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ABSTRACT: Free energy simulations play a pivotal role in diverse biological applications,
including enzyme design, drug discovery, and biomolecular engineering. The characterization
of high-dimensional free energy surfaces underlying complex enzymatic mechanisms
necessitates extensive sampling through umbrella sampling or string method simulations.
Accurate ranking of target-binding free energies across large ligand libraries relies on
comprehensive alchemical free energy calculations organized into thermodynamic networks.
The predictive accuracy of these methods hinges on robust, scalable tools for networkwide
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data analysis and extraction of physical properties from heterogeneous simulation data. Here,
we introduce FE-ToolKit, a versatile software suite for the automated analysis of free energy surfaces, minimum free energy
paths, and alchemical free energy networks (thermodynamic graphs).

B INTRODUCTION

The FE-ToolKit software is used to analyze and visualize
high-dimensional free energy surfaces and alchemical free
energy networks. FE-ToolKit consists of 3 main
components: ndfes, edgembar, and fetkutils. The
ndfes component analyzes umbrella sampling to produce
multidimensional free energy surfaces' (FES) and optimize
minimum free energy paths using the surface accelerated string
method.” The edgembar component analyzes alchemical
free energy (AFE) simulations® to calculate relative free
energies between reference and target environments, e.g, in
binding or solvation processes. The relative free energy
simulations can be collected to form a topological network
of transformations (sometimes referred to as a thermodynamic
graph), and edgembar will perform networkwide free energy
analysis to enforce cycle closure conditions and (optionally)
additional experimental constraints. The fetkutils
component contains programs to choose optimized AFE A-
schedules.” Also contained in fetkutils are utilities to
calculate kinetic isotope effects from umbrella sampling and
path integral molecular dynamics (PIMD) simulations.® These
tools have been described in detail elsewhere.”

Free energy applications analyze a large number of
simulations. High-dimensional free energy surfaces often use
data from many umbrella sampling simulations (sometimes
several thousand®). AFE networks consist of multiple edges
(transformations) composed of alchemical “A states” simulated
within several independent trials to obtain averages and error
estimates. Specialized methods and algorithms are required to
efficiently perform global FES' or networkwide AFE" analysis.
In addition, one quickly becomes burdened with managing and
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examining hundreds (or thousands) of simulations to identify
unequilibrated sampling, poor phase space overlap with
neighboring states, data correlation, and statistical outliers.
An automated process is necessary to detect problematic
sampling and to summarize a wide array of potential issues for
the user. The FE-ToolKit software includes algorithms for
automatically detecting and discarding unequilibrated sam-
pling. In addition, FE-ToolKit reports a wide array of
indexes that can be used to alert the user to potential problems
and analyses to facilitate troubleshooting. The details of these
algorithms, a description of the error analysis, and an extended
discussion of the theory are provided in the Supporting
Information.

In summary, FE-ToolKit (Figure 1) provides the
following features and capabilities:

e Multistate Bennett Acceptance Ratio’ (MBAR) and/or
variational free energy profile”'”'" (VFEP) analysis of
high-dimensional free energy surfaces.

e Determination of minimum free energy paths using the
surface accelerated string method.”

e Networkwide analysis of thermodynamic graphs with
Lagrange multiplier constraints for cycle closure
conditions and experimental priors.”'*"?
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Figure 1. FE-ToolKit consists of ndfes for calculating N-dimensional free energy surfaces, edgembar for analyzing alchemical free energy
networks using the EdgeMBAR method, and FE-ToolKit utilities (fetkutils) for optimizing schedules of alchemical states.

e Interoperability with equilibrium and nonequilibrium
work simulations,'*™'¢ as well as indirect end state
“book-ending” free energy corrections.'’

Automated determination of equilibrated sampling
regions and outlier trial detection.

Robust error analysis that considers correlation of time
series data and independent trials, as well as cycle
closure conditions.

Trouble-shooting analysis, including calculation of
Lagrange multiplier indexes, dU/dA profiles and
variances, phase space overlap, and replica exchange
efficiency.

Tools for determination of optimized A schedules using
phase space overlap, Kullback—Leibler divergence and
replica-exchange acceptance ratio methods.”

The Amber/AmberTools'®"” software can perform GPU-
accelerated alchemical free energy simulations with molecular
mechanics force fields'>'>*°~** and umbrella sampling
simulations using generalized quantum mechanical/molecular
mechanical and machine learning potentials.”>** This includes
recently developed range-corrected deep-learning poten-
tials,”>*® graph neural network potentials,”” and the QDx
models developed for drug discovery applications.”**’ The
FE-ToolKit package has been integrated into Amber-
specific free energy workflows;*® however, it reads data
through its own input file formats rather than directly parsing
simulation output. In this manner, the analysis programs are
independent of the simulation package. The file formats are
described here, the Supporting Information, and the Quick
Start Tutorial.>' The input, output, and command-line options
of all software within FE-ToolKit use kcal/mol energy
units unless explicitly overridden by the user.

B UMBRELLA SAMPLING FREE ENERGY ANALYSIS

Umbrella sampling is used to study reaction mechanisms by
introducing bias functions (harmonic potentials) to enhance
the probability of observing rare configurations, such as
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transition states.”” > An unbiased FES is obtained with
biased sampling performed along relevant reaction coordinate
values using either the MBAR’ or vFEP method.”'”"" Other
analysis techniques include umbrella integration,%_38
weighted histogram analysis’”*’ (WHAM), and unbinned
WHAM'"* (UWHAM). The reweighting procedure can be
extended to predict the FES of a target potential energy
function from biased sampling obtained with inexpensive
reference potentials. The weighted thermodynamic perturba-
tion**** (WTP) and generalized weighted thermodynamic
perturbation® (gwTP) methods predict the high-level surface
from sampling produced by one or more reference potentials,
respectively.

The ndfes program produces multidimensional FESs by
using the vFEP, MBAR, wTP, and gwTP methods. The input
is a “metafile” whose lines describe the biased states. It is a
generalization of the input used by Alan Grossfield’s WHAM
program.*® Each state is characterized by an integer index
(“Hamiltonian index”) that denotes the unbiased potential
energy function, the harmonic force constants and positions
used during sampling, and the simulation temperature. Each
line of the metafile also provides a “dumpave” filename whose
rows are the observed samples and whose columns are the
simulation time and the reaction coordinate values. Additional
columns of unbiased potential energies of the reference and
target potentials are included if a wIP or gwTP analysis is
desired. The Hamiltonian index within the metafile indicates
which of the extra columns corresponds to the sampled state’s
unbiased potential energy. The ndfes output is an Extensible
Markup Language (XML) file that defines a multidimensional
histogram and includes information for each occupied bin: the
free energy value, standard error, the number of samples, and
the reweighting entropy.”” The ndfes input and output
formats are independent of the molecular dynamics software
used to generate the biased sampling; however, the ndfes-
PrepareAmberData.py script is provided as a conven-
ience to help create metafile and dumpave files from
simulations performed with the sander software. Examples of

https://doi.org/10.1021/acs.jcim.5c00554
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the ndfes metafile and dumpave formats are found in the
Supporting Information and Quick Start Tutorial.>"

FE-ToolKit is packaged with utilities to prepare, analyze,
and visualize FESs. The ndfes-CombineMetafiles.py
script combines multiple metafiles to analyze aggregate
sampling drawn from multiple trials. The ndfes-Avg-
FESs.py script reads multiple FESs and outputs an average
FES. The FE-ToolKit package includes examples that
illustrate 2- and 3-dimensional FESs using the ndfes
companion python library. The ndfes-CheckEquil.py
utility uses the biasing potential time series to identify
unequilibrated sampling within a dumpave file.

The ndfes-path program included within FE-Tool-
Kit implements the surface-accelerate string method”
(SASM) and the modified string method in collective
variables.”® The SASM method differs from other string
methods** ™ by propagating the string from the aggregate
sampling produced from all previous iterations using fast
methods for robust evaluation of high-dimensional free energy
surfaces.' The available sampling is analyzed to produce a best
estimate of the FES, and the current estimate of the minimum
free energy path is optimized on the fixed surface.

The ndfes-genbias program is similar to ndfes;
however, it does not assume that the simulations are biased
with harmonic potentials. Instead, the values of the biasing
potentials are read from extra columns within the dumpave
files. The ndfes-genbias metafile format does not
include umbrella window positions and force constants; it
provides a “bias index” to indicate which of the extra columns
corresponds to the bias used during sampling. Further details
regarding the input format can be found in the Supporting
Information. We recommend using ndfes rather than
ndfes-genbias whenever possible. The ndfes input
files and memory requirements are much smaller because it
computes the bias potential as needed. The ndfes-
genbias program is not yet capable of performing the
vFEP method. Finally, one must exercise caution when
aggregating the samples obtained from multiple trials and
reference potentials because the “bias indexes” are invalidated
if the metafiles do not use the same ordered set of biasing
potentials. Similarly, all ndfes-genbias dumpave files
would need to be completely rewritten if a new biasing
potential was encountered.

B ALCHEMICAL FREE ENERGY ANALYSIS

The edgembar program analyzes networks (graphs) of AFE
simulations where the nodes and edges represent ligands and
alchemical transformations, respectively. The free energy of an
edge connecting ligands a and b is decomposed into
contributions from two environments AAG(;) = AG(ap) target
— AG(g)er The transformation in an environment is
decomposed into stages, AG,,), = ZSAG(“b)“' using either a
one-stage softcore—electrostatic™*>° or three-stage split
protocol.”” The free energy of a stage is an average of multiple
independent simulation trials, AG(y).s = (AG(4p)est), Where t
indexes the trial. A “trial” is a set of simulations performed at
Niate,(ab)est States spanning A € [0, 1], which define the
potential energy, U, (r;4). The trial’'s free energy is the
difference between its final and initial states, AG(u)y =
Gapyesti=1 — G(ab)estio- MBAR analysis of trial ¢ is equivalent to
minimization of a convex objective function, F()est(G), with
respect to Ny (ap)est State free energies, Gup)esr
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1 Nitate, (ab)est Ns, (ab)estj

F(uh)est(G(uh)est) =

s, (ab)est j=1 k=1

Natate, (ab)est

X In| exp[_/}lj(ab)zs(r(ab)zst;kl. /11) - b(ub)esﬂ]
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Nitate, (ab)est N (b
+ ’—b(ab)esti
i=1 I\Is,(uh)est (1)

Here, # = 1/ki T, where kj is the Boltzmann’s constant, T is the
absolute temperature, N (). is the number of samples drawn
from state i, N (,p).s is the aggregate number of samples within
trial £, ¥(4)esc i sample k in the ensemble of state j from trial £,
and b,y is shown in eq 2.

Z\Ts, (ab)esti
—|n X

b(ub)esti = - ﬂG(uh)esti

l\ls,(ab)est (2)

Alternatively, one can define an objective function for the
entire edge, F(,;)(G(,)), and simultaneously solve for every
state in each environment, stage, and trial.

Zleal,w)a
t=
Ea(Ga) = D

¢ Ntrial,(ab)es

N,

stage

E 3)

The edge free energy is calculated from these values,
AAG4)(G{y)), where the asterisk denotes the energies
which minimize eq 3.

The sum of edge free energies along any closed path in the
network should be zero; however, this is not guaranteed when
the edges are independently analyzed. To rectify this, the
MBARnet method* calculates every state in the network by
minimizing a graph objective function (a sum of edge
objectives) while imposing constraints to enforce closure
conditions on minimal length cycles (cycles that cannot be
formed by the union of smaller cycles). The MBARnet method
has several shortcomings. The graph objective is expensive to
evaluate; it requires a large amount of computer memory; the
optimization needs to be performed if any new data or edges
are added or removed; and enforcement of minimal length
cycle closures does not guarantee that larger cycles will close.

The EdgeMBAR method avoids these shortcomings by
introducing a graph objective function expressed in terms of
Ny, — 1 ligand free energies. One ligand defines the arbitrary
zero of energy, and the remaining free energies are relative to
the reference ¢, = AG, — AG,. The graph objective function is
a sum of effective edge objectives F(c) = Y () Fan)(cy — c,)-
The argument of an effective edge objective is a scalar value:
the edge free energy. Values of the edge objective function can
be pretabulated from constrained optimizations.

F(ub)est(G(ub)est)

F(ab)(x)= Iélln F(ab)(G(ab))
(ab)

subject to: AAG(ab)(G(ab)) =x (4)
We observe that F(,;)(x) is well-modeled by a quadratic
function centered about the unconstrained free energy, g(,;) =
AAGE,), and whose force constant is fit to 5 points x =
AAGE,) = 6, where 6 is 0, 1, or 2 kcal/mol. The graph
objective and its solution for the ligand free energies are shown
in eqs 5 and 6, respectively.

F(c) = Z

(ab)

k(ab)

(Cb -G _ga )2
(ab) (s)
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c=M"'X"Kg (6)
g is a N X 1 array of unconstrained relative free energies, K
is a Negge X edge diagonal matrix of force constants, K(ah) (cd) =
5(:117) (cd)k(ab)f Xisa Nedge X (Nhg 1) matrix, X(ab) ¢ = 5 be ac
and M = X"K-X. One may have accurate reference
(experimental) values for a subset of the edges. These can
be incorporated as linear constraints, as described in the
Supporting Information.

The edgembar program analyzes simulation data for a
single edge. It computes the state free energies and
pretabulates the effective edge objective function (eq 4). The
input is a XML file which organizes the simulation data into
the hierarchy of environments, stages, trials, and states. The
data from a trial are a collection of files named:
“efep_tlam_elam.dat”, where tlam is the sampled state, and
elam is the state whose potential energies are tabulated within
the file. The first column is the simulation time (ps), and the
second column is a potential energy (kcal/mol). Further
discussion and examples can be found in the Supporting
Information and Quick Start Tutorial.’’ The edgembar
output is organized into a data structure and written to a
python file that can be imported directly into other scripts for
analysis. Execution of the python output causes its results to be
summarized in a HTML-formatted “edge report”.

The edgembar-WriteGraphHtml.py script reads
multiple edgembar outputs, calculates the ligand free
energies (eq 6), and summarizes the results in a HTML-
formatted “graph report”, which compares the isolated edge
free energies to the ligand free energy differences. Tables of
closed paths and their closure errors are included. The graph
and edge reports display energies in kcal/mol; however, future
releases of edgembar will allow one to choose the output
energy units. Reanalysis of the ligand free energies is
inexpensive when new data is introduced because only the
new edges need to be recalculated; the cost of solving the
ligand free energies from eq 6 is small.

There are several existing python-based MBAR implemen-
tations for calculating state free energies in a trial>*™®
edgembar is a C++ implementation that supports OpenMP
parallelization but lacks GPU acceleration. The key feature of
edgembar is its ability to simultaneously solve for all trials,
stages, and environments while imposing constraints on the
resulting AAG to precalculate edge objective functions for
networkwide analysis.

B ALCHEMICAL A SCHEDULES

The fetkutils component supplies the fetkutils—
tischedule. py script for preparing application-specific
AFE JA-schedules’ to improve phase space overlap and the
efficiency of Hamiltonian replica exchange (HRE). The MBAR
method requires phase space overlap between states to
produce reliable results.” Furthermore, poor overlap between
any pair of adjacent states produces an exchange bottleneck in
HRE simulations that adversely effect round-trip statistics.”"**

For a given number of states, the goal is to choose the
simulated A values to achieve uniform exchange rates or phase
space overlap along the A coordinate. To do this, one simulates
an alchemical transformation for a brief amount of time with a
large number of alchemical states (for example, 21 states) to
ensure good phase space overlap between adjacent states. One
then chooses a schedule size for production, and the
scheduling script analyzes the “burn-in” simulations to
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optimize the A values to minimize the variance in a property
along the alchemical dimension (either the predicted replica
exchange probability ratios, phase space overlap, or Kullback—
Leibler divergence). An extensive discussion of the underlying
theory is found in ref S and the Supporting Information. In
addition to choosing the schedule size and property, one can
also place conditions on the optimized schedule, such as
enforcing symmetry about 4 = 0.5.

B CONCLUSIONS AND OUTLOOK

As free energy simulation methods advance to tackle
increasingly complex problems, there is great need to develop
robust, automated, efficient, and scalable analysis methods able
to keep pace. These tools are critical to inform users of
potential issues and provide data analytics needed to
troubleshoot. FE-ToolKit was created to address these
challenges and will continue to be developed and maintained
to support emerging integrated free energy methods.

B ASSOCIATED CONTENT

Data Availability Statement

FE-ToolKit software, full documentation, and a quick start
guide are distributed under the MIT License at https://gitlab.
com/RutgersLBSR/fe-toolkit or as part of the AmberTools
package available at https://ambermd.org/AmberTools.php.

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00554.

A detailed discussion of the theory, algorithms, error
analysis, file formats, and examples (PDF)
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