
Chapter 18 

Application of Linear-Scaling Electronic Structure 
Methods to the Study of Polarization of Proteins and 

DNA in Solution 

Darrin M. York1 

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford 
Street, Cambridge, MA 02138 

Semiempirical quantum calculations of biomolecular systems 
in solution were performed using recently developed linear­
-scaling methods to examine the role of solute polarization in 
the process of solvation. The solvation free energy of several 
protein and DNA molecules and complexes were computed 
and decomposed to asses the relative magnitude of 
electrostatic and polarization contributions. The effect of 
solvation and complex formation on the electronic density of 
states was also studied. 

Over the past several decades, the theoretical treatment of large 
biomolecular systems in solution has been restricted almost exclusively to 
use of molecular mechanical models1. These models typically neglect 
explicit electronic polarization terms due to the need for very rapid energy 
and force evaluations in, for example, molecular dynamics calculations. 
Complementary to molecular dynamics calculations with explicit solvent 
have been the application of implicit solvation methods for estimation of free 
energies of hydration of biomolecules2. These methods often employ a 
dielectric continuum approximation and involve solving, for example, the 
Poisson or Poisson-Boltzmann equation. As with molecular mechanics 
models, these methods do not treat explicitly the electronic degrees of 
freedom. 

In the present study, we apply recently developed linear-scaling 
electronic structure methods to the calculation of solvation free energies and 
electronic density of states (DOS) distributions of several protein and DNA 
systems in solution. In this way, quantum mechanical many-body 
polarization effects are assessed directly. 

THEORY 
The development of new methods for computing the electronic 

structure of molecular systems with computational effort that scales 
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approximately linearly with system size 3 - 7 has recently allowed very large 
molecules (103-104 atoms) to be considered for the first time. Conventional 
single-determinant non-perturbative wave-function theories such as Hartree-
Fock and density-functional methods scale as the cube of the system size 
due to the orthonormality constraint on the molecular orbitals that make up 
the wave function, or equivalently the idempotency condition for the single-
particle density matrix. Here we employ a linear-scaling semiempirical 
approach, summarized below, to electronic structure, the details of which 
have been presented elsewhere5-7. 

In Hartree-Fock molecular orbital and Kohn-Sham density functional 
methods, the electronic energy of the system is governed by the single-
particle density matrix 

where φ{ are basis functions for the expansion of the molecular orbitals, and 
ρ is the density operator defined as 

Ρ = ΣηΜ(ψη>\ = /β(ά-μ) (2) 
m 

where nm are the occupation numbers of the molecular orbitals ψηι that are 
solutions of 

% . > = e.|vO 0 ) 

In equations (2) and (3), Η refers generically to either the Fock or Kohn-
Sham Hamiltonian operators. The second equality in equation (2) follows 
from the assumption that the orbital occupation numbers are taken from a 
Fermi distribution fp(e) with inverse temperature β (taken here to 
correspond to 300K), and Fermi level μ. For localized basis set methods, the 
density matrix can be partitioned using a set of normalized, symmetric weight 
matrices w« that are localized in real space. A convenient choice is to 
employ a Mulliken-type partition8 

w£ = < + w ; (4) 
where 

= 0 otherwise 

The global density matrix can then be approximated by a superposition of 
partitioned elements: 

a a 
and 

ρ"=(ψ,\ίβ(Ηα-μ)\φ^ (7) 
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where Ha is a local projection of H in a set of basis functions that are 
localized in the region of the subsystem a. This local basis set typically is 
made up of basis functions centered on the atoms contained in the 
subsystem a in addition to basis functions centered on nearby buffer atoms 
contained in other subsystems. Normalization of the total electron density at 
each step of the self-consistent field procedure is enforced through 
adjustment of the chemical potential μ in equation (7). In the case of the 
Hartree-Fock methods, the total energy is given by 

ij 

where F is the Fock matrix and HCORE is the one-electron core Hamiltonian 
matrix. In the above formulation, there is no need for construction or 
diagonalization of the global Fock matrix, and hence the cubic scaling 
bottleneck associated with orthogonalization of the molecular orbitals is 
avoided. With proper choice of buffer region, the method has been 
demonstrated to be highly accurate and efficient5-7. 

Solvent effects are critical to the behavior and stability of biomolecules 
in solution; hence, inclusion of solvent effects in electronic structure 
calculations is important. A recently developed model for high dielectric 
solvents in quantum mechanical calculations is the conductorlike screening 
model9. This model employs a variational principle based on a conductor, 
the results of which are subsequently corrected for finite dielectric media. 
The model has been shown to give accurate results for small polar and ionic 
solutes in high dielectric media such as water. 

In this model, the classical electrostatic energy of a charge distribution 
q contained in a cavity (ecav=1) surrounded by a continuum of constant 
dielectric ε can be written as: 

2 J J lr-r ' l ϋ lr-r ' l 2{{ lr-r ' l 

where σ is the reaction field surface charge at the boundary Ω between 
different dielectric regions. For a conductor, the surface charge distribution 
can be determined by minimization of the total electrostatic energy with q 
fixed. In matrix notation, this leads to the solution 

^ = i q r ( C - B T A - 1 B ) - q = i q 7 G q (10) 

where σ and q are column vectors of the reaction field and solute charge 
distributions, respectively, the matrices A , B, and C represent Coulombic 
interactions between σ:σ, o:q, and q:q, respectively, and G is the Green's 
function matrix for the problem. For a finite dielectric, the surface charge 
distribution is scaled by a factor of (ε-1)/ε in accord with the Gauss theorem, 
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and leads to an error on the order of 1/(2ε)9, which is small for a high 
dielectric medium such as water (ε=80). The main advantages of the method 
is that direct computation of the Green's function matrix makes analytic 
derivatives facile, and affords high efficiency with conventional methods that 
incorporate G directly into the Hamiltonian at the beginning the self-
consistent field procedure. A disadvantage of the method is the reduced 
reliability of results for low dielectric media compared to exact solution of the 
Poisson equation. 

The solution equation (10) cannot be applied as written for large 
molecules since the process of matrix inversion scales as M3> where M is the 
dimension of the surface charge vector. However, this problem can be 
overcome by use of a preconditioned conjugate gradient minimization 
technique and fast multipole method1 0 for linear-scaling evaluation of 
electrostatic interactions7. The method is an iterative minimization technique 
that requires evaluation of matrix-vector products of the form Ax=b (an M2 

procedure) at each iteration. This operation corresponds to evaluation of the 
electrostatic potential of the surface charge vector x, and can be realized 
with order M-log(M) effort using fast multipole methods10. The number of 
iterations can be decreased using a preconditioner matrix A p c such that 
A-A p c « 1 . We have chosen A p c as the inverse of the block diagonal matrix 
constructed by the elements of A corresponding to common atomic surface 
area patches. With this preconditioner, the number of iterations to reach a 
fixed convergence level does not appear to grow with system size for the 
molecules considered here. The method has been shown to be accurate 
and efficient for biological macromolecules5"7. 

M E T H O D S 
Structures for DNA (CG)e helices in canonical A, B, and Z-forms were 

generated from ideal monomer subunits obtained from fiber diffraction 
experiments11. Initial structures for proteins, and protein-protein and protein-
DNA complexes were obtained from nuclear magnetic resonance data in 
solution, and refined with 50 steps of steepest descents energy minimization 
to relax the structures on the quantum mechanical energy surface. Quantum 
mechanical calculations were performed using the self-consistent linear-
scaling electronic structure methods described previously5"7-12 with the 
semiempirical AM1 Hamiltonian13. Subsystem partitions were chosen to be 
the amino- and nucleic acid biopolymer subunits. Buffer regions were 
determined using a 8Â distance criterion Rb, and core Hamiltonian, Fock, 
and density matrix elements were evaluated using a 9Â cutoff Rm (see 
below). Solvent effects were included self-consistently using a linear-
scaling solvation method for macromolecules with atomic radii 
parameterized to reproduce solvation free energies of amino acid backbone 
and side-chain homologues and modified nucleic acid bases7. 
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Table I. Convergence of energetic quantities (eV) in solution 
with buffer and matrix element cutoffs Rt/Rm (A)*-

AHf AGei.sol Ehomo A E q a p 

B-DNA (1006 atoms, total charge -30) 
- 5 0 6 . 0 9 2 - 4 4 4 . 6 4 7 - 5 . 7 6 8 5 . 7 4 7 
- 5 0 6 . 7 0 7 - 4 4 4 . 2 5 9 - 6 . 7 5 5 6.541 

8/9 - 5 0 6 . 7 6 4 - 4 4 4 . 2 5 5 - 7 . 6 1 9 7 .405 
10/11 - 5 0 6 . 7 6 5 - 4 4 4 . 2 5 5 - 7 . 6 1 9 7 .405 
12/13 - 5 0 6 . 7 6 5 - 4 4 4 . 2 5 5 - 7 . 6 1 9 7 .405 

crambin (642 atoms, total charge 0) 

4/7 -124 .951 - 1 1 . 8 5 3 - 5 . 9 6 4 1 .830 
en - 1 1 6 . 0 4 0 - 1 1 . 5 3 6 - 7 . 4 7 0 5 . 6 8 2 
m -116 .101 - 1 1 . 5 3 4 - 8 . 6 9 2 6 . 9 1 0 
10/11 - 1 1 6 . 1 0 3 - 1 1 . 5 3 4 - 8 . 7 0 4 6 . 9 2 3 
12/13 - 1 1 6 . 1 0 3 - 1 1 . 5 3 4 - 8 . 7 0 5 6 . 9 2 3 

*Quantities are the heat of formation AHf, electrostatic component of the 
solvation free energy AG e |,sol . highest occupied molecular orbital eigenvalue 
ehomo smd energy gap A E g a p (see text). 

R E S U L T S 

Convergence 
Table I summarizes the convergence of energetic quantities with 

buffer size and matrix cutoff for a canonical (CG)a B-DNA helix, and crambin 
in solution. The matrix element cutoff {Rm) was chosen to be slightly larger 
than the buffer cutoff (fly to insure inclusion of all off-diagonal subsystem-
buffer matrix elements. A matrix element cutoff below 7A was observed to 
lead to larger errors (data not shown). All energetic quantities are well 
converged using the 8/9À {Rt/Rm) scheme. Energetic quantities converge 
slightly faster in the case of B-DNA (~10 -3 eV with the 8/9Â scheme) than for 
crambin, particularly for the energy gap (~10-2 eV with the 8/9À scheme), 

Ε (eV) Ε (eV) 

Fig. 1. Convergence of the electronic DOS of crambin in solution with 
different Ri/Rm schemes: a) overall DOS, b) DOS near the Fermi level (Note: 
the area of the graph corresponds to 1 electron). 
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although the difference might not be significant. Figures 1(a,b) illustrate the 
variation of the DOS for crambin as a function of (Rt/Rm)- The overall DOS 
profile is similar in all cases. A detailed examination of the DOS in the 
region of the energy gap reveals the low order 4/7Â scheme results in 
"leakage" of electron density into the region of the gap (Figure 1b). This 
effect is significantly reduced using the 6/7Â scheme, and becomes almost 
negligible with larger cutoffs. In what follows, we employ the 8/9Â scheme 
for determination of electronic properties of protein and DNA systems in 
solution. 

Solvation energies 
The process of solvation can be decomposed into different paths, two 

of which are considered here (Figure 2). The first path involves 1) freezing 
the electronic degrees of freedom of the solute in the gas phase and 
allowing this charge distribution to induce an electrostatic solvent reaction 
field (AGei,gas)> followed by 2) electronic relaxation (polarization) of the gas 
phase charge distribution to the final solution phase charge distribution, at 
the same time allowing the induced reaction field to adjust accordingly 
(AGpoi). Both AGei.gas and A G p 0 i involve relaxation processes and are 
stabilizing (lower the total energy). The second path in Figure 2 involves 1) 
an internal perturbation of the gas phase electronic charge distribution to the 
solution phase distribution in the absence of a solvation effect (AGmt), 

followed by 2) adding the reaction field ( A G e i i S O i ) that is induced by the 
solution phase charge distribution. The former is a destabilizing internal 
energy reorganization contribution, whereas the latter consists of a 
stabilizing solvent reaction field response to the solution phase charge 
distribution (analogous to AG e i , g as for the gas phase charge distribution). In 
this study, only electronic energy contributions are evaluated (no cavitation 
terms) with fixed geometries, and the effect of solvation is approximated by a 

Gas 

AGint 
Psol 

I Ν 
Î ^ A G e l , ^ l J Î 

^ A G p o i i A 

Fig. 2. The solvation process decomposed into different paths. 
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classical electrostatic dielectric continuum model as described above. The 
main advance in this study consists of the explicit consideration of the 
contribution of quantum mechanical many-body effects of the 
macromolecular solute in the process of solvation. 

Table II shows the solvation free energy components for different 
canonical forms of DNA and several proteins derived from NMR. By their 
definition, the electrostatic components of the solvation free energy (AG ei fgas 

and AG ei,soi) bracket the total free energy of solvation A G S O i ; i . e . , -AG e i > g as ^ 

-AGsoi ^ -AGei.soi, or equivalently A G D O i < 0 < AGj n t - The magnitude of the 
values of A G e i , g a s and AG e i > S oi differ from the values for A G p 0 i and AGj n t by an 
order of magnitude or more for the molecules studied here. The A G p 0 i 

contributes approximately 10% for the proteins and 2% for the DNA. This is 
consistent with results of hybrid quantum mechanical/molecular mechanical 
simulations of peptides in solution 1 4. Although the magnitude of the 
polarization term is greater (per atom) for DNA than for the proteins, the 
relative percentage is significantly less due to the dominant AG e i,gas term. 
The AGjnt term reflects the internal energy penalty the solute pays in order to 
adopt the ideal solution phase charge distribution. Within the linear 
response regime, this term is equal to minus the solute polarization energy 
(see below). 

The contributions due to solvation and solute polarization to the free 
energy of binding of myosin to calmodulin15 and the DNA binding domain of 
Myb with DNA 1 6 are summarized in Table III. In both cases, the process of 
binding has a neutralizing effect as oppositely charged species come 
together. Consequently, the change in the solvation free energy strongly 
disfavors complexation, although the overall enthalpy of formation is 
predicted to be favorable. In these examples A A G p 0 i is positive. This arises 
from the separated species being more polarized due to both greater 
exposed surface area and a larger charge induced reaction field than in the 

TABLE II: Solvation free energies, enthalpies of formation, and Fermi 
gap energies (eV) of proteins and DNA*. 
Molecule atoms A G S 0 | AGpoi A G i n t AHf A E g a p 

Proteins 
crambin 6 4 2 - 1 0 . 0 -8 .7 - 1 . 3 1.6 - 1 1 . 6 -116.1 (-106.1) 6.91 (5.14) 
bpti 8 9 2 -44 .2 -41 .2 -2 .9 3 .5 -47 .6 -115.0 (-70.9) 6.48 (2.26) 
lysozyme 1960 - 6 8 . 3 -62 .8 -5 .6 6.7 - 7 5 . 0 -296.8 (-228.5) 5.99 (3.46) 

DNA 
A - D N A 1 0 0 6 - 4 4 7 . 6 - 4 4 0 . 2 -7 .4 8.4 - 4 5 5 . 9 -503.1 (-55.5) 7.75 (2.75) 
B-DNA 1 0 0 6 - 4 3 7 . 3 - 4 3 0 . 9 -6 .4 7.0 - 4 4 4 . 3 -506.8 (-69.5) 7.41 (0.40) 
Z-DNA 1 0 0 6 - 4 5 7 . 7 -446 .6 -11.1 13 .3 - 4 7 1 . 0 -507.3 (-49.6) 7.78 (1.06) 

*Unrefined protein coordinates (see text) were obtained from solution N M R data taken from 
the Brookhaven Protein Data Bank for crambin (1CCN), bovine pancreatic trypsin inhibitor 
(1 PIT), and lysozyme (2LYM). ( C G ) 8 sequences of duplex A, B, and Z-form D N A were 
constructed from idealized subunits derived from fiber diffraction data (see text). Values for 
AHf and A E q a p are given for calculations in solution (plain text) and in the gas phase (italics). 
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TABLE III: Solvation free energies, enthalpies of formation, and Fermi 
gap energies (eV) of biomolecular complexes in solution*. 
Molecule atoms A G S 0 , AGel.gas AGpo, A G i n t AGeisoi A E g a p 

Myb-DNA 
complex 2 5 1 2 - 1 0 1 . 2 - 8 6 . 8 -14.4 12.1 - 1 1 3 . 3 - 4 5 9 . 3 6 . 9 5 
Myb 1 8 1 5 - 1 2 5 . 3 -115.1 -10.2 9.6 - 1 3 4 . 8 - 1 5 9 . 4 7.77 
D N A 6 9 7 - 2 4 8 . 2 - 2 4 2 . 7 - 5 . 5 6.1 - 2 5 4 . 3 - 3 1 9 . 7 7.79 

ΔΔ 272.3 271.0 1.3 -3.6 275.8 -19.8 -0.38 

myosin-calmodulin 
complex 2 7 0 0 - 1 0 1 . 2 - 8 6 . 8 -14.4 12.1 - 1 1 3 . 3 -580.1 6.49 
myosin 2 2 5 9 -65.6 -52.1 -13.6 8.5 -74.1 - 5 4 6 . 0 7 . 3 3 
calmodulin 4 4 1 - 3 1 0 . 8 - 2 8 5 . 8 -24.9 19.1 - 3 2 9 . 8 - 2 8 . 5 8.21 

ΔΔ 168.8 153.7 15.1 -9.7 178.4 - 5 . 5 0.17 

*Differences between values for the complexed and separated molecules (ΔΔ) are shown in 
italics. T h e A E g a p values for Δ Δ were obtained from a D O S distribution that w a s a 
superposition of D O S distributions of the separated molecules. Unrefined coordinates 
were obtained from solution N M R data taken from the Brookhaven Protein Data Bank for 
calmodulin-myosin (2BBM), and Myb-DNA (1MSE). 

complexed forms. Conversely, AAGj n t is negative, indicating there is less of 
an internal energy penalty for adopting the solution phase charge 
distribution in the absence of a reaction field for the complexes than in the 
separated species. 

It is of interest to determine whether the electronic response of the 
solute in the process of solvation is a linear response1 7. This can be 
addressed by considering the process of perturbing the gas phase system by 
an applied field, and calculating the energetic stabilization that results from 
the electronic relaxation of the perturbed system. In this case, the external 
field is taken as the solvent reaction field VRF for the solution phase charge 
distribution. The process we are interested in is thus: 

k - L [ p - ] v „ ( r )

 A E " - t " > IA-WW <11> 

If the electronic response of the solute is a linear response, then the solute 
polarization energy is given by 

^olufe=\iSp(r)vRF(r)d3r (12) 

where 5p=p S 0 |-p g a s is the solute polarization density. The solute polarization 
energy AEp 0i > Soiute of equation (11) is calculated as 

MpoLsolu1e = AGsol - AGdM + 2AE^solute = AE^solute + (AG,,, + AE^J (13) 

From equation (13) the quantity (AGjnt+AE[_R i Soiute) is the difference between 
the solute polarization energy and its ideal linear response value. Figure 3 
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-10 -8 -6 -4 -2 0 
ELR (eV) 

Fig. 3. Regression of the solute polarization energy and ideal linear-
response energy (see text). 

shows a linear regression of the calculated values of A E p 0 i ) S o i u t e and 
AEi_R,soiute- For the systems considered here, the macromolecular response 
of the solutes is very nearly a linear response. This lends further credence to 
the use of linear response models for modeling polarization in biomolecular 
simulations in solution17. 

Energy gaps and electronic DOS 
In the present method, the number of electrons for a given set of 

subsystem molecular orbitals is determined from the Fermi level ε, and given 
by 

sub­
systems 

ij α m 

where S« is the subsystem overlap matrix, and C a is the matrix of molecular 
orbital expansion coefficients, and /β(ε) and W a are the Fermi function and 
partition weight matrix, respectively, as defined earlier. The electronic 
density of states is defined as 

sub­
systems 

= -Σ Σ ̂ Σί'βΚ - e)ClCJm 05) 
ε ij α m 

where the derivative of the Fermi function is Γβ(ε)=-βθχρ(βε)/(1+βχρ(βε))2. It 
is often convenient, and more numerically stable, to calculate the DOS by 
finite differences, especially with a large value of the inverse temperature β. 
Use of a finite β establishes a unique mapping between the number of 
electrons and corresponding Fermi level, i.e. ε <-> Ν and therefore ε=ε(Ν). 
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The function ε(Ν) can be easily solved numerically. This allows a definition 
of electronic structural quantities analogous to conventional molecular orbital 
methods, in particular we define: 

* w , = e(W-<5), elumo = e(N + S), and àEsap = ehomo-elumo (16) 

where δ is a small number, taken here to be 0.05. Here δ is used to avoid 
numerical instabilities associated with the Fermi energy in the region of 
energy gaps, especially in the low temperature (large β) limit. To illustrate 
this, we note that if one uses the standard orbital population conventions 
(occupation numbers 1 for the Ν lowest lying orbitals and 0 otherwise, 
corresponding to the β-><*> limit), the "Fermi level" for an insulator, as defined 
by the normalization condition, is not unique; i.e. the Fermi level can take on 
any value between the highest occupied and lowest unoccupied molecular 
orbital eigenvalues. As values of β become large, determination of the Fermi 
level becomes numerically unstable. The definitions (16) avoid this 
instability, and result in rapidly convergent quantities as shown earlier in 
Table I. 

The electronic density of states and energy gap at the Fermi level are 
useful quantities for describing molecular electronic structure. Here we 
consider the electronic DOS of the biomolecules and complexes discussed 
previously in the gas phase and in solution (Tables II & III). In the case of 
(CG)e DNA in canonical A, B, and Z-forms, the energy gap ranges from 7.41-
7.78 eV. Recently, there has been experimental evidence that long-range 
electron transfer can occur through the DNA base stack 1 8; however, the 
mechanism of this process is not yet understood, and the subject remains 
controversial. The energy gap results here suggest that a free electron 
conduction mechanism is unlikely. The gas phase energy gap values are 
listed for comparison to illustrate the dramatic effect of solvent stabilization 
on the electronic structure of these molecules. In the case of the protein 
systems examined here (all of which are neutral or cationic at neutral pH), 
the energy gaps in solution are slightly smaller than for the DNA (5.99-6.91 
eV), and the electronic DOS are shifted toward more negative values in 
solution12. We note that the energy gaps for both DNA and proteins increase 
in solution resulting from preferential solvent stabilization of the occupied 
valence states relative to the virtual states; the smallest change occurs in the 
case of the hydrophobic protein crambin (5.14 eV to 6.91 eV). 

Figure 4 compares the electronic DOS for the myosin-calmodulin and 
Myb-DNA complexes relative to the uncomplexed species in solution. The 
value of ΔΝ(Ε) is seen to be non-positive in these calculations. This results 
from a slight shift in the electronic levels toward more negative values in the 
uncomplexed molecules, and is more pronounced in the case of Myb-DNA 
complex. The energy gaps at the Fermi level are similar to those of the 
proteins, and do not change significantly upon complex formation (Table III). 
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Fig. 4. Electronic DOS (eV - 1) and Ν(ε) (see text) in solution for a) 
calmodulin-myosin, and b) Myb-DNA. Shown are values for the complexes 
(solid line), superposition of states of the isolated species (dotted line), and 
the difference (shown immediately below). Vertical lines indicate the Fermi 
levels. 
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CONCLUSION 
Linear-scaling electronic structure calculations have been performed 

for several biomolecules in solution at the semiempirical level to investigate 
the effects of solute polarization on solvation free energies and electronic 
density of state distributions. Results in the gas phase and in solution are 
compared. It is demonstrated that polarization contributes on the order of 
10% for proteins and 2% for DNA of the total solvation free energy. The 
electronic response of the solute in the process of solvation is well 
approximated by a linear response model. In the case of binding between 
highly charged protein and DNA molecules, the overall AAG S O i strongly 
disfavors binding, as expected, with Δ Δ Θ ρ θ ι and AAGjnt making positive and 
negative contributions, respectively. Solvation has a pronounced effect on 
the electronic DOS, especially of highly charged biomolecules, causing a 
shift and broadening of the spectrum. The energy gaps at the Fermi level are 
observed to significantly increase upon solvation. These results are a first 
step toward the study of biological macromolecules in solution using self-
consistent field methods to treat explicitly quantum mechanical many-body 
effects of the solute. 
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