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ABSTRACT: Amber is a molecular dynamics (MD) software
package first conceived by Peter Kollman, his lab and collaborators
to simulate biomolecular systems. The pmemd module is available as
a serial version for central processing units (CPUs), NVIDIA and
Advanced Micro Devices (AMD) graphics processing unit (GPU)
versions as well as Message Passing Interface (MPI) parallel
versions. Advanced capabilities include thermodynamic integration,
replica exchange MD and accelerated MD methods. A brief update
to the software and recently added capabilities is described in this
Application Note.

1. A BRIEF HISTORY
The Amber biomolecular simulation package began in Peter
Kollman’s group about 45 years ago,1 and the early history has
been summarized elsewhere.2 By about 1995, Amber
developers had converged on the using the particle-mesh
Ewald (PME) model to deal with long-range electrostatic
effects,3,4 and the sander module had become the primary
vehicle for molecular dynamics (MD) simulations. Sander has a
parallel implementation5,6 in which forces are distributed
among Message Passing Interface (MPI) processes, but the
coordinates of all atoms are available to each process at every
step. This data structure allows for all parts of the potential
energy calculation to be assigned flexibly among processes, but
entails additional collective communication. Around 2003, Bob
Duke, working with Lee Pedersen and Tom Darden, created a
significant new MD engine, called pmemd, that distributed
both coordinates and forces among processes, introduced
dynamic load-balancing, and optimized cache utilization and
memory layout. This development continued from Amber
versions 8−12, or from about 2003 to 2010.

In 2008, most of the project modules (including sander)
were split off into an open-source collection called
AmberTools,7 and pmemd was distributed as Amber, which
provided in source-code form but with a license that included
restrictions on use and redistribution. Both AmberTools and
Amber support standard molecular dynamics simulations but
AmberTools is required for system setup and analysis. For
instance, general triclinic unit cells, including but not limited to

rectangular and octahedral boxes, can be used but there is no
support for symmetry elements (such as screw axes) that
involve rotations. In 2012, pmemd was ported to NVIDIA
GPUs allowing for significantly accelerated MD capabilities
and is what is now distributed as Amber.8−11 It has since been
extended by multiple groups to support additional, more
complex algorithms including implicit solvent models,10 replica
exchange,12 various accelerated MD methods,13,14 nudged
elastic band (NEB)15 and thermodynamic integration
(TI)16−20 to highlight a few.

This Application Note summarizes additions to pmemd in
the time period of 2015−2025.

2. GPU ACCELERATED PMEMD
Since GPUs are designed to operate as massively parallel
computation engines, they are well-suited to the computational
demands of MD simulations. By utilizing the highly parallel
architecture of GPUs, as well as a leveraging a novel single/
fixed precision model (SPFP),11 pmemd can achieve up to 100-
fold speedups compared to traditional central processing unit
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(CPU)-based simulations and has continued to see perform-
ance improvements with each new model of GPU (see Figure
1).

At the time of writing, the GPU implementation of pmemd
from Amber 2024 yields performance of about 1.7 μs per day
for the 23000 atom DHFR 4 fs NVE benchmark running on a
single RTX 4090 GPU, and over 82 ns/day for the 1.07 million
atom Satellite Tobacco Mosaic Virus 4 fs benchmark on the
same hardware. While performance with smaller systems such
as DHFR have leveled out over the past few years, larger
systems are still seeing near linear improvement on newer
GPUs such as H100, RTX5080 and B200 SXM. As an
example, for the DHFR benchmark, a B200 SXM card is no
faster than an RTX 4090 card, for but the much larger STMV
system, the B200 SXM result of 114 ns/day is 40% faster than
the RTX 4090 (albeit for a considerably higher purchase
price).

Amber has recently expanded GPU implementations beyond
NVIDIA to those manufactured by Advanced Micro Devices
(AMD). Execution on AMD GPUs using ROCm and
Heterogeneous-Compute Interface for Portability (HIP) are
now possible. ROCm is an AMD software stack for GPU
programming. HIP is a C++ Runtime API that allows
developers to create portable applications for AMD and
NVIDIA GPUs. Amber 2024 can be executed on different
AMD accelerator architectures including AMD Instinct MI100,
MI210, MI250(X), and MI300A. Timings are updated
periodically as new GPU Hardware is released. Along with
software dependencies and library compatibility, these are
posted when available at the Amber Web site21 under the GPU
Support page.

In summary, the development of the Amber pmemd program
and its integration with GPU architectures has brought about a
revolution in MD simulations by making simulations of
biologically relevant time scales possible on cost-effective
desktop hardware.

3. NEIGHBOR LISTS AND NONBONDED
INTERACTIONS ON GPUS

Nonbonded interactions in Amber support the common
Coulombic and Lennard-Jones nonbonded potentials. Neigh-
bor lists are essential to the efficiency of periodic MD
programs, but also impart most of the complexity. If the
problem were to compute the interaction of each particle to
every other, a basic Ewald sum could be applied to all pairwise
interactions, but the problem then has N2 complexity in the
number of particles N. The neighbor list subdivides the

problem into spatial regions or clusters of contiguous atoms,
allowing the program to calculate interactions which have a
good chance of lying within a cutoff distance of one another.
The remainder of the interactions, which are farther apart, are
negligible for Lennard-Jones interactions. Coulombic inter-
actions are then handled with the PME algorithm of N log(N)
complexity. Inextricable from this neighbor list is the notion of
whether an interaction is excluded, such as bonded atoms, and
on GPUs, the ordering of the particles in memory must also
conform to some sort of spatial locality. These compounding
requirements have driven the evolution of unique neighbor
lists in Amber and other codes.

Amber subdivides the problem into spatial regions,
parallelepipeds which span the simulation box, which are at
least the length of the cutoff between any two opposing faces.
Because there is no check on whether a particular periodic
image of the interaction between two particles is correct, the
simulations are prepared so that all opposing faces of the
simulation cells are separated by at least three cutoff lengths. A
Hilbert space-filling curve is inscribed within each spatial
region to provide a framework for sorting the atoms inside
such that the order of their indices in computer memory
follows the physical locality of their coordinates in the
simulation. Atoms selected from any contiguous sequence in
the list are then likely to be near neighbors of one another.
This process is accomplished by a GPU library sorting
function. Tiles are then produced for the interactions between
any two adjacent spatial regions by taking 16 contiguous atoms
from one region (senders) and checking all atoms of adjacent
regions until 32 receivers can be found which are within range
of at least one of the senders. This collection of 32 × 16 tiles is
then stored in memory, along with bit masks indicating the
exclusion status of any interaction in the tile. The neighbor list
is updated once any one particle has migrated far enough to
create a potential interaction that has not been accounted
within one of the tiles.

4. CONTROLLING SOLUTION PH OR REDOX
POTENTIAL DURING MD

There are two different implementations of constant pH
simulations in Amber. One employs Metropolis Monte Carlo
methods, in which discrete protonation states are sampled and
one is based upon lambda values, with partial protonation
states (PME-CpHMD). Both methods can be performed in
two modes, independent of pH or pH replica exchange.
4.1. Metropolis Monte Carlo Constant pH. Amber

contains the implementations of the discrete or hybrid MC/

Figure 1. Historical performance of the Amber GPU accelerated pmemd. The DHFR 4.0 fs NVE benchmark on different GPU models is shown. All
benchmarks are executed on a single GPU.
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MD constant pH method,22,23 which utilizes Metropolis
Monte Carlo steps for protonation state sampling at specified
MD intervals. The discrete constant pH method, which
samples only physically meaningful protonation states, can be
executed either in GB solvent22 or explicit solvent.23 One
advantage is that multiple residues can be titrated in a single
simulation, and each time point corresponds to a physically
meaningful binary protonation state of the system (i.e., each
titratable group either has a proton or does not). A
disadvantage is that the Monte Carlo step to evaluate the
protonation change acceptance probability is carried out with
an implicit GB solvent energy calculation, even when the
underlying simulation uses explicit solvent.
4.2. Continuous Constant pH Molecular Dynamics

(CpHMD). CpHMD24 propagates fictitious lambda particles
(representing the progress of protonation states) alongside real
particles (atoms) according to Newton’s equation of motion.
The GPU-accelerated particle mesh Ewald (PME)-CpHMD
implementation in Amber fully eliminates the dependency of
constant pH simulations on implicit GB solvent model.25

Forces on both real and lambda particles are calculated in
explicit solvent, allowing protonation states to be directly
determined by the atomic environment, including ions, lipids,
and nucleic acids. Thus, the PME-CpHMD method is
particularly suited for studying proton-coupled conformational
dynamics of transmembrane proteins and nucleic acids. An
asynchronous replica exchange algorithm allows the use of any
number of GPUs26 for PME-CpHMD REMD. The PME-
CpHMD method builds upon the GBNeck2-CpHMD method
in Amber,27,28 which utilizes GBNeck229 for both conforma-
tional and protonation state sampling. The GBNeck2-CpHMD
method is particularly suited for pKa calculations,28 including
challenging residues such as cysteines30 and lysines.31

4.3. Constant Redox Potential MD. Due to the
mathematical similarities between the Henderson−Hasselbalch
and Nernst equations, CpHMD methods can be applied to
electrochemistry. The only difference is that now a simulation
at constant redox potential requires a cycle that contains both
reduced and oxidized forms.32,33 Discrete constant pH and
redox potential MD simulations (C(pH,E)MD) can also be
carried out. Some additional information is provided in Section
5.4, below.

5. REPLICA EXCHANGE MOLECULAR DYNAMICS
(REMD)

The support for different variations of REMD, an enhanced
sampling method,34,35 has expanded in recent Amber versions,
and a new python tool is included to help users set up the
inputs for complex REMD simulations. Examples of useful
REMD methods are given in the following subsections.
Generally exchange attempts can be made between even/odd
partners. Users have the option of implementing a randomly
selected pair in Hamiltonian REMD (H-REMD) simulations
and or limiting exchange between the first and last replicas.
5.1. Constant Pressure (NPT) REMD. Originally limited

to exchanging only temperatures in the NVT ensemble, pmemd
now supports the use of NPT simulations with REMD. When
system volume can change, as in an isothermal−isobaric
ensemble, the probability P of observing a system in a
particular configuration is related to pressure and volume in
addition to energy.36 The specific equations implemented in
Amber are shown below:

=P X E e e
Z

( , )i a

E X P V X

a

( ) ( )a i a a ia

(1)

where Pa is the external pressure on the system and V(Xi) is
the volume of the system with coordinates Xi. This changes the
Hamiltonian replica exchange probability delta to

= +E E P P V X V X( ) ( )( ( ) ( ))H P b b a a b b a a j i, (2)

and the temperature Hamiltonian replica exchange (i.e., when
Ea is the same as Eb) probability to

= +E P P V X V X( )( ( ) ( ))T P b b a a j i, (3)

The right-most term in the Hamiltonian and temperature
deltas can be thought of as a “correction” that can be added to
the constant volume deltas:

= P P V( )b b a acorrection (4)

This PV correction term is added to the Metropolis
calculation to account for changes to periodic box dimensions
and has been incorporated into Amber when the isothermal−
isobaric ensemble is active. Lastly, communication is
minimized by the transfer of thermostat temperatures between
replicas after a successful exchange, rather than coordinates
and velocities. The resulting trajectory files written by an
individual MD simulation therefore represent continuous
sampling of coordinate space, with changing thermostat
temperature. These individual “walker” trajectories can readily
be converted to trajectories for each thermostat temperature
via postprocessing in cpptraj.37

5.2. H-REMD. Hamiltonian replica exchange is also
supported in pmemd. Each replica can load a different topology
file, allowing alteration of force field parameters between
different replicas. Alternately, replicas can vary a parameter in
their Amber input files, allowing for many different
applications. A few examples include the use of different
restraints for umbrella sampling, or different boost strength for
accelerated MD. Compared to the traditional approach of
using a single MD walker per Hamiltonian, H-REMD allows
multiple walkers to contribute to ensemble generation for each
Hamiltonian, speeding convergence. In H-REMD, the
Metropolis criterion involves evaluation of the energy for
each coordinate set using each Hamiltonian. From a practical
standpoint, evaluation of the energy for a coordinate set in the
alternate Hamiltonian is accomplished by communicating the
coordinates to the replica in which that force field or restraint
set are already set up. Since this communication is required,
the output trajectory files are continuous in Hamiltonian. If
desired, conversion to trajectories with continuous sampling of
coordinate space is carried out with cpptraj. The similarity of
the detailed balance equation for H-REMD to that for free
energy perturbation (FEP) allows Amber to carry out replica
exchange FEP (REFEP) and simultaneously report ΔG values
between pairs of windows.38

5.3. pH-REMD. Solution pH can also be varied across
different replicas,39 allowing for constant pH REMD. This can
provide a significant advantage over single-pH simulations,
since the titration curves can be strongly dependent on pH.
When simulating at a pH far from the pKa value, the
probability of sampling alternate protonation states can be low,
which can lead to kinetic trapping in a conformation that
favors the current protonation state. Visiting alternate pH
values can facilitate conformational changes that are coupled to
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pH, speeding convergence of constant pH simulations and
predicted pKa values. pH-REMD simulations can be carried
out in either implicit or explicit solvent.23

5.4. Redox and Coupled Redox-pH REMD. In Amber,
REMD can be carried with replicas sampling different solution
pH values, as well as different redox potentials. Using 2D-
REMD, both can be varied (E, pH-REMD) for enhanced
sampling efficiency when using the discrete protonation state
variant of pH-REMD.40 A study demonstrated the use of
C(pH,E)MD to investigate coupled redox and pH effects in a
small protein with four heme groups that have distinct redox
and pH profiles, but it is very hard to assign particular pKa/E0
to individual hemes.41

5.5. Multidimensional REMD. Amber now supports
multidimensional REMD,12 where users can define combina-
tions of the above tools. For example, replicas can vary by
Hamiltonian in one dimension, and temperature in another.
Exchange attempts are carried out between replicas that vary
only in one dimension. Since the computational costs grow
rapidly, users are cautioned to carefully consider which
dimensions are most likely to improve sampling for the
specific problem being studied.
5.6. Reservoir REMD. A combined Monte Carlo + MD

approach using the reservoir REMD method42,43 has been
implemented in which users can load a set of alternate
conformations in a pregenerated structure reservoir. Periodi-
cally, exchanges are attempted between the currently sampled
conformation and one selected randomly from the reservoir.
Reservoir REMD rapidly accelerates the ensemble convergence
of REMD simulations. The method has been applied to the
simulated folding of peptides/proteins44 and RNA,45 estimat-
ing the impact of mutations,46 as well as refinement and
reranking of alternate ligand poses47 generated using virtual
screening.

6. ALCHEMICAL FREE ENERGY
Alchemical free energy (AFE) methods48 leverage artificial
“alchemical” pathways to efficiently predict free energy
difference between states, and can be applied to gain insight
into chemical processes such as the transfer of a molecule from
an aqueous to lipid environment, the change in protonation
state of a titratable residue in a protein or nucleic acid, or the
binding of a drug-like molecule (ligand) to a protein target.

The infrastructure for conducting AFE simulations has been
greatly extended in Amber to include a wide range of new
methods. A number of new features enable optimization of
alchemical transformation pathways.49,50 As a start, these
include the use of “smoothstep” functions51 in the weights
used for the Hamiltonian mixing, and new form of softcore
potentials49 that maintain balance between Coulomb attrac-
tions and short-ranged Lennard-Jones repulsions. Users can
“soften” the Lennard-Jones and electrostatic interactions with
increasing values of α and β parameters, respectively (see ref
49 for details). Further flexibility is provided through lambda-
scheduling features that allow customized transformations to
be performed. Specifically, different energy terms can be
transformed over distinct lambda subintervals.52 For example,
a traditional stepwise “decharge-vdW-recharge” transforma-
tion,53 that in previous versions of the code would require 3
separate simulations, could be combined now in a single-step
transformation. Second, an alchemical enhanced sampling
(ACES) method has been implemented for robust AFE
simulations for a wide range of applications.54 The ACES

method leverages the new optimized alchemical transformation
pathways along with Amber’s existing Hamiltonian replica
exchange molecular dynamics (H-REMD) framework that has
recently been extended for use in the NPT ensemble. Third,
new tools for customizing the lambda-spacing through
optimization of the phase space overlap lead to improved H-
REMD and ACES sampling.55 Fourth, scaffold-hopping (core-
hopping) relative binding free energy (RBFE) and absolute
binding free energy (ABFE) capability are enabled through
lambda-dependent Boresch bond, angle, and torsion restraints,
and enhanced by lambda-dependent RMSD-fitting restraints to
floating reference molecular scaffolds. Fifth, AFE simulations
can be conducted using equilibrium thermodynamic integra-
tion or free energy perturbation methods, or using a new
nonequilibrium work framework and application of Jarzynski56

and Crooks57 equations. Sixth, end-state free energy
corrections using an “indirect” (sometimes referred to as
“book-ending”) approach (e.g., MM → QM, MM → MLP, or
MM → QM + MLP) are possible for a wide range of
generalized hybrid quantum mechanical (QM) and machine
learning potentials (MLP).58−61 These free energy simulations
can be performed using either equilibrium62 or nonequili-
brium59 methods. Seventh, network-wide alchemical free
energy analysis of thermodynamic graphs with cycle closure
and experimental constraints63 is enabled through the latest
version of FE-ToolKit.7,64 FE-Toolkit is a versatile software
suite for the automated analysis of free energy surfaces,
minimum free energy paths, and alchemical free energy
networks (thermodynamic graphs).64 Finally, these methods
have been integrated into workflows for production free-energy
simulation setup and analysis.65

7. IMPROVED SAMPLING IN A SINGLE MD
SIMULATION

Both REMD and AFE calculations are parallel processes. If
single CPU or GPU sampling is needed, new improved
sampling methods are under development in Amber.
7.1. Self-Guided Langevin Dynamics. The self-guided

(SG) molecular simulation methods, namely, the self-guided
molecular dynamics (SGMD)66,67 and the self-guided
Langevin dynamics (SGLD)68−73 were developed for efficient
conformational searching and are implemented in Amber. SG
methods do not rely on a priori energy barrier information to
enhance sampling. Instead, they achieve an enhanced
conformational search by promoting low frequency motion,
which is extracted through a simple local averaging scheme
during simulations. SGMD/SGLD has been applied to many
studies of long time scale events such as peptide folding,74−77

conformational reorganization,78 conformational state recog-
nition,79 and conformational transitions.80−82

7.2. GaMD. Gaussian accelerated MD (GaMD) is an
established enhanced sampling technique that has been
implemented in Amber since 2012.83,84 In GaMD calculations,
a harmonic boost potential is added to smooth the
biomolecular potential energy surface83 and reduced the
system energy barriers. GaMD accelerates biomolecular
simulations by orders of magnitude. When the rare events
are not known in advance, the method is advantageous because
a predefined reaction coordinate or collective variables are not
required. This enables unconstrained sampling of large
biomolecular complexes. Since the GaMD boost potential
exhibits a Gaussian distribution, biomolecular free energy
profiles can be approximately recovered through cumulant
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expansion to the second order. Moreover, Amber includes
novel ligand GaMD (LiGaMD),85−87 peptide GaMD (Pep-
GaMD),88 and protein−protein interaction GaMD (PPI-
GaMD),89 which allow for binding thermodynamics and
kinetics calculations of small molecules, peptides, and proteins,
respectively.

8. THE “MIDDLE” THERMOSTAT
As an alternative thermostat, the middle thermostat scheme
also leads to accurate configuration distribution of the constant
temperature ensemble (e.g., NVT or NPT ensemble),
regardless of whether the thermostat is stochastic or
deterministic.90−92 For example, it yields a new, more efficient,
and robust integrator that achieves accurate joint distribution
of volume and configuration for the isobaric−isothermal
(constant-NPT) ensemble.93 In comparison to conventional
MD integrator algorithms, the middle thermostat scheme
increases the time step size (i.e., time interval) by a factor of
4−10 for obtaining converged results. The middle thermostat
scheme for flexible force fields as well as for force fields with
holonomic constraints (e.g., fixed bond length) has been
integrated into pmemd, pmemd.MPI, and pmemd.cuda.

9. FORCE FIELDS
9.1. General. The force fields supported in Amber are

distributed in AmberTools7 annually and are not covered here.
However, it is worthwhile to note that each molecule type
(e.g., protein, RNA, DNA, ligand, carbohydrate, lipid, etc.) or
ion that is incorporated into the users’ system and simulated
with pmemd has its own force field. Choosing the correct
combination is important to simulation reliability and
recommendations can be found at the Amber Web site21

under the Force Fields page.
9.2. Integration of 12−6−4 Nonbonded Potentials

for Metal Ions. Amber 2024 enhances the flexibility of a
previously established 12−6−4 LJ nonbonded model94 by
allowing the users to manually scale up/down the polarizability
of ligand atoms according to several recent parametrization
schemes.95,96 The new model is hence known as a modified
12−6−4 LJ nonbonded model.

Users may find some preparametrized polarizabilities for
common metal−imidazole95 and metal−acetate96 interactions
to fulfill the need of simulating metal binding sites containing
aspartates, glutamates and histidines. Moreover, Amber 2024
also supports directly defining C4 coefficients between specific
atom pairs. Users may directly use tLEaP to apply the highly
flexible, yet chemically meaningful C4 coefficients to any metal-
containing systems.

In previous versions of Amber and AmberTools, a dummy
atom type is needed to achieve this atom-pair-specific version
of modified 12−6−4 LJ nonbonded model, as mentioned in
the earlier work.97 With the support of Amber 2024, no
dummy atom type is needed, and the atom-pair-specific
version of modified 12−6−4 LJ nonbonded model can be
applied more precisely and efficiently.20

10. TUTORIALS
Tutorials are continually maintained and updated on the
Amber Web site21 under the Tutorials page. At that site, a full
list of tutorials and descriptions can be found; examples
include how to build different simulation systems, how to
parametrize nonstandard parameters, generally creating stable

systems and running standard MD, general trajectory analysis,
some simple case studies, free energy calculations, chemical
reactions and equilibria and helpful tools. Noteworthy new
tutorials orient users to the middle thermostat, TI with ACES
calculations, including a “Quick Start” FE-ToolKit tutorial on
how to analyze free energy simulations, and use of 12−6−4
nonbonded potentials in metal ions.

■ ASSOCIATED CONTENT
Data Availability Statement
Amber is free of charge for noncommercial use. Please see the
Amber Web site21 for full licensing and distribution
information. To download Amber, navigate to the Amber
Web site under the Download Amber section. Software
dependence and build directions can be found in the
Installation section of the Amber Web site (https://
ambermd.org).
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