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The QDπ dataset, training data for 
drug-like molecules and biopolymer 
fragments and their interactions
Jinzhe Zeng   1, Timothy J. Giese1, Andreas W. Götz   2 & Darrin M. York1 ✉

The development of universal machine learning potentials (MLP) for small organic and drug-like 
molecules requires large, accurate datasets that span diverse chemical spaces. In this study, we 
introduce the QDπ dataset which incorporates data taken from several datasets. We use a query—
by—committee active learning strategy to extract data from large datasets to maximize the diversity 
and avoid redundancy as relevant for neural network training to construct the QDπ dataset. The QDπ 
dataset requires only 1.6 million structures to express the chemical diversity of 13 elements from 
the various source datasets at the ωB97M-D3(BJ)/def2-TZVPPD level of theory. The QDπ dataset 
enables creation of flexible target loss functions for neural network training relevant to drug discovery, 
including information-dense data sets of relative conformational energies and barriers, intermolecular 
interactions, tautomers and relative protonation energies of drug-like compounds and biomolecular 
fragments. It is the hope that the high chemical information density and diversity contained in the QDπ 
dataset will provide a valuable resource for the development of new universal MLPs for drug discovery.

Background & Summary
The development and use of machine learning potentials (MLPs) for molecular simulations has seen a surge in 
interest1–6, particularly in drug discovery applications that screen a large number of small organic molecules7. 
Many of the molecules encountered in the screening process may not have well—established, mature molecular 
mechanical force field parameters, and some may not have ever been synthesized before. This has led to interest 
in training universal MLP models that accurately reproduce ab initio energies and forces for a large diversity of 
molecules8–14 and chemical systems15,16 by considering the enormous number of possible atomic permutations, 
combinations, and conformational isomers17,18. The training of universal MLP models therefore requires exten-
sive and accurate datasets that sample the diverse chemical space of organic and drug-like molecules.

For many years, benchmark datasets have been prepared that were intended to compare the quality of density 
functional and semiempirical quantum mechanical (QM) methods against highly accurate ab initio results;19–23 
however, the diversity of compounds contained in these datasets is far too narrow to train a universal MLP. This 
motivated the creation of very large datasets of stable conformations (geometry optimized structures), including 
the QMugs dataset24, the QM40 dataset25, various GDB datasets17,26, and subsets27,28. An alternative strategy has 
been to construct datasets by collecting samples drawn from molecular dynamics (MD) simulation29,30, such 
that the dataset contains thermally accessible conformations to improve MLP accuracy. Recent datasets such as 
ANI-131, OrbNet Denali32, QM7-X33, AIMNet-NSE34, and SPICE35 combine the two data generation methods by 
including a large number of geometry optimized chemical species and thermally-accessible structures.

It has become exceedingly expensive to calculate target molecular energies and atomic forces with ab initio 
QM methods as the size of the datasets have grown. Therefore, active learning strategies have been employed to 
remove redundant information within the datasets to limit their size without sacrificing chemical diversity36,37. 
The active learning strategy has been used to create datasets such as ANI-1x38, ANI-2x12, and the work by Yang 
et al.39 These datasets have some limitations; for example, although the ANI-1ccx dataset38 is calculated at the 
very accurate CCSD(T) level in the complete basis set limit, it lacks atomic forces, which has been found to be 
an important target property for model training40. Furthermore, the ANI-1x and ANI-2x datasets collect data 
with the ωB97X/6-31G* method41 however, this method was later found42 to produce atomic forces that differed 
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from ωB97M-D3(BJ)/def2-TZVPPD — one of the most accurate and robust density functional methods in the 
extensive GMTKN55 benchmark database comparisons23 — by more than 2 kcal/mol/Å in mean squared error 
(MAE). In contrast, the SPICE dataset is calculated with the accurate ωB97M-D3(BJ)/def2-TZVPPD method 
but, as we shall demonstrate, the SPICE dataset does not cover the full chemical space expressed by the ANI 
datasets.

The present work introduces the the Quantum Deep Potential Interaction (QDπ) dataset for drug discov-
ery force field development. The QDπ dataset contains 1.6 million molecular structures to express the chem-
ical diversity of 13 elements, and the energies and forces are calculated with the accurate ωB97M-D3(BJ)/
def2-TZVPPD method. Molecular conformations were taken from various source datasets including SPICE35, 
ANI12,38, GEOM18, FreeSolv43, RE14, and COMP636. We describe several strategies that were used to select struc-
tures in a manner that maximizes the chemical diversity while minimizing the number of expensive ab initio 
evaluations. These strategies include direct inclusion of a source dataset, relabeling small datasets, using active 
learning to prune large datasets36, and using a combination of molecular dynamics and active learning to extend 
the breadth of very small datasets36,37. The goal of an active learning procedure is not to extract a unique subset 
of structures; instead, the goal is to extract the relevant information from a population that contains redundan-
cies. Statistical analysis of the QDπ dataset shows that it offers more coverage than the individual SPICE and 
ANI datasets. Furthermore, the active learning procedure is shown to be an effective method to avoid including 
redundant training information from multiple datasets without sacrificing chemical diversity.

Methods
The QDπ dataset was constructed during the development of the QDπ-2 MLP model42. As previously men-
tioned, the QDπ dataset combines and extends several existing databases using a consistent ab initio reference 
theory. Specifically, the reference theory is the ωB97M-D3(BJ)/def2-TZVPPD Hamiltonian44–47, as implemented 
in the PSI4 v1.7 software48,49. Many of the existing MLP datasets contain millions of molecular structures; how-
ever, they also contain a considerable amount of redundant information. We begin the discussion by introducing 
strategies for incorporating or expanding upon data from existing databases to limit the overall number of data 
points while retaining the chemical and structural information needed to accurately train a robust model. We 
then detail the contents of the existing databases serving as the foundation for the QDπ dataset.

Data generation.  Data selection methods.  We employed 4 strategies for incorporating molecular structures 
into the QDπ dataset from existing databases. 

•	 Direct inclusion. If a source database is a collection of energies and forces evaluated at the ωB97M-D3(BJ)/
def2-TZVPPD level of theory, then the entire database is directly incorporated within the QDπ dataset.

•	 Relabeling. If the source database does not provide ωB97M-D3(BJ)/def2-TZVPPD reference data, but the 
number of structures within the database is reasonably small, then we recalculate the energies and forces of 
each structure at ωB97M-D3(BJ)/def2-TZVPPD and include the results into the QDπ dataset. The geometries 
are not reoptimized at the reference level of theory because the purpose of the QDπ dataset is to train MLPs 
for use in MD simulation. As explained below, we perform some MD simulation specifically to extend the 
configurational space of the reference data.

•	 Active learning strategy to prune large datasets. If the source database contains a large number of structures, 
then it becomes impractical to recalculate the entire database at the ωB97M-D3(BJ)/def2-TZVPPD level of 
theory. We instead use a query—by—committee active learning strategy to reduce the number of ab initio 
calculations36 by identifying and eliminating structures that do not introduce a significant amount of new 
information to train against. Each active learning cycle involves the training of 4 independent MLP models 
against the developing QDπ dataset with different random seeds. The energy and force standard deviations 
between the 4 models is calculated for each structure in the source database. If the energy and force standard 
deviations are below 0.015 eV/atom and 0.20 eV/Å, respectively, then the structure is not added to the QDπ 
dataset. A random subset of up to 20,000 structures from the remaining candidates is selected for labeling 
with ωB97M-D3(BJ)/def2-TZVPPD and included within the QDπ dataset. The thresholds on the standard 
deviation were chosen because, in the first cycle, the initial set of trained models used to bootstrap the active 
learning procedure produces standard deviations less than these values. These thresholds cannot be made 
arbitrarily small because the model’s accuracy is inherently limited by its capacity to fit the data50. The active 
learning procedure terminates when each structure within the source database has either been included 
within or excluded from the QDπ dataset. We have implemented this strategy in the DP-GEN software50.

•	 Active learning strategy to extend small datasets. If a source database consists of only a few optimized struc-
tures, we employ an active learning strategy with molecular dynamics (MD) simulation to search for addi-
tional thermally accessible conformations to include within the QDπ dataset36,37. At each active learning 
cycle, MD sampling is performed with each molecule in the source database using 1 of the 4 MLP models. The 
simulation length and sampling frequency varies between databases. A configuration is rejected if the energy 
and force standard deviations between the models are below 0.015 eV/atom and 0.20 eV/Å, respectively. A 
random subset of up to 20,000 structures from the candidate samples is selected for labeling and included in 
the QDπ dataset. The active learning procedure is terminated when the 4 models agree to within the specified 
tolerance for all explored samples. The details of molecular dynamics simulations vary depending on the 
subset and will be provided later.

MLP models used in the active learning methods.  The active learning procedures were performed to either prune 
or expand existing datasets. For this purpose, the active learning procedures were used to train a semiempirical 
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quantum mechanical (SQM)/Δ MLP model14. A SQM/Δ MLP model supplements a standard semiempirical 
QM (or QM/MM) calculation with a MLP that is trained to reproduce the difference between SQM and ab initio 
energies and forces. The Δ MLP strategy is amenable to condensed phase QM/MM applications; the long-range 
electrostatics are evaluated with the inexpensive SQM potential and the Δ MLP is a short-range nonelectrostatic 
correction. One must also consider long-range dispersion interactions within QM/MM applications; however, in 
the present work we prepared a SQM/Δ MLP model for calculating energies and forces of small molecules. The 
demonstration does not parametrize QM/MM interactions, which is beyond the scope of this work. By building 
a Δ MLP correction for a SQM model, the MLP is not solely responsible for distinguishing between charged and 
neutral species; the physics of the underlying SQM potential models the distinction14. The SQM/Δ MLP models 
use the DFTB3/3ob Hamiltonian51,52, and a two-body embedding DeepPot-SE model53 with type embedding. 
The DeepPot-SE model is implemented in the DeePMD-kit software54–56; the mathematical expressions and an 
extended description of the neural network can be found in Ref. 56. The atomic descriptors were calculated with 
a 6 Å cutoff radius and a 1 Å switching layer that ensures the energy and force corrections smoothly approach 
zero at the cutoff. The number of neurons in the embedding network, the fitting network, and the type embed-
ding network are (25, 50, 100), (256, 256, 256, 1), and (8), respectively. The embedding submatrix contains 12 
channels, and all networks use single-point precision.

Content of the QDπ dataset.  As previously stated, the structures within the QDπ dataset were taken 
from or expanded upon existing “source” datasets. Brief summaries of the source datasets are provided below. 
The QDπ dataset is partitioned into subsets containing neutral and charged molecules. Charged molecules are 
included because most of the existing MLP models poorly describe multiple charge/protonation states. Tables 1 
and 2 summarize the overall content of neutral and charged QDπ subsets, respectively.

SPICE.  The small-molecule/protein interaction chemical energies (SPICE)35 dataset (v1.1.3) contains 1.1 mil-
lion structures of dipeptides, solvated amino acids, DES370k monomers and dimers57, molecules taken from 
PubChem, and ion pairs. The chemical space includes 15 elements (H, Li, C, N, O, F, Na, P, S, Cl, K, Br, and 
I), and the reference energies and forces were collected with the ωB97M-D3(BJ)/def2-TZVPPD Hamiltonian. 
This is the same ab initio reference theory used in the QDπ dataset. One could therefore include the SPICE data 
within the QDπ dataset without modification; however, we exclude some high energy outlier structures using 
the strategy discussed in Ref. 14. Some of the high energy structures include situations where a covalent bond 
has been inadvertently broken, and the resulting diradical system may not be adequately modeled with a single 
determinant restricted wavefunction. The outliers are detected by grouping all conformations of a molecule, 
calculating the potential energy mean and standard deviation, and excluding a conformation if it differs by 
more than 8 standard deviations from the mean. Upon excluding the high energy structures, there are 997,570 
remaining neutral structures and 107,482 charged structures which were directly added to the QDπ dataset.

SPICE v1.1.3 was the latest version when this work was conducted. SPICE has released a new major version 
(v2)58 which could be considered adding into the later version of the QDπ dataset.

Name Elements

Conformations

Selection methodbefore selection after selection

SPICE H Li C N O F Na 
P S Cl K Br I 997570 997570 Direct inclusion

ANI H C N O F S Cl 6046683 324294 Active learning strategy to 
prune large datasets

GEOM H C N O F P S 
Cl Br I 31224028 23579 Active learning strategy to 

prune large datasets

FreeSolv-MD H C N O F P S 
Cl Br 302400 76696 Active learning strategy to 

extend small datasets

RE H C N O 3667 3667 Relabeling

RE-MD H C N O F P S 
Cl Br 2217000 12019 Active learning strategy to 

extend small datasets

COMP6 H C N O 99317 99317 Relabeling

Total H Li C N O F Na 
P S Cl K Br I 40890665 1537142 (3.8 %)

Table 1.  The overall content of the QDπ neutral dataset.

Name Elements Conformations before/after selection Selection method

SPICE H Li C N O F Na P S Cl K Br I 107482 107482 Direct inclusion

RE H C N O 616 616 Relabeling

RE-MD H C N O F P S Cl Br 176000 4128 Active learning strategy to 
extend small datasets

Total H Li C N O F Na P S Cl K Br I 284098 112226 (39.5 %)

Table 2.  The overall content of the QDπ charged dataset.
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ANI.  The accurate neural network engine for molecular energies (ANI) database is composed of ANI-1x38 and 
ANI-2x12 datasets. The chemical space includes 7 elements (H, C, N, O, F, S, and Cl), and the energies were orig-
inally prepared with the ωB97X/6-31G* Hamiltonian41. We excluded high energy configurations using the same 
strategy described for the SPICE dataset. After removing the outliers, the ANI dataset had 6,046,683 remain-
ing structures. It was deemed too costly to relabel all the configurations with ωB97M-D3(BJ)/def2-TZVPPD; 
therefore, we used the active learning strategy to prune the available data. The active learning strategy relabeled 
324,294 conformations (5.4%) for inclusion into the QDπ dataset.

GEOM.  The Geometric Ensemble Of Molecules (GEOM) database18 contains 37 million conformers of more 
than 450,000 organic molecules. The chemical space includes 10 elements (H, C, N, O, F, P, S, Cl, Br, and I). The 
construction of the QDπ dataset focused on the AICures subset of the GEOM database, which is a collection 
of 31.2 million configurations from 304,466 small-to-medium sized drug molecules. We used the active learn-
ing strategy to prune the configurations resulting in the inclusion of 23,579 (0.076%) structures into the QDπ 
dataset.

FreeSolv.  We took 504 small molecules from the FreeSolv43 database whose chemical space includes 9 elements 
(H, C, N, O, F, P, S, Cl, and Br). The FreeSolv database includes experimental solvation free energies rather than 
reference energies and forces of specific structures. To prepare data for the QDπ dataset, we solvated each solute 
with water in periodic boundary conditions, equilibrated the unit cell density, and used the “active learning 
from molecular dynamics” strategy to collect relevant conformations. Only the energy and forces of the isolated 
solute molecule are included in the QDπ dataset, which is taken from the solvated trajectory upon remov-
ing all solvent molecules and periodic boundary conditions. Initial solute geometries were prepared with the 
OpenBabel software59 from the SMILES representation of molecules provided by FreeSolv. The periodic systems 
were prepared by solvating the molecules with 1140 4-point OPC waters60. The simulations were performed in 
the isothermal-isobaric ensemble at 298 K and 1 atm for 10 ps using a 1 fs time step, and solute configuration 
was saved every 50 fs. The solute was modeled with the DFTB351,52 QM/MM + QDπ-2 Δ MLP model42. The 
sampling was performed with the sander MD program61, which we interfaced42,62 to the DFTB+63, xtb64 and 
DeePMD-kit56 software packages. The query—by—committee procedure added 76,696 conformations to the 
QDπ dataset after 3 cycles of active learning.

RE.  The relative energy (RE) dataset14 is a collection of small databases that collect relative energies at the 
ωB97X/6-31G* level of theory41. These include: HB375 × 1021, AEGIS65,66, Tautobase67,68, TAUT1523, amino 
acid model compounds69, nucleic acid model compounds69, PA2623, and RegioSQM2070. In total, these datasets 
include 3,667 neutral and 616 charged molecules, which we labeled with ωB97M-D3(BJ)/def2-TZVPPD and 
included within the QDπ dataset. Furthermore, we extended the QDπ dataset by applying the active learning 
strategy to brief 1 ps gas phase molecular dynamics simulations of 2,217 unique neutral and 176 unique charged 
molecules. The active learning procedure produced 12,019 neutral conformations and 4128 charged conforma-
tions that were added to the QDπ dataset.

While the QDπ dataset only provides the potential energy of a conformation, the relative energies can be 
easily calculated by subtracting the potential energies of different conformations.

COMP6.  The comprehensive machine-learning potential (COMP6) dataset36 is a collection of benchmark 
databases labeled with ωB97X/6-31G*. The chemical space includes 4 elements (H, C, N, and O) in 99,317 
conformations. The databases include structures taken from S66 × 819,20, ANI-MD, GDB26,71, Tripeptides, and 
DrugBank72. All conformations were relabeled with ωB97M-D3(BJ)/def2-TZVPPD and added to the QDπ 
dataset.

Data Records
The QDπ dataset is provided in the DeePMD-kit HDF5 data file format56, freely accessible from zenodo73 under 
the CC BY 4.0 license. The structures (conformations) are organized into “groups” which share the same chem-
ical formula. Data keys in each group are listed in Table 5. The elements array is a petite list of unique element 
symbols, and each entry in the atomic types array is an integer index of the elements array. The energies, coordi-
nates, forces are stored in units of eV, Å, and eV/Å, respectively.

Technical Validation
Comparison between ωB97M-D3(BJ)/def2-TZVPPD and ωB97X/6-31G*.  The developers of the 
SPICE dataset chose ωB97M-D3(BJ)/def2-TZVPPD because it was regarded as the most accurate density func-
tional methods supported by PSI4 while being affordable enough to be applied within their budget23. Subsequent 
comparisons against the GMTKN55 dataset concluded that this level of theory was one of the best hybrid func-
tionals available, especially for noncovalent interactions45. Furthermore, we previously compared ωB97X/6-31G* 
(the theory used in constructing the ANI datasets) to ωB97M-D3(BJ)/def2-TZVPPD using a series of datasets42. 
We extracted 5% of the data from the SPICE, ANI, GEOM, FreeSolv-MD, and RE-MD datasets and calculated 
the mean absolute difference in atomic forces between the 2 levels of theory. They were found to differ by 2.40, 
3.15, 2.61, 3.17, and 2.50 kcal/mol/Å for the SPICE, ANI, GEOM, FreeSolv-MD, and RE-MD datasets, respec-
tively. These differences substantially exceed the uncertainty in trained MLPs. Consequently, the ωB97M-D3(BJ)/
def2-TZVPPD level of theory remains critical for training accurate MLPs.
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Diversity.  Table 3 and 4 shows the number of times the different elements appear in the neutral and charged 
QDπ datasets, respectively. The most common elements are H, C, N, and O. The rarest elements are alkali and 
halide ions, which are taken mainly from the SPICE dataset. Figure 1 histograms the molecular size (the number 
of atoms) of conformations in the QDπ neutral and charged dataset. Most of conformations have fewer than 50 
atoms; however, there are a few conformations with more than 100 atoms. There are two peaks in the histogram: 
one at 10 atoms and the other at 50 atoms, and there is a sudden drop in the population of configurations with 
more than 50 atoms. The sudden drop in the population at 50 atoms occurs because the SPICE dataset contains 
PubChem molecules with fewer than 50 atoms35.

Effect of active learning on chemical diversity.  To show the effectiveness of the query—by—committee 
data selection methodology, we compare the chemical diversity of the SPICE dataset neutral molecules to the 
original ANI dataset and to the subset of ANI conformations selected from the active learning procedure. The 
chemical diversity is characterized by calculating the descriptor output vectors of the QDπ-2 model and applying 
the t-Distributed Stochastic Neighbor Embedding (t-SNE) method74 to map high-dimensional output vectors to 

Name Key Unit Shape

Elements type_map.raw … (Nelements,)

Atomic types type.raw … (Natoms,)

Coordinates set.000/coord.npy Å (Nconformations, Natoms × 3)

Energies set.000/energy.npy eV (Nconformations)

Forces set.000/force.npy eV/Å (Nconformations, Natoms × 3)

Non-PBC marker nopbc … ()

Net charge set.000/net_charge.npy 1 (Nconformations)

Table 5.  Data keys in each group.

Element SPICE ANI GEOM FreeSolv-MD RE RE-MD COMP6 Total

H 14001078 2378509 492397 670342 35322 87919 1277560 18943127

Li 15 0 0 0 0 0 0 15

C 11408098 1347600 410273 542753 17789 81053 838496 14646062

N 2104132 587996 76872 43499 4196 25947 184592 3027234

O 2059694 565892 86665 107505 4648 13331 159822 2997557

F 356626 24344 6996 14986 0 446 0 403398

Na 88 0 0 0 0 0 0 88

P 35694 0 2824 3863 0 40 0 42421

S 484071 131086 20147 8408 0 1197 0 644909

Cl 233601 23253 4147 74704 0 662 0 336367

K 88 0 0 0 0 0 0 88

Br 83161 0 922 4524 0 180 0 88787

I 19609 0 106 0 0 0 0 19715

Table 3.  Elements of the QDπ neural dataset.

Element SPICE RE RE-MD Total

H 1195340 35322 38453 1269115

Li 70 0 0 70

C 717700 17789 32208 767697

N 168369 4196 10829 183394

O 200698 4648 4257 209603

F 11277 0 60 11337

Na 5457 0 0 5457

P 6156 0 40 6196

S 23474 0 80 23554

Cl 13835 0 40 13875

K 6208 0 0 6208

Br 7126 0 0 7126

I 5587 0 0 5587

Table 4.  Elements of the QDπ charged dataset.
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a 2-dimensional representation. Figure. 2 visualizes the 2-dimensional representation of the chemical diversity of 
carbon atoms. Although the axis are not easily amenable to physical interpretation, the important characteristic 
of the visual representation is the presence and separation of distinct clusters. The embedded representation of 
closely related chemical environments are often projected to similar values; therefore, the presence of multiple 
clusters is an indication of chemical diversity. There are areas in Fig. 2 where the SPICE (the orange colors) and 
ANI (the blue colors) distributions overlap with each other, and there are areas where they do not overlap. Areas 
lacking overlap suggest that the ANI dataset introduces new training information, whereas overlapping areas are 
indicative that the samples contain redundancies. Given the direct inclusion of the SPICE into QDπ dataset, an 
active learning procedure was used to extract a subset of samples from ANI. The distribution of samples extracted 
from ANI (the green colors in Fig. 2) broadly overlaps with the original ANI distribution — there are green dots 
in most of the blue clusters. The active learning procedure extracts fewer samples from the ANI distribution in 
areas where it significantly overlaps with the SPICE dataset (the orange clusters), as intended. The chemical diver-
sity of the QDπ dataset includes both SPICE and the extracted ANI samples; therefore, the diversity expressed by 
the QDπ dataset is broader than the individual SPICE and ANI datasets.

Usage Notes
The dataset can be read and used by the DeePMD-kit package56. It can also be loaded and manipulated within 
python scripts with the aid of the dpdata software.75 An example Python script which loads and prints the data-
set is provided below.

Fig. 1  A histogram of the number of atoms in neutral (left y-axis, in blue) and charged (right y-axis, in red) 
conformations.

Fig. 2  2D parametric t-SNE embeddings. These embeddings are made from the descriptor of the QDπ-2 model 
for carbon atoms in the SPICE data set (orange), the ANI data set before active learning (AL) (blue), and the 
ANI data set after AL (green). The x and y coordinates are not easily amenable to physical interpretation, and 
arise from the t-SNE method that maps the high-dimensional chemical space to a 2D space such that similar 
data points appear close to one another in the map.

https://doi.org/10.1038/s41597-025-04972-3


7Scientific Data |          (2025) 12:693  | https://doi.org/10.1038/s41597-025-04972-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

import dpdata

# load all subsets

data = dpdata.MultiSystems()

data.from_deepmd_hdf5(“data/neutral/spice.hdf5”)

data.from_deepmd_hdf5(“data/neutral/ani.hdf5”)

data.from_deepmd_hdf5(“data/neutral/geom.hdf5”)

data.from_deepmd_hdf5(“data/neutral/freesolvmd.hdf5”)

data.from_deepmd_hdf5(“data/neutral/re.hdf5”)

data.from_deepmd_hdf5(“data/neutral/remd.hdf5”)

data.from_deepmd_hdf5(“data/neutral/comp6.hdf5”)

# dump combined data

data.to_deepmd_hdf5(“qdpi-1.0.hdf5”)

# print the summary of data

print(data)

# get subsystems

subsystems = list(data.systems.values())

# get the data from one of the subsystem

print(subsystems[0].data.keys())

print(subsystems[0].data)

Code availability
DP-GEN v0.12.0 (https://github.com/deepmodeling/dpgen) was used to perform active learning. Example 
DP-GEN training and active learning input files for pruning the ANI datasets can be downloaded at https://
gitlab.com/RutgersLBSR/QDpiDataset. Python scripts for data labeling is located within the psi4qdp repository 
available at https://github.com/njzjz/psi4qdp.
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