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ABSTRACT: We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways
from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM
accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations,
whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables
(MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the
number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized
on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations
is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of
the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to
improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it
improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV,
and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-
transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5
reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV
methods. All three algorithms have been implemented in the FE-ToolKit package made freely available.

1. INTRODUCTION
The ability to model chemical reactions in the condensed
phase1 using molecular simulations has far-reaching implica-
tions for the study of catalysis in biological systems.2,3

Advances in fast, accurate quantum mechanical force fields4,5

and machine learning models6−11 have greatly extended the
scope of applications that can be routinely addressed.
Nonetheless, simulations of complex reaction pathways remain
computationally intensive, and the ongoing development of
new methods to improve the robustness and computational
cost are important.
Reaction mechanisms can be characterized by calculating a

free energy surface in a set of relevant reaction coordinates, the
determination of the minimum free energy profile (MFEP)
through the surface, and the identification of key stationary
points along the MFEP. Many methods for calculating free

energy surfaces have been developed. These approaches can be
categorized as12 methods which analyze equilibrium statistics
obtained from umbrella sampling,13−16 methods which analyze
nonequilibrium statistics17−20 based on the work of Jarzyn-
ski,21 and methods that integrate auxiliary degrees of freedom,
such as λ-dynamics22−25 and metadynamics.26,27 Similarly,
there are two general approaches for locating a minimum free
energy path.28 The first approach is to sample the reaction over
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a wide range of reaction coordinate values to obtain a relatively
complete picture of the free energy surface through which a
path can be optimized. This approach can greatly benefit from
enhanced sampling methods, such as replica exchange
molecular dynamics29 and integrated tempering sampling.30

The second, and more cost-effective, approach is to use a
chain-of-states method, such as nudged elastic band31 or the
string method,32,33 to direct the sampling toward the MFEP,
thereby reducing the amount of effort spent simulating
irrelevant, high-energy regions of the free energy surface.
Many variations of the string method34−41 have been

developed that are capable of being applied to large-scale
problems, like protein folding.36,37 These applications often
describe the path using a large number of reaction
coordinates,42 direct comparison of Cartesian coordinates,32

path collective variables,28,43 the use of the hills method,26,44 or
machine learning techniques.45 Although string method
development was originally motivated by the desire to use
many reaction coordinates,34,35,38 many examples can be found
of their use in quantum mechanical/molecular mechanical
(QM/MM) applications involving only a few reaction
coordinates.46−52 String methods, such as the one presented
in ref 38, are particularly appealing because it is performed
with standard umbrella sampling with harmonic biasing
potentials, which are widely supported across simulation
packages. Because QM/MM sampling is very costly, the
present work seeks to optimize the string method described in
ref 38 specifically for cases involving QM/MM simulations
with a few reaction coordinates. The new method reduces the
number of string iterations required to reach convergence
because it uses the current estimate of the unbiased free energy
to accelerate the exploration of flat regions of the surface. In
this respect, the new method draws inspiration from ideas

behind the metadynamics approach;26,27 however, the new
method only requires sampling obtained using standard
harmonic biasing potentials.
We describe a new surface-accelerated string method

(SASM) and compare it to two similar algorithms: the string
method in collective variables34,35 (SMCV), and the modified
string method in collective variables38 (MSMCV). We have
implemented all 3 of these methods in the ndfes software49

freely distributed within the FE-ToolKit package.53 The FE-
ToolKit package has also been incorporated in the open-source
AmberTools simulation suite.54 There are several key differ-
ences between the SASM and related string methods. First, the
SASM is a hybrid of the two approaches for locating an MFEP
(chain-of-states method versus calculation of a multidimen-
sional free energy surface). Whereas the SMCV and MSMCV
update the path from the sampling obtained in the most recent
string iteration, the SASM optimizes the path on the current
estimate of the multidimensional free energy surface calculated
from the aggregate sampling of all string iterations. In this
respect, the SASM is similar to some adaptive umbrella
sampling strategies.55 Second, the SASM decouples the
number of images used to represent the path from the number
of simulated images. The SMCV and MSMCV methods
construct a new path by fitting a curve that interpolates a set of
discrete control points obtained from a corresponding number
of simulated images; therefore, if there was an insufficient
number of images, the path may cut corners. By decoupling the
representation of the path from the number of simulated
images, the level of detail used to describe the path is not
limited by the number of simulations. Third, unlike the SMCV
and MSMCV, the SASM does not require the images to be
simulated along the current estimate of the path. We take
advantage of this by introducing alternating stages of

Figure 1. (a) MTR1 ribozyme, HHr ribozyme, and a B-DNA with a GT wobble pair examined in this work. The rectangles highlight the active site
region. (b) Reaction mechanisms and reaction coordinates. The B-DNA system is a tautomer reaction which transfers the T21 N3 proton to
position O4 and reorganization of the G:T hydrogen bond network. The shown atomic configurations correspond to the reactant state. The black
and gray atoms denote the QM region and nearby MM atoms, respectively.
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“exploration” and “refinement” steps. The exploration steps
propose new simulations offset from the path in the direction
that the path is moving, and the refinement steps place
simulations along the path in a manner that improves the
phase space overlap.
We compare the progress of the string optimizations using

the SMCV, MSMCV, and SASM with respect to the number of
simulations per string, the sampling per simulation, and the
spline representation of the path (either piecewise linear or
Akima spline paths) in 3 applications. The first application uses
2 reaction coordinates to describe a ribozyme undergoing a
methyl transfer reaction (MTR1)56−58 (PDB ID 7V9E). The
second application uses 3 reaction coordinates to model the 2′-
O-transphosphorylation reaction of Hammerhead ribozyme
(HHr)59 (PDB ID 2OEU). The third application uses 5
reaction coordinates to optimize a tautomeric reaction pathway
in B-DNA (PDB ID 113D).60 Schematics of the 3 systems are
shown in Figure 1. We demonstrate that the SASM converges
the MFEP faster than the SMCV and MSMCV when we vary
the amount of sampling. The SASM avoids artifacts that can
occur in the path “reparametrization step” of the SMCV and
MSMCV. Finally, we show that the SASM method will sample
the path in an efficient manner that achieves good overlap
between the biased simulations when the number of
simulations is reduced.

2. METHODS
2.1. String Method in Collective Variables. This section

summarizes the SMCV method, which was originally described
in refs 34 and 35. Let x and q(x) be the 3N array of atomic
positions and Ndim reaction coordinate values, respectively.
Umbrella sampling is performed at Nimg images along the path
using a biased potential energy function, Un.

= +U U Wx x q x k q( ) ( ) ( ( ); , )n n n (1)

Image n is biased by a potential W that is parametrized by Ndim
harmonic force constants kn and equilibrium positions qn. In
other words, Ndim is the size of the reduced dimensional space
of reaction coordinates.

=
=

W k q qq x k q x( ( ); , )
1
2

( ( ) )n n
d

N

nd d nd
1

2
dim

(2)

The algorithm for calculating the SMCV consists of the
following steps:

1. Sample each of the Nimg images along the path for some
amount of time, Δt. The images differ by their biasing
potentials, which center the harmonic potentials at
discrete points along the current estimate of the path, qn.

2. Analyze the sampling to update (evolve) the reaction
coordinate values, qc,n. The “control points”, qc,n are
discrete estimates along the new path, but they do not
necessarily uniformly discretize it. The calculation of the
control points is sometimes called the “evolution step”.

3. Construct a parametric curve that interpolates the
control points. The parametric curve is the new estimate
of the path.

4. Uniformly discretize the parametric curve to obtain the
biasing potential centers for the next iteration. The
construction of a new curve and its discretization is
sometimes called the “reparametrization step”.

The SMCV evolution step is given by eq 3, where qnd
(k) is the

value of the reaction coordinate d of image n at string iteration
k, and qc,nd(k+1) is a control point used to define the parametric
curve in string iteration k + 1, discussed in the next section.
Each image is simulated for a length of time Δt, and · k q,n n

denotes a time average obtained from image n.

=+

=
q q t M Gk q k q( , ) ( , )nd

k
nd

k

d

N

dd n
k

n
k

nd n
k

n
k

c,
( 1) ( )

1

( ) ( ) ( ) ( )
dim

(3)

∇Gnd(kn
(k),qn

(k)) approximates the free energy gradient about
the point qn

(k) in dimension d.

=G
W

q
k q

q x k q
( , )

( ( ); , )
nd n n

n n

nd
k q,n n (4)

M is closely related to a product of mass-weighted Wilson B-
matrices;61 that is to say, ∇aq is the gradient of the reaction
coordinate value with respect to the atomic positions of the
atom a and ma is an atomic mass.

=
·

=
M

q q

m
k q

x x
( , )

( ) ( )
dd n n

a

N
a d a d

a
k q

1
,n n (5)

γ is a friction coefficient, a parameter of the method. The
numerical stability of the SMCV critically depends on the ratio
Δtγ−1. In ref 35, it was found that the method was stable when
choosing γ = 1500 ps−1 when Δt = 20 fs. In the present work,
we adjust γ to maintain this same ratio when Δt is varied. The
construction of parametric curves and their uniform discretiza-
tion are described in the next section.
2.2. Parametric Curves and the Reparametrization

Step. We represent a continuous path as a parametric curve of
reaction coordinates, q(p), where p ∈ [0, 1] is a progress
variable such that p = 0 and p = 1 denote two ends of the path.
In other words, the path at string iteration k, q(k)(p) is an array
of Ndim one-dimensional splines that are chosen such that each
spline interpolates the Nimg control points, qc,nd(k) located at a
common set of progress control values, pc,n

(k). Let
= { }p pp , ...,k k

N
k

c
( )

c,1
( )

c,
( )

img
and = { }q qq , ...,d

k
d

k
N d
k

c,
( )

c,1,
( )

c, ,
( )

img
denote

the Nimg × 1 arrays of progress control values and control
points in dimension d, respectively. The spline representation
of the path in dimension d, qd

(k)(p) is parametrized from these
quantities.

q p q p q p( ) ( ; , )d
k

d d
k k( )

c,
( )

c
( )

(6)

In the context of the SMCV (or similar string methods), the
control points are the new estimates of the reaction
coordinates after the evolution step (eq 3). In some cases,
one may choose to reduce the numerical noise in the path by
first applying a smoothing procedure, in which case the control
points are the reaction coordinate values after smoothing. The
results presented in this work use a smoothing algorithm
implemented in the ndfes software when the parametric
curve is modeled with Akima spline functions,62 but we do not
apply smoothing to the control points when using piecewise
linear paths. The details of the smoothing algorithm are
described in the Supporting Information.
The parametric curve depends on the progress control

values, which are interpreted as fractional arc lengths through
the curve. If the path is a piecewise linear function connecting
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the control points, then the progress control values can be
calculated from the Euclidean distance between adjacent
points, as shown in eq 7.
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= =
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(7)

Alternatively, if the parametric curve is a set of Akima spline
functions62 (or any smooth interpolating function), then eq 7
is only an approximation of the fractional arc lengths. Accurate
values of the progress control values can be found by iteratively
solving eq 8.
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dim c,
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c
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eq 8 describes the iterative solution of pc,n(k) by introducing a
second, auxiliary index i, pc,n(k,i). The initial values, pc,n(k,0) are the
piecewise linear approximation shown in eq 7, and we
t e r m i n a t e t h e i t e r a t i v e s o l u t i o n w h e n

<=
+p p( ) 10m

N
m
k i

m
k i

1 c,
( , 1)

c,
( , ) 2 16img . We drop the auxiliary

index to denote the converged progress control values.
Given the parametric spline representation of the path, the

uniformly discretized images for string iteration k + 1 are
shown in eq 9, where pn = (n − 1)/(Nimg − 1).

=+ + +q q p q p( ; , )nd
k

d n d
k k( 1)

c,
( 1)

c
( 1)

(9)

2.3. Modified String Method in Collective Variables.
The MSMCV was originally presented in ref 38; it differs from
the SMCV only by replacing the evolution step (eq 3) with eq
10.

=+q q x( )nd
k

d k qc,
( 1)

,n
k

n
k( ) ( ) (10)

In other words, the control points for the new path are the
mean observed positions of the reaction coordinates from the
simulations performed along the current path. Upon finding
the control points, a new parametric curve is fit. The curve is
uniformly discretized to define the new positions of the biasing
potentials.
2.4. Surface-Accelerated String Method. The SASM

constructs a Ndim dimensional free energy surface from the
available sampling and optimizes a path on that surface. A
decision is then made to place a new set of simulations, which
may or may not be along the optimized path. When the new
simulations are placed along the path, we refer to it as a
“refinement step”. Alternatively, we allow for “exploration
steps” that offset the simulations from the path in the direction
that the path is moving.
The algorithm for calculating the SASM consists of the

following steps.
1. Sample each of the Nimg images for some amount of

time.
2. Construct a Ndim dimensional unbiased free energy

surface by analyzing the aggregate sampling produced
from all simulations and string iterations. This is the best

estimate of the free energy surface from the available
sampling. The Ndim dimensional space is discretized into
bins, and the free energy value and the number of
observed samples in each bin are tabulated.

3. Create a smooth representation of the free energy
surface, such that the free energy value and gradient can
be readily computed at any point in the space of reaction
coordinates.

4. Use the free energy surface to optimize an MFEP in the
space of reaction coordinates. This optimization
procedure does not involve the generation of additional
sampling. Instead, the optimization is performed on a
fixed free energy surface using a series of “synthetic
string iterations”, described below.

5. If the current iteration is an even integer, then place the
new simulations along the path. If the current iteration is
an odd integer, then allow the new set of simulations to
be displaced from the path by some amount in the
direction that the path is moving.

The unbiased free energy can be calculated using established
methods, such as the variational free energy profile
method,49,63,64 the multistate Bennett acceptance ratio
(MBAR) method,65 or the unbinned weighted histogram
(UWHAM) method.66,67 As discussed in ref 49, a smooth
representation of the free energy surface can be made using
one of many methods, including the use of Cardinal B-
Splines,68 radial basis functions,69,70 or Gaussian process
regression.71 In the present work, we calculate the free energy
surface by solving the MBAR/UWHAM equations to reweight
the biased sampling. The samples are histogrammed, and the
free energy of each bin is tabulated. We use fourth-order
Cardinal B-splines to represent the surface as a smooth
function. A mathematical description of the B-spline
interpolation is provided in the Supporting Information for
completeness. The free energy values are formally defined only
in those regions whose histogram bins are occupied by at least
one sample. In practice, we exclude all bins containing fewer
than 10 samples because their free energy values are often
unreliable.
To optimize a path on a fixed free energy surface, we adapt

the MSMCV by replacing eqs 10 with 11, where F(q) is the
value of the unbiased free energy at q.

= { + }+ + +F Wq q q k qarg min ( ) ( ; , )n
k s k

n
k s

q
c,
( 1, 1) ( ) ( 1, )

(11)

=+ + + + + +pq q q p( ; , )n
k s

n
k s k s( 1, 1)

c
( 1, 1)

c
( 1, 1)

(12)

The qc,nd(k,s) values are the control points of the synthetic images
used to describe the path. Specifically, n indexes the synthetic
image, d indexes the dimension, k is the string iteration, and s
is the synthetic iteration. The number of synthetic images,
Nsimg, does not need to be the same as the number of images
used to perform explicit simulations, Nimg. In the present work,
we use Nsimg = 100 to describe the path. The biasing potential
appearing in eq 11 requires a set of force constants for each
synthetic image. If the number of simulated images was the
same as the number of synthetic images, then the simulation
force constants could be reused to define the synthetic image
biasing potentials. The number of synthetic images is often
much larger than the number of simulated images; therefore,
one needs to transform the Nimg × Ndim simulation force
constants into a set of Nsimg × Ndim force constants. Our choice
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is to use a common set of force constants for each synthetic
image by averaging the simulated force constants; that is,

= =k N kd n
N

nd
k

img
1

1
( )img . Equation 11 is analogous to the MSMCV,

but instead of performing a biased simulation of 3N atomic
coordinates to obtain the reaction coordinate distribution
means, one performs a minimization directly on a biased Ndim
free energy surface. In other words, eq 11 is a synthetic
iteration that allows us to repeatedly propagate the string
without producing additional sampling. The path is optimized
with Nsiter iterations (or until convergence is sufficiently met),
such that + + +p pq q q p( ) ( ; , )k k N k N

opt
( 1)

c
( 1, )

c
( 1, )siter siter is the best

estimate of the MFEP from the available sampling. The
optimized synthetic control points also serve as the initial guess
for the path in the next string iteration: =+q qn

k
n

k N
c,
( 1,0)

c,
( , )siter .

By optimizing the MFEP on the current estimate of the free
energy surface, the Nimg real images are no longer responsible
for describing the path. Instead, their sole responsibility is to
provide sampling to improve the quality and range of the free
energy surface. For this purpose, the SASM evolution step (eq
13) includes two modifications relative to a simple uniform
discretization.

= + ++ + + +p pq q q( )n
k k

n
k

n
k( 1)

opt
( 1) ( 1) ( 1)

(13)

The first modification is a shifting of the progress control
points when discretizing the parametric curve
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where pn,0 is a uniform discretization, and pn,+1/3 and pn,−1/3
shift the discretization by 1/3 of the distance to a neighboring
image.
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1
1n x,
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N(p) is the number of samples that have been observed at the
point qopt(k+1)(p). In other words, the first 3 cases in eq 14 check
whether there are gaps in the sampling along the path. If there
is a gap, then sampling at that position is prioritized. The last 3
cases in eq 14 are a schedule that is followed when no gaps in
the sampling are detected. The schedule alternates between
these displacements during the course of the string
optimization to help ensure that one obtains sufficient
sampling along the path in the event that one underestimates
an appropriate value of Nimg.
The second modification is the introduction of Δqn

(k+1)

which displaces the image in the direction of the path’s
movement.
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We refer to Δqn
(k+1) = 0 as a refinement step that places the

simulations along the path, and the other cases are exploration
steps intended to better describe the free energy surface in the
vicinity of the path in the direction of its movement. The
exploration steps accelerate the evolution of the string through
flat areas of the free energy surface. The leading Kronecker
delta function causes the exploration step to be skipped if a gap
in the sampling was previously detected in eq 14. The
exploration direction is determined from the difference
between the optimized paths of the current and previous
iterations.

= + *+ + +p p pq q q( ) ( )n
k k

n
k k

min ,
( 1)

opt
( 1) ( 1)

opt
( )

(17)

The value of p* is the point on the previous path that is closest
to the point pn + Δp(k+1) on the current path.

* = | + |+ +p p p pq qarg min ( ) ( )
p

k
n

k k
opt
( 1) ( 1)

opt
( ) 2

(18)

The hm values are the magnitude of the displacement, where wd
is the width assigned to each dimension. In the present work,
we use wd = 0.15 Å for all dimensions, which is also the width
of the histogram bins used to construct the free energy surface.
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If one imagines the point at pn + Δp(k+1) as being located at the
corner of a voxel, then eq 19 can be interpreted as choosing the
magnitude to be the maximum displacement that does not
exceed the range of m voxels.
The SASM method has several parameters that can be

adjusted, including the number of simulated images Nimg, the
number of synthetic images Nsimg, the simulation length Δt, the
biasing potential force constants k, the cyclic schedules shown
in eqs 14 and 16, and the voxel width wd appearing in eq 19.
Unlike the SMCV and MSMCV, the SASM requires an
estimate of the unbiased free energy surface to propagate the
string. The calculation of an unbiased free energy surface from
a solution of the MBAR/UWHAM equations requires overlap
between the biased distributions,65−67 so a suitably large value
of Nimg is necessary. An optimal choice of Nimg depends on the
length of the string, the gradient of the underlying free energy
surface, and the values of k and Δt. In practice, one can
validate their choice of Nimg by analyzing the sampling overlap
produced from their initial guess pathway. In the event that the
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MFEP was significantly longer than the initial guess, Nimg may
become too small during the course of the string method. We
did not design the SASM to dynamically choose the value of
Nimg based on the current string length because changes in
Nimg may complicate resource allocation scheduling requests.
Instead, the progress variable shifts (eq 14) effectively increase
Nimg over the course of several string iterations to minimize the
consequences of having chosen an insufficiently small value.
Using a cyclic schedule of length 3, eq 14 acts to effectively
increase Nimg by a factor of 3 over a series of string iterations.
Alternatively, if the calculations were prepared with an
excessive number of images, then the proposed shifts would
be very small in relation to the length of the string,
qopt(k+1)(pn+Δp(k+1)) ≈ qopt(k+1)(pn), rendering the shifts unneces-
sary.
The displacement schedule (eq 16) alternates between

refinement and exploration iterations to avoid introducing a
bias to the exploration direction (eq 17). In other words, if the
exploration direction was chosen by optimizing a path on a
surface that introduced new sampling in areas offset from the
current path, then the new path is more likely to move in the
direction of the added sampling. Our recommended displace-
ment schedule cycles every 4 iterations rather than 2 iterations.
We have explored the use of 2 iteration schedules that alternate
between refinement and exploration iterations with h1 or h2
(eq 19) using wd = 0.15 Å. In brief, the 2 iteration schedule
involving h2 was found to converge the MFEP faster than the 2
iteration schedule involving h1, and it performed about as well
as the 4 iteration schedule. We recommend the 4 iteration
schedule because it is less likely to produce gaps in the
sampling. Appropriate values of hm are coupled to the value of
wd. We use histogram bin widths of 0.15 Å to construct the free
energy surface because smaller bin widths are more likely to
produce numerical noise in the free energy surface, which
manifests as noise in the optimized path.49 Furthermore, if the
displacements become too large, then extended simulations
may be necessary to equilibrate the system after making a
significant change to the biasing potential. Once the SASM has
converged, further iterations will fluctuate around the MFEP.
Consequently, the sampling will envelop the MFEP.
2.5. Computational Details. All QM/MM simulations in

this work were performed with the sander molecular dynamics
software54 using the default leapfrog integrator with a 1 fs
integration time step. More efficient sampling with a longer
integration time step may be obtained using the recently
developed “middle” thermostat scheme described in refs 72
and 73., which is already available in the Amber software. The
SHAKE algorithm74 was used to fix MM bonds involving
hydrogen, whereas all QM bonds were left unconstrained. The
covalent bonds at the QM/MM boundary were capped with
the hydrogen link-atom approach.75,76 Electrostatics were
calculated with the particle mesh Ewald method77−79 adapted
for use within semiempirical QM/MM simulations80,81 using
tinfoil boundary conditions82,83 a 1 Å3 reciprocal space grid,
and 10 Å real space cutoffs. The Lennard-Jones interactions
were similarly calculated to 10 Å and a long-range tail
correction was included to account for the interactions beyond
the cutoff.84

The MTR1 ribozyme (PDB ID 7V9E58) consists of 2207
atoms with a net 66−charge. The ribozyme was solvated with
18,250 TIP4P/Ew waters, 113 sodium ions, and 47 chlorine
ions in a truncated octahedron with real space lattice vectors of
length 90.2 Å resulting in 75,367 particles and an ion

concentration of 140 mM. The ff99OL3 RNA force field85

and Joung and Cheatham86 monovalent ion parameters have
been used. Details regarding the preparation and equilibration
of this system have already been reported elsewhere.87 In brief,
the pressure and temperature were equilibrated for 50 ns with
the MM force field potential to maintain 1 atm and 298 K in
the isothermal−isobaric ensemble using the Berendsen
barostat88 and Langevin thermostat89 with a collision
frequency of 5 ps−1. At this point, the MM force field was
replaced with the DFTB3 QM/MM potential using the “3ob”
parameter set.90 The QM region consists of 48 atoms with net
1 + charge, as illustrated in Figure 1. A QM/MM simulation of
the reactant state was equilibrated for 12.5 ps in the canonical
ensemble at 298 K. The DFTB3 QM/MM umbrella
production sampling was similarly performed at constant
temperature with 200 kcal mol−1 Å−2 force constants on the
two reaction coordinates describing the transfer of a proton, ξ1
= RC10:N3−H − RO6mG:N1−H, and methyl group, ξ2 = RO6mG:O6−C
− RA63:N1−C as visualized in Figure 1.
The HHr ribozyme (PDB ID 2OEU59) consists of 2020

atoms with a net 62−charge. The ribozyme was solvated with
13,319 TIP4P/Ew waters, 5 magnesium ions (replacing the
crystal structure manganese ions), 86 sodium ions, and 34
chlorine ions in a truncated octahedron with real space lattice
vectors of length 81.7 Å resulting in 55,421 particles and an ion
concentration of 140 mM. The ff99OL3 RNA force field,85

Joung and Cheatham86 monovalent ion, and Li-Merz91 12-6-4
divalent ion parameters with Panteva92,93 corrections, which
ensure balanced interactions between metal ions and nucleic
acids, have been used. Full details of the preparation and
equilibration of this system have been reported elsewhere.94 In
brief, the pressure and temperature were equilibrated for 100
ns with the MM force field potential to maintain 1 atm and
298 K in the isothermal−isobaric ensemble. The MM force
field was replaced with the AM1/d QM/MM potential.95 The
QM region consists of 85 atoms with net 1−charge. The QM
region is illustrated in Figure 1; for clarity, the Mg2+ and the 4
waters directly coordinating the Mg2+ were included in the
QM region. A QM/MM simulation of the reactant state was
equilibrated for 50 ps in the canonical ensemble at 298 K. All
AM1/d QM/MM umbrella production sampling was
performed at constant temperature with 200 kcal mol−1 Å−2

force constants on the three reaction coordinates describing
the proton transfer from the nucleophile to the general base, ξ1
= RG12:N1−H − RC17:O2′−H, and phosphoryl transfer, ξ2 = RP−O5′
− RC17:O2′−O5′. and the proton transfer from the general acid to
the leaving group, ξ3 = RG8:O2′−H − RO5′−H.
The B-DNA sequence (PDB ID 113D)60 consists of 762

atoms with a net 22−charge. The ribozyme was solvated with
5151 TIP4P/Ew waters, 35 sodium ions, and 13 chlorine ions
in a truncated octahedron with real space lattice vectors of
length 59.3 Å resulting in 21,414 particles and an ion
concentration of 140 mM. The system was modeled with the
OL5 DNA force field96 and Joung and Cheatham86

monovalent ion parameter set. The system was prepared by
minimizing the solvent environment and hydrogen positions
while restraining the DNA heavy atoms, followed by a gradual
heating of the system from 0 to 298 K over the course of 300
ps in the NVT ensemble, and the system density was
equilibrated at 1 atm for 8 ns in the NPT ensemble. The
MM force field was replaced with the AM1/d QM/MM
potential,95 where the QM region (the G4 and T21
nucleobases depicted in Figure 1) consists of 31 atoms with

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01401
J. Chem. Theory Comput. 2024, 20, 2058−2073

2063

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01401?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


a net neutral charge. A QM/MM simulation of the reactant
state was equilibrated for 50 ps in the canonical ensemble at
298 K. All AM1/d QM/MM umbrella production sampling
was performed at constant temperature with 200 kcal mol−1

Å−2 force constants for each of the reaction coordinates listed
in Figure 1.
To start any string method, one must first construct a series

of structures to be used as the initial guess. For the MTR1
reaction, we consider two initial guesses: a concerted guess that
uniformly discretizes a line connecting the approximate
position of the reactant state ξreact. = (−1.4, −2.5 Å) to the
product state ξprod. = (1.4, 2.5 Å), and a stepwise guess that
uniformly discretizes a piecewise linear path connecting the
reactant state, approximate intermediate state ξinter. = (1.4,
−2.5 Å), and the product state. For the HHR reaction, the
initial guess discretizes a linear transformation between the
approximate reactant state ξreact. = (−1, −2, −1 Å) to the
approximate product state ξprod. = (1, 2, 1 Å). Similarly, the
initial guess for the B-DNA tautomer reaction discretizes a
linear transformation between the reactant ξreact. = (−0.86,
−0.60, −2.0, −0.76, −2.6 Å) and product states ξreact. = (0.67,
0.78, −0.82, 0.84, 0.22 Å). The atomic coordinates were
generated from a sequence of short (200 fs) simulations that
restart each image from the final structure of the previous
image. After this scan was completed, each image was
independently equilibrated for an additional 4 ps. The final
coordinates from these equilibrations became the starting
structures to initiate the string method.
The SMCV, MSMCV, and SASM were performed multiple

times while varying the number of images and length of
production sampling. The MTR1 simulations performed for 4
ps/image and 500 fs/image saved 400 samples/image and 250
samples/image, respectively. The HHr simulations performed

for 625 fs/image and 312 fs/image saved 125 samples/image
and 156 samples/image, respectively. The B-DNA simulations
were performed for 1 ps/image and 200 samples/image were
saved. In all cases, we analyze only the last 75% of saved
samples when solving the MBAR/UWHAM equations.

3. RESULTS AND DISCUSSION
Here, we compare the SMCV, MSMCV, and SASM string
methods using three reactive chemical systems having varying
number of reaction coordinates. 1. A 2D example of an
artificially engineered methyltransferase ribozyme (MTR1)56

that catalyzes the methylation of a target adenine. 2. A 3D
example of a naturally occurring HHr59 that catalyzes site-
specific RNA self-cleavage. 3. A 5D example of tautomerization
in dG·dT wobble pairs that lead to misincorporation during
replication.97

3.1. MTR1 Catalytic Mechanism. Evolutionary theories
based on an RNA world98,99 presumably would require RNA
molecules to catalyze C−C and C−N bond formation essential
for nucleic acid synthesis and early metabolic transformations.
There are no known naturally occurring examples of RNA
enzymes that have this ability. Recently, an MTR1 has evolved
in vitro56 that binds O6-methylguanine and catalyzes the
methylation of a target adenine (A63) at the N1 position57,100

(Figure 1a). Computational enzymology studies performed by
our group,87 in collaboration with Huang, Lilley, and co-
workers,58 revealed a surprisingly sophisticated mechanism
that involves a protonated cytosine residue that acts as an acid
to facilitate site-specific C−N bond formation, broadening the
range of known RNA-catalyzed chemistry and further
demonstrating the versatility of RNA catalysis.101 In the
computational study, we employed an early version of the
string method and found it to be slowly convergent, making it

Figure 2. Progress of the string methods at several iterations of the MTR1 reaction starting from concerted (red lines) and stepwise (green lines)
initial guess paths. Parts (a−d), (e−h), and (i−l) illustrate the convergence of the SMCV, MSMCV, and SASM, respectively. Each string is
composed of 32 images, and each image is sampled for 4 ps. The initial guesses are dashed lines. The colored areas are the best estimate of the free
energy surface, calculated from the aggregate sampling produced by all string methods. The black line is the MFEP optimized on the best estimate
of the surface. The insets are the reference free energy values along the paths (kcal/mol).
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extremely costly to perform ab initio QM/MM simulations.
Hence, we use this as our first test system for developing
improved string methods with accelerated convergence.
Figure 2 uses the MTR1 reaction to compare the progress of

the SMCV, MSMCV, and SASM at string iterations 5, 15, 30,
and 50. Each optimization was performed twice, starting from
concerted and stepwise initial paths. Each string iteration
samples 32 images for 4 ps/image (128 ps/iteration). The free
energy surface is the best estimate made from the aggregate
sampling of all iterations obtained from the 3 methods (38.4 ns
of aggregate sampling). The black line is a reference MFEP,
optimized on the aggregate free energy surface. The SMCV
and MSMCV paths are Akima splines fit to the 32 evolved
images, whereas the SASM paths are Akima splines fit to 100
synthetic images.
The three methods approach the MFEP at different rates.

The SMCV and MSMCV make good progress during the first

15 iterations, but their progress stalls as they near the MFEP.
This is due to the free energy surface becoming relatively flat
near the MFEP. In contrast, the SASM gets closer to the
MFEP at iteration 5 than the SMCV or MSMCV does at
iteration 50. By placing the simulations around the path, the
SASM is capable of exploring flat surfaces more efficiently.
To test whether the conclusions drawn from Figure 2 are

sensitive to the simulation time scale (time/image), we
reperformed the string methods using only 500 fs/image of
sampling. The resulting comparison (Supporting Information
Figure S1) is nearly indistinguishable from Figure 2.
Figure 3 compares the string methods using fewer images

and different spline representations of the path. The
optimizations start from a concerted path, and each iteration
samples 8 images for 4 ps/image. The colored areas are the
current estimate of the free energy surface from the sampling
produced by the current and previous iterations. The red line is

Figure 3. String iterations of MTR1 from a concerted (linear) initial guess (dashed red line). Each string is composed of 8 images, and each image
is sampled for 4 ps. The solid red line is the current string, and the black “x” marks the next set of 8 simulations. The black line is a reference
pathway, and the insets compare the current estimate of the free energy profile to the reference profile (kcal/mol). Parts (a−d) and (e−h) are the
SMCV method using Akima and piecewise linear splines, respectively. Parts (i−l) and (m−p) similarly compare the MSMCV method. Parts (q−t)
are the SASM method with 100 synthetic images.
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the estimate of the path after the evolution step. The “x” marks
are the proposed set of umbrella potential locations. The black
line is the reference path shown in Figure 2. The insets display
the free energy along the paths; the red line is the free energy
of the current path from the available sampling, and the black
line is the reference free energy along the reference path (made
from 38.4 ns of aggregate sampling). The rows labeled “Akima”
and “Linear” construct the parametric curve from Akima
splines and piecewise linear functions, respectively. Whereas
the SMCV and MSMCV paths are limited to 8 control points,
the SASM path is constructed from Akima splines which
interpolate 100 synthetic images optimized on the free energy
surface.
Figure 3 illustrates that the SMCV and MSMCV methods

are sensitive to the parametric form of the path when only a
few (e.g., 8) images are simulated. Although the SMCV and
MSMCV methods properly evolve the control points, both
methods encounter artifacts within the reparametrization step
when the path is modeled with Akima splines. The artifacts
encountered by the SMCV are quite severe; reparametrization
of the curve causes some images to be propagated in a
direction away from the MFEP (Figure 3a,b), and the
converged path differs significantly from the reference path
(Figure 3d). The MSMCV similarly encounters artifacts
between iterations 15 and 50, and it converges to an incorrect
path (Figure 3). The SMCV and MSMCV methods do
approach the correct MFEP when using piecewise linear
curves, however (see Figure 3h,p). The SASM does not exhibit
artifacts using Akima splines because it is parametrized to 100
synthetic control points rather than 8 control points. Using

more control points to define the path, the SASM also avoids
corner cutting, which can be observed when using piecewise
linear paths; for example, see the intermediate state in Figure
3p.
When only 8 images are simulated, the progress of the

SASM is modestly better than SMCV (Linear) and MSMCV
(Linear); however, the SASM does a much better job at
producing samples to analyze the free energy surface. As can be
seen in the insets of Figures 3a−p, the limited number of
images causes the SMCV and MSMCV to produce sampling
that does not well overlap, resulting in noisy free energy
profiles. In contrast, the SASM evolution step shifts the
progress values to improve the sampling between the set of
uniformly discretized points, and the exploration steps provide
sampling around the path. Consequently, the SASM free
energy profile after 15 iterations reproduces the reference
profile very well (Figure 3s). In fact, the SASM profile after 15
iterations is better than the SMCV and MSMCV profiles after
50 iterations. The SASM placement algorithm attempts to fill
the gaps in the sampling, which is easiest to observe in Figure
3q. After sampling the initial guess, the optimized path remains
similar to the initial guess because all areas of the surface which
have not been sampled are assumed to have a high free energy.
The first 3 cases in eq 14 propose new simulations in the
unoccupied regions along the path.
3.2. HHr Mechanism. The HHr59,102−104 is a metal-

dependent small endonucleolytic self-cleaving RNA that has
been extensively studied experimentally105−107,107,108 and
computationally109−115 and is an archetype model for RNA
catalysis. The active site adopts an L-platform/L-scaffold

Figure 4. String iterations of HHr from a linear initial guess (dashed black line). Parts (a−c), (d−f), and (h−j) illustrate the convergence of the
SMCV, MSMCV, and SASM, respectively, with several simulation protocols.
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architecture116 with an L-pocket guanine residue that forms a
divalent metal ion binding site enabling electrostatic
interactions94 to facilitate the reaction. The 2′O-trans-
phosphorylation mechanism can be described by three reaction
coordinates, illustrated in Figure 1b.
Figure 4 extends the comparisons to the 3-dimensional HHr

transphosphorylation reaction profiles. The dashed line is the
concerted initial guess, and the remaining lines are the paths at
a series of string iterations. The reference path shown in each
image is provided as a visual aid. The reference path is the
SASM MFEP after 300 iterations using 32 images and 625 fs/
image of sampling. In other words, it is the MFEP optimized
on the 3-dimensional surface produced from the analysis of 6
ns of aggregate sampling. The string methods were performed
multiple times by varying the number of images and the
amount of sampling. Each column of Figure 4 successively
halves the amount of sampling per string.
All of the string methods predict that the first stage of the

reaction transfers a proton (the ξ1 coordinate) from the O2′ to
the N1 position of the G12 general base (Figure 1b). The
more interesting part of the comparison is the behavior of the
paths in the ξ2−ξ3 plane, where ξ2 is the phosphoryl transfer
coordinate, and ξ3 measures the proton transfer between the
O5′ and the G8 general acid. The SMCV fails to locate the
MFEP after 300 iterations, although it is possible that it may
find the MFEP if iterated further.
The MSMCV locates the MFEP, but it requires many

iterations. The MSMCV requires 150 iterations to locate the
MFEP when performed with 32 images and sampled for 625
fs/image (Figure 4d). This corresponds to 3 ns of aggregate
sampling. When the number of images is reduced to 16 (Figure
4e), the amount of sampling per iteration is reduced, but the
MSMCV now requires 300 iterations (3 ns of aggregate
sampling) to locate the MFEP. Further reduction in the
amount of sampling requires more than 300 MSMCV
iterations (Figure 4f). Notice that the progress of the
MSMCV in Figures 4e−f does not significantly change from
iterations 50 to 150, which would likely cause one to
incorrectly believe that the path has converged. In fact,
previous applications of the MSMCV to the HHr reaction
incorrectly concluded that the mechanism was concerted
because of this behavior,49 whereas the extended iterations
presented in Figure 4 suggest that the MFEP is stepwise. The
fundamental reason why MSMCV progress stalls is because the
free energy gradient in the directions perpendicular to the path
is quite small (Figure 5). The qualitative similarity between the
MSMCV path at iteration 50 to the paths produced by SMCV
is suggestive that the SMCV fails for a similar reason.
In this application, the SASM requires 3 times fewer

iterations than MSMCV to reach convergence when using the
same amount of sampling. Only 50 SASM iterations are
required to converge the path using 32 images (Figure 4h) in
comparison to 150 MSMCV iterations. When the number of
images is reduced to 16 (Figure 4i), convergence is reached
after 100 SASM iterations in comparison to 300 MSMCV
iterations. The SASM requires fewer iterations because the
synthetic string optimizations performed within the SASM can
evolve the path to the fringes of the aggregate sampling, and
the exploration steps increase the range of the free energy
surface that can be used.
3.3. B-DNA G·T Wobble Tautomer Reaction. Rare

tautomeric forms of nucleobases can cause Watson−Crick-like
(WC-like) mispairs in DNA, and in turn lead to disease.117 In

the WC model, nucleobase pairs are in their “keto” form,118

rather than “imino” or “enol” form. Recently, tautomerization
has been reported for a G-T wobble pair (GenolT/U ↔ GTenol/
Uenol) in B-DNA detected by NMR97,119,120 and subsequently
studied computationally.121 This tautomerization reaction can
be described by 5 reaction coordinates (Figure 1c).
A pathway in 5D cannot be visualized in the same way as the

2D and 3D systems; hence, Figure 6a illustrates the
convergence of the MFEP for the B-DNA tautomer reaction
by calculating the root-mean-square deviation (RMSD)
between the current estimate of the path and the initial
guess using the 5 reaction coordinates. The SASM RMSD
values plateau at 50 iterations, whereas the MSMCV requires
150 iterations to reach a similar RMSD. Although both
methods seek to locate the nearest MFEP, they use different
representations of the path, so one would not expect the
RMSD values to exactly agree. Specifically, the MSMCV path
is a piecewise linear spline constructed from 32 images,
whereas the SASM path is an Akima spline constructed from
100 synthetic images. After 150 iterations, the SASM and
MSMCV paths fluctuate about the MFEP; however, the
fluctuations in the SASM RMSD values are significantly
dampened because the additional sampling introduced by each
iteration represents a smaller percentage of the aggregate.
Figure 6b shows the initial and final profiles of the ξ1 = RN3−H3
− RO6−H3 and ξ2 = RO6−H3 − RO4−H3 reaction coordinates. The
other 3 reaction coordinates are excluded from the figure to
improve legibility. The initial path directly transfers the proton
from N3 to the O4 position. The optimized paths instead
transfer the proton from the N3 to O6 while shifting the
hydrogen bond pattern of the G:T base pair. This is followed
by the transfer of the proton from the O6 to the O4 position.
The SASM and MSMCV produce very similar paths after 150
iterations. In summary, this application shows that the SASM
can be extended to 5 dimensions and it can converge the path
in fewer iterations than the MSMCV.
3.4. Computational Cost. Table 1 compares the CPU

resources needed to perform the string methods on the HHr
system with 32 images and 625 fs/image of sampling and the
B-DNA system with 32 images and 1 ps/image of sampling.

Figure 5. Two-dimensional projection of the HHr free energy surface
defined by the ξ1 = 0.95 Å plane. The colored lines are the MSMCV
paths at iterations 50, 100, and 150, and the black line is the SASM
reference curve after 300 iterations, as shown in Figure 4d. The
colored areas are the free energy values calculated from the aggregate
sampling produced from 300 MSMCV and 300 SASM iterations (12
ns of sampling).
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The measurements were performed on a single core of an Intel
Xeon E5−2630 v3 processor, and the software was compiled
with GCC 9.2.1. The timings can be decomposed into two
components: the resources used to perform the QM/MM
simulations Tsim and the resources used to perform the
evolution step Tevo.

= +

= + +

=

=

T k T k T k

k T T k

( ) ( ) ( )

( 1) ( )

k

k

k

k

0
sim evo

sim
0

evo
(20)

The MSMCV times only include the resources used to perform
the QM/MM simulations; the string evolution step (eq 10)
requires a negligible amount of effort, Tevo(k) ≈ 0. The cost of
performing MSMCV for the HHr and B-DNA systems is given
by eqs 21 and 22, respectively.
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The SASM timings also include the cost of the evolution step,
which is further decomposed into the resources used to solve
the MBAR/UWHAM equations, TMBAR, and the cost of
performing an optimization on the resulting free energy
surface, Topt.

= + +
=

T k T k T k T k( ) ( ) ( ) ( )
k

k

SASM MSMCV
0

MBAR opt
(23)

The solution of the MBAR/UWHAM equations formally
scales O(NdimNsamplesNstates), where Nsamples is the number of
samples to be reweighted and Nstates is the number of states.
The dimensionality does not vary with string iteration, and
Nsamples and Nstates are both proportional to the number of
iterations, leading to TMBAR(k) ≈ A(k + 1)2, where A is the
coefficient fit to the observed times. This coefficient is 0.359
and 0.876 s for the HHr and B-DNA systems, respectively. The
quadratic dependence of TMBAR(k) means that the aggregate
cost for performing k string iterations scales cubically. The cost
of per forming the opt imizat ion formal ly sca les
O(oNdimNsiterNsimg), where o is the order of the Cardinal B-
spline, Nsiter is the number of synthetic iterations, and Nsimg is
the number of synthetic images used to describe the path.
These quantities are independent of string iteration, so Topt(k)
≈ B, where B is 0.7 and 19.5 s for the HHr and B-DNA
systems, respectively.
The timings listed in Table 1 suggest that the SASM

increases the computational cost by 1−5% relative to the
MSMCV for the first 50 iterations. This small increase is
reflected in the high computational cost of performing QM/
MM sampling. Although the SASM is more expensive, it
converges in fewer iterations. The SASM reduces the resources
needed to converge the path by factors of 2.9 and 2.8 for the
HHr and B-DNA systems, respectively. The SASM becomes
increasingly expensive with respect to the number of iterations
because the MBAR/UWHAM equations are solved using
aggregate sampling. To prevent the method from becoming
too costly at high iterations, one could limit the analysis to the

Figure 6. Convergence of the path describing the wGT → GT* tautomeric reaction in B-DNA. (a) RMSD of the 5 reaction coordinates relative to
the concerted (linear) initial guess. (b) ξ1 and ξ2 reaction coordinates along the initial and final pathways produced by the MSMCV and SASM.
These two coordinates describe the proton transfer between N3−O6 and O6−O4, respectively.

Table 1. Number of CPU Days Required to Perform
MSMCV and SASM on the HHr and B-DNA Systems for the
Specified Number of Iterationsa

HHr B-DNA

iter TMSMCV TSASM

TSASM/
TMSMCV TMSMCV TSASM

TSASM/
TMSMCV

0 0.51 0.51 1.00 0.19 0.19 1.00
10 5.56 5.56 1.00 2.07 2.08 1.00
25 13.14 13.16 1.00 4.89 4.96 1.01
50 25.77 25.96 1.01 9.60 10.07 1.05
100 51.03 52.48 1.03 19.01 22.57 1.19
150 76.30 81.12 1.06 28.42 40.20 1.41

aIteration 0 is the simulation and analysis of the initial path. Bold
entries denote converged paths.
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samples produced from the most recent 50 iterations, for
example.
Figure 7 uses the first 50 SASM iterations of the B-DNA

system to illustrate the cost of TMBAR and Topt as the number of

reaction coordinates is varied. Although the sampling was
performed with 5 reaction coordinates, we can measure TMBAR
and Topt by ignoring 1-or-more of the reaction coordinates
during the analysis. As previously discussed, the solution of the
MBAR/UWHAM equations has a linear dependence on Ndim,
and B-spline evaluations of the free energy surface have an
exponential dependence on Ndim. The dashed lines are linear
and exponential fits to the observed times. Figure 7
demonstrates that the SASM quickly becomes impractical
when using more than 6 reaction coordinates due to the high
cost of evaluating the free energy of a high-dimensional surface.
Another aspect to consider is that each added dimension
further subdivides the samples into different histogram bins.
For a fixed amount of sampling, each subdivision reduces the
average number of samples per occupied bin and thus increases
the uncertainty of the free energy in that region. For these
reasons, we do not view the SASM as a replacement for the
MSMCV when a large number of reaction coordinates is
needed. Instead, the SASM is a complementary tool specifically
tailored to accelerate the convergence of low-dimensional
pathways frequently encountered in QM/MM applications. In
these situations, the added expense of generating free energy
surfaces and optimizing paths from the available sampling is
worthwhile to reduce the number of QM/MM evaluations.
The bond forming and breaking events of many biological

mechanisms can be described with 6-or-fewer dimensions;
however, this limitation may become problematic when the
chemical events are coupled with conformational changes. As a
specific example, a previous investigation of nucleobase
tautomerization reactions used 13 interatomic distances to
describe the change in hydrogen bond patterns.121 A
compromise solution may be to explicitly model the bond
forming and breaking coordinates with distances (or distance
differences) and describe the conformational changes with
path collective variables28,43 or other strategies developed to
reduce the dimensionality.122−128 Alternatively, the SASM

approach could greatly benefit from new methods that are
exploring the use of deep neural networks to efficiently
represent high-dimensional free energy surfaces.129,130

The reader may question if there are ideas introduced in the
SASM that can be directly used to improve the convergence of
the SMCV and MSMCV methods when a high-dimensional
free energy surface is too expensive to evaluate. Unfortunately,
if the free energy surface is not available, then the synthetic
optimizations (eq 11) are clearly not possible. Furthermore,
the SASM progress value shifting (eq 14) and exploration (eq
16) modifications rely on the fact that the simulated images are
not responsible for describing the path, which is not the
situation when using the SMCV or MSMCV methods.
Nevertheless, the SASM approach is an enabling technology
that allows one to explore new strategies that are not readily
possible within the SMCV and MSMCV frameworks, as
described below.
The reaction coordinates describing the chemical events are

often assigned from chemical intuition, and one typically
performs the string method several times starting from
different initial guess pathways to compare a limited number
of plausible mechanistic scenarios; for example, the associative
versus dissociative mechanisms of phosphoryl transfer
reactions. From a given initial guess, the SASM seeks to find
the nearest MFEP. It is unlikely that the SASM will discover an
alternate pathway unless it is separated by a small barrier that
could be leapfrogged by the exploration stage. We have
investigated the idea of using the SASM to simultaneously
propagate multiple strings, each starting from a different initial
guess. Each image from every string is sampled, the sampling is
aggregated to form a single free energy surface, and the MFEP
of each string is obtained from independent synthetic
optimizations on the unified surface. In other words, the
SASM is performed for each string, but their progress is
synchronized at each iteration to form a single, global view of
the free energy surface. The present work did not elaborate on
this strategy because we remain unconvinced that it offers a
meaningful computational advantage in the few test cases we
have performed, which involved pathways that did not
significantly overlap with each other in areas other than the
reactant and product states. In these situations, it is sufficient
to independently converge each string and aggregate the
sampling in a postprocessing step. Furthermore, we note that
the SASM formally provides the capability to sample with an
inexpensive reference semiempirical Hamiltonian while prop-
agating the string with a high-level target Hamiltonian using
the weighted thermodynamic perturbation method to con-
struct the free energy surface.71,131,132 We suspect, however,
that a better strategy would be to converge the path with the
reference potential, perform production sampling on the final
path, and reweight the production sampling to estimate the
target free energy surface only in the immediate vicinity of the
MFEP.

4. CONCLUSIONS
We applied the SMCV, MSMCV, and SASM methods to QM/
MM sampling of the MTR1, HHr, and B-DNA G·T mispair
systems. These applications served to compare the behavior
and performance of the string methods using 2, 3, and 5
reaction coordinates. The SASM is a new method developed in
this work that is robust and has performance advantages for
systems up to approximately 6 dimensions (Ndim ≤ 6). Rather
than propagating the path from the sampling produced by the

Figure 7. CPU time required to perform MBAR analysis (TMBAR) and
path optimization (Topt) on the resulting free energy surface. The
observed times were measured using the B-DNA sampling at iteration
50. The black and red dashed lines are linear and exponential fits to
TMBAR and Topt, respectively.
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most recent set of images, the SASM uses aggregate sampling
from all string iterations. The sampling is used to construct the
current best estimate of a multidimensional free energy surface,
and an MFEP is optimized on the surface. Consequently, the
simulated images are no longer responsible for describing the
parametric form of the path; their sole responsibility is to
improve the quality and range of the sampling used to estimate
the surface. The SASM exploits this freedom by alternating
between “exploration” and “refinement” steps to rapidly
traverse flat regions of the free energy surface.
Overall, the SMCV, MSMCV, and SASM methods are

capable of converging to the correct MFEP if the right control
parameters are found. In some cases, spline artifacts can be
observed with the SMCV and MSMCV when only a few
images (e.g., 8) are used. The SASM is found to be more
robust, and it often requires approximately 1/3 of the string
iterations to converge the MFEP. Analysis of computational
timings indicates that the SASM increases the computational
cost per string iteration by 5% or less relative to the MSMCV,
but this is more than offset by requiring fewer iterations to
reach convergence. The computational cost of representing a
free energy surface with more than 6 reaction coordinates
quickly becomes prohibitive; therefore, the SASM is not a
blanket replacement for the MSMCV. Rather, it is a valuable
tool that can be used to considerably accelerate convergence in
QM/MM applications using a modest number of reaction
coordinates.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01401.

Descriptions of the procedures used to smooth the
control points and Cardinal B-spline evaluation of the
free energy, and a comparison of MTR1 profiles
generated from reduced sampling (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Darrin M. York − Laboratory for Biomolecular Simulation
Research, Institute for Quantitative Biomedicine and
Department of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States;
orcid.org/0000-0002-9193-7055; Email: Darrin.York@

rutgers.edu

Authors
Timothy J. Giese − Laboratory for Biomolecular Simulation

Research, Institute for Quantitative Biomedicine and
Department of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States;
orcid.org/0000-0002-0653-9168
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