing a single
accuracy-cost relationship, we present the measured nano-
seconds/day and parallel throughput as practical indicators,
allowing readers to evaluate trade-offs based on their specific
accuracy requirements and available computational resources.
4.6.3. Performance Summary. Table 3 presents a

comprehensive three-way comparison of SAMTI’s optimal
method (ST+VAR+RE), enhanced conventional TI with high-

frequency replica exchange (21W+RE), and standard conven-
tional TI (21W) across all eight molecular systems at both
intermediate (10 ns) and final (50 ns) simulation durations. The
systematic analysis identifies several key patterns: (1) Replica
exchange effectiveness: High-frequency replica exchange (21W
+RE) provides significant improvements over standard TI
(21W), demonstrating the value of enhanced conformational
sampling in conventional methods; (2) SAMTI superiority:
SAMTI (ST+VAR+RE) systematically outperforms both
conventional approaches, with particularly notable advantages
in complex transformations; (3) Rapid convergence: SAMTI
methods frequently achieve at 10 ns what conventional methods
require 50 ns to accomplish; and (4) Enhanced reliability:
SAMTI consistently maintains its performance even in
challenging protein-bound environments where conventional
methods fail.
4.7. Summary: Complete Framework Performance.

The systematic performance evaluation demonstrates that
SAMTI achieves its design objectives of improved accuracy,
faster convergence, and enhanced computational efficiency. The
quantitative results establish that each component contributes
synergistically to overall performance improvements, with
benefits scaling systematically with molecular complexity. The
complete ST+VAR+RE (mACES) framework consistently
achieves σΔG < 0.1 kcal/mol within 10 ns for complex
transformations. The underlying mechanistic origins of these
performance improvements are analyzed in the following
section.

Table 3. Comprehensive Performance Comparison between SAMTI (ST+VAR+RE), Enhanced Conventional Methods (21W
+RE), and Standard Conventional TI (21W) across All Eight Molecular Systemsa

system method ⟨ΔG⟩ (10 ns) σΔG (10 ns) ⟨ΔG⟩ (50 ns) σΔG (50 ns)

Na+ Solvation 21W 75.037 0.080 75.089 0.031
21W+RE 75.060 0.086 75.078 0.038
ST+VAR+RE 75.096 0.053 75.064 0.031

7CPI Annihilation 21W 12.292 0.212 12.611 0.067
21W+RE 12.312 0.267 12.645 0.079
ST+VAR+RE 12.722 0.095 12.707 0.040

42→55aq 21W −15.394 0.145 −15.373 0.163
21W+RE −15.297 0.024 −15.318 0.056
ST+VAR+RE −15.249 0.058 −16.552 0.011

42→55com 21W −15.377 0.134 −15.455 0.061
21W+RE −15.580 0.164 −15.663 0.072
ST+VAR+RE −17.124 0.028 −16.982 0.013

42→55aq,sACES 21W −18.448 0.026 −18.398 0.043
21W+RE −18.396 0.054 −18.394 0.026
ST+VAR+RE −18.398 0.062 −18.387 0.012

42→55com,sACES 21W −19.132 0.086 −19.187 0.138
21W+RE −19.151 0.089 −19.163 0.099
ST+VAR+RE −18.838 0.026 −18.830 0.016

42→55aq,mACES 21W −18.606 0.299 −18.708 0.300
21W+RE −18.764 0.145 −18.674 0.052
ST+VAR+RE −18.705 0.109 −18.696 0.032

42→55com,mACES 21W −19.567 0.356 −19.437 0.220
21W+RE −19.493 0.165 −19.425 0.054
ST+VAR+RE −19.240 0.071 −19.244 0.041

aValues show averaged free energy differences ⟨ΔG⟩ (kcal/mol) and standard deviations σΔG (kcal/mol) at intermediate (10 ns) and final (50 ns)
simulation times. Key observations: (1) Replica exchange (21W+RE) provides significant improvements over standard TI (21W), demonstrating
1.5-2× reductions in σΔG; (2) SAMTI (ST+VAR+RE) systematically outperforms both conventional methods with 2-5× additional reductions in
σΔG across complex systems; (3) Early convergence advantages where SAMTI’s 10 ns performance often exceeds conventional 50 ns results; (4)
Most dramatic improvements in protein-bound systems where conventional methods show persistent large uncertainties. The progression from
simple (Na+) to complex (42→55com,mACES) systems reveals increasing SAMTI advantages, while validating the effectiveness of high-frequency
replica exchange as an intermediate enhancement.
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5. DISCUSSION
The SAMTI framework offers a methodologically integrated
approach to free energy calculations, effectively addressing the
long-standing limitations of conventional thermodynamic
integration through four coordinated components: serial
tempering (ST), variance-adaptive resampling (VAR), replica
exchange (RE), and alchemical enhanced sampling (ACES).
Each component is designed to tackle a specific computational
challenge: insufficient phase-space overlap between thermody-
namic states, suboptimal resource allocation, conformational
sampling limitations, and low conformational degrees of
freedom. By simultaneously addressing these interdependent
issues, SAMTI provides a systematic strategy for achieving
statistically robust and computationally efficient free energy
estimates across diverse molecular systems.
5.1. Component Contributions to Convergence. The

performance of SAMTI is derived from the synergistic interplay
of its constituent algorithms, each addressing distinct, yet
interconnected, limitations in sampling and estimation. The
relative impact of ST, VAR, RE, and ACES varies with system
complexity, ranging from simple solvation to complex
biomolecular assemblies. This modular adaptability facilitates
systematic component selection based on transformation
requirements.
5.1.1. Serial Tempering (ST). ST directly addresses the phase-

space overlap problem through fine-grained λ spacing (101
windows vs 21), ensuring high correlation between adjacent
states and improved acceptance probabilities. Quantitative
improvements vary by system complexity: Na+ solvation
shows ST achieving 0.051 kcal/mol vs 0.031 kcal/mol for
21W, while 7CPI annihilation demonstrates more substantial
gains (ST: 0.040 kcal/mol vs 21W: 0.067 kcal/mol), reflecting
ST particular effectiveness for systems with complex variance
profiles.
5.1.2. Variance-Adaptive Resampling (VAR). The VAR

component addresses the inefficiency in resource allocation
inherent in the uniform sampling approaches. Traditional TI
allocates equal computational effort to all λ windows,
irrespective of their statistical uncertainty, resulting in over-
sampling of low-variance regions and undersampling of high-
variance regions. VAR implements the Neyman optimal
allocation by continuously monitoring the variance of U at
each window and dynamically adjusting sampling probabilities
proportionally:

t

t

( )
( )

sampling

total

2

This mechanism ensures that computational resources are
directed where they provide the greatest reduction in the overall
integration error. This approach is particularly effective for
systems exhibiting heterogeneous variance distributions along
the λ-pathway, such as those involving changes in net charge.
The quantitative impact is demonstrated in Figure 7: for the Na+
system, VAR concentrates sampling in the high-variance middle
region (λ ≈ 0.3 − 0.6), achieving a 4.2× concentration ratio
compared to uniform sampling, while for the 42→55aq,sACES
system, VAR redistributes sampling toward regions of statistical
uncertainty, demonstrating adaptive resource allocation for
conformational challenges. This performance enhancement
stems from the VAR ability to automatically detect high-
variance λ windows and proportionally allocate computational

effort according to Neyman optimal allocation principles,
achieving optimal resource allocation through adaptive sampling
density modulation. Complementary network-design ap-
proaches, such as DiffNet, optimize pairwise measurement
graphs across congeneric series to minimize total uncertainty
under fixed computational budgets.85

5.1.3. Replica Exchange (RE). The Replica Exchange (RE)
methodology addresses the challenges associated with con-
formational sampling limitations that arise when complex
biomolecular systems become trapped in local energy minima.
Despite optimal λ spacing (ST) and resource allocation (VAR),
a single simulation trajectory may not adequately explore all
pertinent conformational states within feasible simulation
durations. RE mitigates this issue by executing multiple
independent simulations concurrently and periodically attempt-
ing to exchange configurations between replicas at varying λ
values. This approach enables conformations that are energeti-
cally favorable at one λ state to be transferred to other λ values,
facilitating the overcoming of local barriers and thereby
enhancing the conformational sampling efficiency of the entire
ensemble. This is particularly critical for protein−ligand
systems, where binding site flexibility results in multiple minima
that must be sampled for accurate free energy estimation. The
quantitative benefits of RE are system-dependent: simple
systems such as Na+ solvation exhibit modest improvements
(ST+VAR+RE: 0.031 kcal/mol vs ST+VAR: 0.045 kcal/mol),
whereas complex protein−ligand systems demonstrate signifi-
cant gains. For the 42→55com system, RE enables convergence
where ST+VAR fails, and in the challenging 42→55com,mACES
system, only ST+VAR+RE achieves reliable convergence (0.041
kcal/mol at 50 ns). Thus, the RE is indispensable for systems
with substantial conformational complexity.
5.2. Microscopic Sampling Efficiency and Time Scale

Separation. The fundamental relationship of ⟨SE⟩ ≤ σΔG
serves as a robust diagnostic tool for evaluating the completeness
of conformational sampling across alchemical states. Our
analysis indicates that this inequality approaches equality only
when all simulation replicas explore an identical conformational
space, a condition systematically achieved by ST-based methods
but seldom by conventional TI approaches.
5.2.1. Statistical Significance. Conducting eight independ-

ent simulations per method facilitates a robust statistical
assessment. Performance differences between SAMTI variants
and conventional methods achieve statistical significance within
95% confidence intervals. In the 7CPI system, ST+VAR achieves
0.036± 0.013 kcal/mol compared to 0.067± 0.024 kcal/mol for
21W (p < 0.05). Systematic improvements across all test systems
underscore the general effectiveness of SAMTI.
5.2.2. Enhanced Sampling Efficiency. Autocorrelation

analysis (detailed in Results section) reveals that ST methods
achieve a sampling efficiency of η = Neff/N ≈ 1.0 at frequencies
of 0.2 ps, thereby challenging traditional sampling protocols of
1−5 ps. This near-unity efficiency suggests a rapid decay of
autocorrelation and minimal statistical inefficiency.

The bias potential significantly modifies the correlation
structure of ∂U/∂λ, facilitating near-independent subpicosecond
sampling. In contrast, conventional TI demonstrates lower
efficiency (η = 0.30 − 0.50, g ≈ 2 − 3), particularly in protein−
ligand systems where efficiency is even lower (η < 0.2, g > 5).
This reduced efficiency is evidenced by ⟨SE⟩ ≪ σΔG, indicating
incomplete conformational sampling across the replicas.
5.2.3. System-Dependent Sampling Diagnostics and

Method Reliability. The correlation between ⟨SE⟩ and σΔG
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provides critical insights into the reliability of methods across
different system complexities. The Na+ system exemplifies the
robustness of this diagnostic, achieving ⟨SE⟩ ≈ σΔG across all
methods, thereby confirming adequate sampling for simple
electrostatic transformations. Conversely, the 42→55 systems
without ACES reveal fundamental limitations: significant
deviations between ⟨SE⟩ and σΔG indicate severe sampling
deficiencies, while notable differences between SAMTI and TI
results suggest that neither approach is reliable without
enhanced conformational sampling. This diagnostic relationship
thus serves as an essential quality control metric, facilitating a
real-time assessment of whether free energy calculations can be
trusted or require methodological enhancement.
5.2.4. Physical Basis. The bias potential of ST flattens the

effective energy surface along the alchemical coordinate, thereby
reducing conformational barriers and resulting in (1) higher
transition acceptance rates, (2) reduced correlation times, and
(3) enhanced conformational exploration. This modified
landscape enables ST to sample reduced barriers, whereas
conventional TI encounters full energetic barriers, thereby
explaining the pronounced Neff advantage in complex systems.
5.2.5. Protocol Design Implications. These findings

challenge the conventional sparse sampling (1−5 ps), which
may underestimate the correlation structure and inflate
convergence estimates. Achieving η ≈ 1.0 necessitates subpico-
second sampling, suggesting that protocols should prioritize
frequent data collection over extended duration. Real-time
computation of g provides quality diagnostics: g < 2 indicates
adequate resolution, while g > 5 signals the need for
methodological improvements. The correlation between high
Neff and ⟨SE⟩ ≈ σΔG values enables adaptive protocol
adjustment.
5.3. ACES Integration and Extended SAMTI Frame-

work. The integration of Alchemical Enhanced Sampling
(ACES) with SAMTI addresses a fundamental limitation
identified in the 42→55 transformation studies: the inability
of conventional enhanced sampling methods to overcome
conformational barriers with characteristic time scales exceeding
simulation lengths. The extended ST+VAR+RE with the ACES
framework offers a comprehensive solution to multidimensional
sampling challenges in complex alchemical transformations.
5.3.1. ACES as the Fourth Essential Component. ACES

emerges as a crucial fourth component of the SAMTI
framework, specifically addressing conformational sampling
limitations that cannot be resolved through the alchemical
space enhancement alone. While ST, VAR, and RE optimize
sampling along the λ coordinate and through replica
coordination, ACES creates enhanced sampling pathways for
slow conformational degrees of freedom that represent kinetic
bottlenecks.
The integration of ACES demonstrates synergistic advantages

that scale with molecular complexity. In aqueous systems, ST
+VAR+RE (sACES) achieves 0.012 kcal/mol uncertainty for
42→55aq,sACES compared to 0.020 kcal/mol for ST+VAR alone,
while mACES further improves the performance (0.032 kcal/
mol for 42→55aq,mACES). In protein environments, synergistic
benefits are more pronounced: ST+VAR+RE (mACES)
achieves 0.041 kcal/mol for 42→55com,mACES, where standard
methods fail, demonstrating the four-component framework’s
ability to address interdependent sampling limitations.
5.3.2. Conformational vs Alchemical Sampling Separa-

tion.The 42→55 transformation analysis reveals that conforma-
tional and alchemical sampling present distinct but coupled

challenges. The ⟨SE⟩ ≪ σΔG relationship observed in standard
SAMTI methods reflects fundamental time scale separation:
while SAMTI excels at enhanced sampling along the alchemical
coordinate (subpicosecond to picosecond time scales),
conformational barriers can persist on nanosecond to micro-
second time scales.

ACES bridges this time scale gap by selectively reducing
conformational barriers while maintaining thermodynamic
consistency. The sACES versus mACES comparison demon-
strates that the complexity of required enhancement scales with
the cooperative nature of conformational changes: single torsion
barriers can be addressed through targeted enhancement, while
complex transformations requiring coordinated motion benefit
from multiple-torsion approaches.
5.3.3. Environment-Dependent Enhanced Sampling Effec-

tiveness. A systematic evaluation of the effectiveness of replica
exchange across various ACES variants reveals significant trends
that are dependent on the environment. In aqueous sACES
systems, the integration of thermodynamic integration (TI) with
replica exchange results in notable improvements in ⟨SE⟩ values,
indicating an effective synergy between replica exchange (RE)
and scaled torsion potentials. However, this enhancement is
considerably diminished in protein-bound sACES environ-
ments, where increased complexity reduces the effectiveness of
RE. In mACES systems, while replica exchange provides
measurable benefits for conventional TI methods in both
environments, these improvements consistently fall short of
those achieved by SAMTI variants. This pattern suggests that
environmental complexity influences the effectiveness of
enhanced sampling strategies, with the SAMTI adaptive
framework maintaining robust performance across diverse
chemical environments.
5.4. GridDesign Rationale andValidation.The choice of

a near-continuous grid (101 uniformly spaced λ windows) in
SAMTI is fundamental to minimizing sampling barriers between
adjacent thermodynamic states. This dense grid ensures high
phase-space overlap, facilitating efficient Monte Carlo tran-
sitions along the alchemical coordinate and enabling the ST
component to explore λ space effectively. Reducing the number
of grid points or using nonuniform spacing would defeat this
design principle and compromise the synergy between ST and
VAR: ST requires dense spacing to maintain high acceptance
probabilities, while VAR (as demonstrated in Figure 7)
adaptively redistributes the sampling effort to high-variance
regionswithin the fixed grid structure. The combination of dense
uniform spacing (ST) and adaptive resource allocation (VAR)
addresses orthogonal challenges�phase-space connectivity and
statistical efficiency, respectively.

Grid independence has been validated through a control
calculation using a denser 201-window layout for the 7CPI
system. As reported in the Supporting Information (Table S1),
all free energy estimates at 50 ns remain within one combined
standard deviation between 101- and 201-window protocols
(maximum |Δ|/σcomb = 0.71 for ST+VAR+RE), confirming that
the 101-window grid is sufficient for accurate thermodynamic
integration. The consistency between grid densities demon-
strates that SAMTI’s adaptive components govern convergence
behavior rather than grid refinement, validating the 101-window
choice as both scientifically sound and computationally efficient.
5.5. Synergy and Practical Recommendations. The ST

+VAR+RE with ACES implementation demonstrates perform-
ance that surpasses any subset of its components through
multidimensional synergy: ST constructs finely resolved
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thermodynamic pathways; VAR optimally allocates resources;
RE enhances space exploration; and ACES addresses conforma-
tional barriers. This integration results in a robust methodology
that can be applied across the molecular system spectrum.

6. CONCLUSION
The SAMTI framework, through its synergistic integration of
serial tempering, variance adaptive resampling, replica exchange,
and alchemical enhanced sampling, represents a significant
advancement in the field of alchemical free energy calculations.
Our extensive benchmarking across a diverse array of molecular
systems demonstrates that SAMTI consistently addresses the
primary limitations of conventional TI, achieving a substantial
reduction in statistical uncertainties while maintaining or
enhancing computational efficiency.
The principal finding of this study is that the four-component

ST+VAR+RE (mACES) configuration offers a robust and
reliable solution for even the most challenging alchemical
transformations, consistently attaining chemical accuracy (σΔG <
0.1 kcal/mol) within practical simulation durations.
By transforming free energy calculations from a specialized

and often unreliable tool into a more routine and predictable
method, SAMTI holds the potential to significantly expedite
discovery processes in drug design, materials science, and other
areas of molecular engineering. The modular and automated
nature of the framework renders it accessible to a broad
spectrum of researchers, and its rigorous statistical foundation
offers a new level of confidence in the accuracy of the results.
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Slusallek, P.; Krǐvánek, J. Optimal Multiple Importance Sampling. ACM
Trans. Graph. 2019, 38, 37.
(68) Tsai, H.-C.; Xu, J.; Guo, Z.; Yi, Y.; Tian, C.; Que, X.; Giese, T.;
Lee, T.-S.; York, D. M.; Ganguly, A.; Pan, A. Improvements in Precision
of Relative Binding Free Energy Calculations Afforded by the
Alchemical Enhanced Sampling (ACES) Approach. J. Chem. Inf.
Model. 2024, 64, 7046−7055.
(69) Case, D.; Aktulga, H.; Belfon, K.; Ben-Shalom, I.; Berryman, J.;
Brozell, S.; Cerutti, D.; Cheatham, T., III; Cisneros, G.; Cruzeiro, V.;
Darden, T.; Forouzesh, N.; Ghazimirsaeed, M.; Giamba ̧su, G.; Giese,
T.; Gilson, M.; Gohlke, H.; Goetz, A.; Harris, J.; Huang, Z.; Izadi, S.;
Izmailov, S.; Kasavajhala, K.; Kaymak, M.; Kovalenko, A.; Kurtzman,
T.; Lee, T.; Li, P.; Li, Z.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Machado,
M.; Manathunga, M.; Merz, K.; Miao, Y.; Mikhailovskii, O.; Monard,
G.; Nguyen, H.; O’Hearn, K.; Onufriev, A.; Pan, F.; Pantano, S.;
Rahnamoun, A.; Roe, D.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.;
Shajan, A.; Shen, J.; Simmerling, C.; Skrynnikov, N.; Smith, J.; Swails, J.;
Walker, R.; Wang, J.; Wang, J.; Wu, X.; Wu, Y.; Xiong, Y.; Xue, Y.; York,
D.; Zhao, C.; Zhu, Q.; Kollman, P. Amber; University of California and
San Francisco, 2024.
(70) Case, D. A.; Cerutti, D. S.; Cruzeiro, V. W. D.; Darden, T. A.;
Duke, R. E.; Ghazimirsaeed, M.; Giambasu̧, G. M.; Giese, T. J.; Götz, A.
W.; Harris, J. A.; Kasavajhala, K.; Lee, T.-S.; Li, Z.; Lin, C.; Liu, J.; Miao,
Y.; Salomon-Ferrrer, R.; Shen, J.; Snyder, R.; Swails, J.; Walker, R. C.;
Wang, J.; Wu, X.; Zeng, J.; Cheatham, T. E.; Roe, D. R.; Roitberg, A.;
Simmerling, C.; York, D. M.; Nagan, M. C.; Merz, K. M. J. Recent
Developments in Amber Biomolecular Simulations. J. Chem. Inf. Model.
2025, 65, 7835−7843.
(71) Lindorff-Larsen, K.; Stefano, P.; Palmo, K.; Maragakis, P.;
Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved Side-Chain Torsion
Potentials for the Amber ff99SB Protein Force Field. Proteins 2010, 78,
1950−1958.
(72)Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A.
Development and Testing of a General Amber Force Field. J Comput
Chem. 2004, 25, 1157−1174.
(73) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.;
Klein, M. L. Comparison of Simple Potential Functions for Simulating
Liquid Water. J. Chem. Phys. 1983, 79, 926−935.

(74) Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T.
J.; Hura, G. L.; Head-Gordon, T. Development of an Improved Four-
Site Water Model for Biomolecular Simulations: TIP4P-Ew. J. Chem.
Phys. 2004, 120, 9665−9678.
(75) Tsai, H.-C.; Lee, T.-S.; Ganguly, A.; Giese, T. J.; Ebert, M. C.;
Labute, P.; Merz, K. M.; York, D. M. AMBER Free Energy Tools: A
New Framework for the Design of Optimized Alchemical Trans-
formation Pathways. J. Chem. Theory Comput. 2023, 19, 640−658.
(76) Bussi, G.; Parrinello, M. Accurate Sampling Using Langevin
Dynamics. Phys. Rev. 2007, 75, No. 056707.
(77) Loncharich, R. J.; Brooks, B. R.; Pastor, R.W. LangevinDynamics
of Peptides: The Frictional Dependence of Isomerization Rates of N-
acetylalanyl-N’-Methylamide. Biopolymers 1992, 32, 523−535.
(78) Åqvist, J.; Wennerström, P.; Nervall, M.; Bjelic, S.; Brandsdal, B.
R. O.Molecular Dynamics Simulations ofWater and Biomolecules with
a Monte Carlo Constant Pressure Algorithm. Chem. Phys. Lett. 2004,
384, 288−294.
(79) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical
Integration of the Cartesian Equations of Motion of a System with
Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977,
23, 327−341.
(80) York, D. M.; Wlodawer, A.; Pedersen, L. G.; Darden, T. Atomic
Level Accuracy in Simulations of Protein Crystals. Proc. Natl. Acad. Sci.
U. S. A. 1994, 91, 8715−8718.
(81) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys.
1995, 103, 8577−8593.
(82) Bennett, C. H. Efficient Estimation of Free Energy Differences
from Monte Carlo Data. J. Comput. Phys. 1976, 22, 245−268.
(83) Gelman, A.; Rubin, D. B. Inference from Iterative Simulation
Using Multiple Sequences. Statist. Sci. 1992, 7, 457−472.
(84) Brooks, S. P.; Gelman, A. General Methods for Monitoring
Convergence of Iterative Simulations. J. Comput. Graph. Stat. 1998, 7,
434−455.
(85) Li, P.; Li, Z.; Wang, Y.; Dou, H.; Radak, B. K.; Allen, B. K.;
Sherman, W.; Xu, H. Precise Binding Free Energy Calculations for
Multiple Molecules Using an Optimal Measurement Network of
Pairwise Differences. J. Chem. Theory Comput. 2022, 18, 650−663.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.5c05358
J. Phys. Chem. B 2025, 129, 13063−13087

13087

https://doi.org/10.1021/acs.jcim.4c01668?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c01668?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c01668?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.27287
https://doi.org/10.1002/jcc.27287
https://doi.org/10.1021/acs.jcim.5c00704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.5c00704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00697?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00697?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.4c00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1063/5.0190659
https://doi.org/10.1063/5.0190659
https://doi.org/10.2307/2342192
https://doi.org/10.2307/2342192
https://doi.org/10.2307/2342192
https://doi.org/10.2307/1403631
https://doi.org/10.2307/1403631
https://doi.org/10.1145/3306346.3323009
https://doi.org/10.1021/acs.jcim.4c00464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c00464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.4c00464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.5c01063?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.5c01063?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.1683075
https://doi.org/10.1063/1.1683075
https://doi.org/10.1021/acs.jctc.2c00725?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00725?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00725?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevE.75.056707
https://doi.org/10.1103/PhysRevE.75.056707
https://doi.org/10.1002/bip.360320508
https://doi.org/10.1002/bip.360320508
https://doi.org/10.1002/bip.360320508
https://doi.org/10.1016/j.cplett.2003.12.039
https://doi.org/10.1016/j.cplett.2003.12.039
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1073/pnas.91.18.8715
https://doi.org/10.1073/pnas.91.18.8715
https://doi.org/10.1063/1.470117
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1021/acs.jctc.1c00703?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00703?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00703?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c05358?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

