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ABSTRACT: We redevelop the variational free energy profile
(vFEP) method using a cardinal B-spline basis to extend the method
for analyzing free energy surfaces (FESs) involving three or more
reaction coordinates. We also implemented software for evaluating
high-dimensional profiles based on the multistate Bennett acceptance
ratio (MBAR) method which constructs an unbiased probability
density from global reweighting of the observed samples. The MBAR
method takes advantage of a fast algorithm for solving the unbinned
weighted histogram (UWHAM)/MBAR equations which replaces
the solution of simultaneous equations with a nonlinear optimization
of a convex function. We make use of cardinal B-splines and
multiquadric radial basis functions to obtain smooth, differentiable
MBAR profiles in arbitrary high dimensions. The cardinal B-spline
vFEP and MBAR methods are compared using three example systems that examine 1D, 2D, and 3D profiles. Both methods are
found to be useful and produce nearly indistinguishable results. The vFEP method is found to be 150 times faster than MBAR when
applied to periodic 2D profiles, but the MBAR method is 4.5 times faster than vFEP when evaluating unbounded 3D profiles. In
agreement with previous comparisons, we find the vFEP method produces superior FESs when the overlap between umbrella
window simulations decreases. Finally, the associative reaction mechanism of hammerhead ribozyme is characterized using 3D, 4D,
and 6D profiles, and the higher-dimensional profiles are found to have smaller reaction barriers by as much as 1.5 kcal/mol. The
methods presented here have been implemented into the FE-ToolKit software package along with new methods for network-wide
free energy analysis in drug discovery.

■ INTRODUCTION

Chemical processes are driven by changes in free energy and
can be studied using molecular simulations that can predict
these changes and provide a molecular-level understanding to
help guide design.1−4 There are several types of free energy
calculations encountered in the field of computational
chemistry. Among the most common are so-called alchemical
free energy methods2,4 that utilize the state property of the free
energy to determine thermodynamic changes between two
states using a nonphysical (i.e., “alchemical”) pathway. For
many other applications, the desired goal is to determine the
mechanism of a chemical process, that is, the likely pathway
(or set of pathways) that physically connects the states,
including the location of key transition states and inter-
mediates, and determining factors that regulate the rates and
outcomes of the process. Examples include transitions between
conformational states,5−12 association/binding events,13−21

traversal of ions through channels and membranes,22−25 and
enzymatic and nonenzymatic chemical reactions in the
condensed phase.26−32 One way of characterizing such

mechanisms is through the construction of a f ree energy surface
(FES) or related potential of mean force (PMF), in a reduced
coordinate space (henceforth referred to as “reaction
coordinates”) that provides a practical basis for interpreta-
tion.15,33−35 FESs are also referred to as f ree energy prof iles, and
these terms are used interchangeably. We will henceforth use
FES as an acronym to refer to free energy surface/profile rather
than “FEP” so as to avoid confusion with the acronym “vFEP”
(which stands for variational free energy profile and refers to
one of the main methods being developed herein).
Free energy profiles are derived from the analysis of sets of

enhanced sampling simulations. A common enhanced
sampling strategy is to introduce biasing potentials that
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facilitate transitions over barriers that would otherwise be
prohibited or only very sparsely sampled. In this way, the
methods help to establish more uniform coverage of the
relevant configurational space. The most common approach is
to use sets of “umbrella sampling” simulations,36,37 where the
biasing potential is a harmonic (quadratic) penalty function in
the space of reaction coordinates that is used to localize
sampling near to the harmonic (or “umbrella”) centers.
Typically these simulations are carried out by having multiple
umbrella potentials (umbrella centers and/or force constants)
distributed so as to collectively provide statistical sampling of
the important regions of the FES. Sometimes these umbrella
potentials are further enhanced by additional biasing potentials
that help to “flatten out” the FES so as to facilitate more
uniform sampling.38 Adaptive umbrella sampling is another
method designed to improve the uniformity of the
sampling39−42 which has been found to be a cost-effective
approach for characterizing high-dimensional FESs.43

The relevant reaction coordinates are collected from the
biased simulations. This data must be analyzed to remove the
bias, and represented in the form of a free energy profile. In
order to convert the biased sampled fluctuation data into
unbiased data, one must first locally unbias (reweight) the
frames within each simulation using the appropriate inverse
Boltzmann weight from the biasing potential. Next, the
different simulation ensembles need to be globally reweighted
using statistical methods34,44−54 that estimate the relative free
energy of each umbrella simulation. The unbiased data can
then be used to construct a numerical or analytical model
representation of the free energy profile in the space of the
reaction coordinates. These profiles can be used to identify
catalytic pathways and characterize rate-controlling transition
state ensembles. Recently, free energy profiles for the twister55

and Varkud satellite56 ribozymes from ab initio combined
quantum mechanical/molecular mechanical (QM/MM) sim-
ulations have been used within a computational enzymology
approach55−59 to study RNA-cleavage reactions60 and gain
insight into nucleic acid enzyme design.61

A number of methods have been developed to compute free
energy profiles from analysis of molecular dynamics
simulations, including the weighted histogram analysis
method34,44,45,62 (WHAM) and unbinned variations
(UWHAM),46 umbrella integration (UI),47−49 multistate
Bennett acceptance ratio method (MBAR),50,51 and the
vFEP method.52−54 The latter affords some distinct advantages
with respect to the ability to provide a robust, analytic
representation (including derivatives with respect to reaction
coordinates) of the free energy profile with minimal
sampling.52 Such an analytic representation is important for
applications due to the following: (1) It enables one to
efficiently search for minimum free energy pathways that
connect the relevant chemical or conformational states and
characterize the mechanism.55,56 (2) It can be used in
automated iterative refinement procedures to identify regions
where further sampling is required.54 (3) It can be exploited by
enhanced sampling methods as an inverse biasing potential to
facilitate uniform sampling on the free energy surface.40−42 (4)
It can serve as a correction potential to improve the accuracy of
force fields.63−65

The vFEP approach has been implemented and demon-
strated to be useful using a cubic spline representation for 1D52

and 2D53 free energy profiles. However, extension to general
higher dimensions has been challenging, despite the need for

such an approach for many applications, particularly path
methods such as the finite temperature string66 and nudged
elastic band67,68 methods that consider more reaction
coordinates. The vFEP method tackles the problems of
reweighting and analytic representation of the data simulta-
neously. Other methods such as MBAR formally only address
the data reweighting step, and the representation of the data in
terms of a robust analytic surface requires some form of fitting
or interpolation in a second step. No general methods exist for
determining the robust analytic representations of free energy
profile data in arbitrarily high dimensions, particularly when
nonuniform sampling is carried out. Herein we address these
challenges by introducing new methods and novel computa-
tional tools implemented in the FE-ToolKit software package69

and made freely available to the community for calculating free
energy profiles using both MBAR and vFEP in high
dimensions.
In this work, we present an extension of the vFEP method to

arbitrary high dimensions using cardinal B-splines.70 We
further describe an efficient, scalable software implementation
of an MBAR approach for calculating free energy profiles51,71

that incorporates a fast solution for the MBAR/UWHAM
equations to nonlinearly optimize a convex function.46 Finally,
we present a novel method for robust analytic representation
of the data using multiquadric radial basis functions to obtain
smooth, differentiable free energy profiles in arbitrary high
dimensions from nonuniformly sampled data and fast MBAR
analysis. These tools have been integrated into the ndfes
program within the FE-ToolKit software package, which is
freely available.69

We compare the MBAR and vFEP methods using several
examples: (1) the 1D FES of a phosphoryl transfer reaction of
a model compound with an ethoxide leaving group computed
from ab initio QM/MM simulations, (2) periodic 2D
Ramachandran FESs of alanine, glycine, and valine dipeptide
computed from MM simulations, and (3) the 3D FES of the
associative transphosphorylation reaction mechanism catalyzed
by the hammerhead ribozyme (HHr) from semiempirical
QM/MM simulations. We further explore how the HHr
minimum free energy pathway is effected by increasing the
dimensionality of the FES to four and six reaction coordinates.

■ METHODS

Variational Free Energy Profile (vFEP) Method. The
vFEP method, derived in ref 52, is a procedure for obtaining an
unbiased FES from a series of biased umbrella window
simulations. Given the umbrella biasing potentials and the time
series of observed reaction coordinate values {xobs} for each
simulation, the goal is to construct an analytic representation
of the global unbiased FES. The vFEP approach for
reconstructing the global FES is to assume a model form for
the reduced FES, f(x; p), that depends on the parameters p.
Reduced potential energy units of kBT are used throughout the
manuscript, where kB is the Boltzmann constant and T is the
absolute temperature, such that the inverse temperature β =
(kBT)

−1 does not explicitly appear. Here the argument x of the
reduced FES model represents the N-dimensional (Ndim) set of
reaction coordinate values that define the spanned free energy
space. The model parameters that best reproduce the global
FES, p*, are those that minimize the objective function shown
in eq 2.
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Nsim is the number of umbrella window simulations. Na is the
number of observations drawn from simulation a. xobs,ai is the
array of reaction coordinate values of sample i within
simulation a. Za(p) is a configurational integral of simulation a.

∫ ∫= −[ + ]Z x xp( ) ... e d ... da
f w

N
x p x( ; ) ( )

1
a

dim (3)

wa(x) is the umbrella biasing (reduced) potential used in
simulation a. The formulation presented in this manuscript
does not presume a form for the umbrella biasing potential, but
it is common for it to be a sum of Ndim uncoupled harmonic
oscillators centered about x0,d with force constants kd, where
Ndim is the number of reaction coordinates.

∑= −
=

w k x xx( ) ( )a
d

N

d d d
1

0,
2

dim

(4)

In some cases, an additional biasing potential is introduced to
attempt to flatten out the free energy surface in the space of
the reaction coordinates such that sampling within different
umbrella windows is more uniform. In fact, such a biasing
potential can be derived from a rough estimate of −f(x; p*)
itself (e.g., from coarse-grained sampling).38

The gai quantity appearing in eq 2 is a minor generalization
of the original vFEP method in the present work to reweight
trajectories to remove the effect of additional restraint
potentials (not directly involving the reaction coordinates)
on the FES. Specifically, this term is the degeneracy of sample i
drawn from simulation a. If the umbrella window simulations
are unencumbered by additional restraints (and hence there is
no additional restraint bias that requires reweighting), then the
degeneracy of each frame is unity (gai = 1); however, if the
additional bias introduced by a reduced restraint potential
urest,ai needs to be removed, then the sample degeneracy is
given by eq 5.

=
∑

−

=
−g N

e
eai a

u u

j
N u u

1

ai

a aj

rest, max

rest, max
(5)

Formally, the value of umax has no effect; in practice, one
chooses umax to be the maximum observed value of urest,ai to
prevent overflow of the exponential function.
In the present work, we describe a vFEP implementation

that can be solved for arbitrarily high dimensional FESs. The
main approximations of our method are as follows: (a) Space is
divided into a uniform Ndim-dimensional grid consisting of bins
(Ndim-dimensional grid “volumes”) and corners (grid line
intersections). Every bin is the same shape and size, but each
dimension of a bin may have a different fixed width. (b) The
FES is assumed to be positive infinity throughout space except
within those bins populated by at least one sample from any
simulation (that is, the probability is zero for the unoccupied
bins). (c) For those regions of space populated by at least one
sample, the FES is modeled by cardinal B-spline functions.70

The values of the FES are defined by a weighted average of
control parameters associated with the nearby corners, and the
weights are the B-spline values evaluated at those corners. (d)

The configurational integral of eq 3 is numerically evaluated
from the Gauss−Legendre quadrature72 of each bin.

Division of Space into a Uniform Grid for Non-
periodic Systems. Given a target bin width for each
dimension, Δxd, appropriate values for the grid minimum
xmin,d and the number of bins Nbin,d in each direction are
chosen such that the grid maximum is an integer multiple of
the grid size xmax,d = Nbin,dΔxd + xmin,d and all observed points
are enclosed within the range xmin and xmax. To do this, we
note the maximum and minimum coordinates from the
observed samples, calculate the number of bins that can fit
within that range, expand the range minimum by Δxd, and
increase the number of bins in direction d by 2. This produces
a range that is guaranteed to contain all samples while also
being an integer multiple of the target bin width. The range
must further be padded on either side by additional bins to
fully define the B-splines evaluated near the grid edges (this
will depend on the order n of the B-spline used). Although the
free energy is assumed to positive infinity within this buffer
region, the padded bin corners contribute control parameters
accessible to the nonbuffer region. Specifically, the ranges must
be extended by an additional Nbin,d

buf = ⌊(n + 1)/2⌋ − 1 bins on
both sides (where ⌊x⌋ denotes the f loor function of x, i.e., the
largest integer ≤ x), such that the bin counts increase by
2Nbin,d

buf . For example, for a B-spline order of n = 5 or 6, Nbin,d
buf =

2. Application of this procedure to each dimension creates a
grid consisting of Nbin = ∏d=1

NdimNbin,d bins and Nc = ∏d=1
Ndim(Nbin,d

+ 1) corners; however, many bins will be unoccupied by
samples, so only a petite list of occupied bins need to be
tracked.

Division of Space into a Uniform Grid for Periodic
Systems. For periodic systems, one specifies a number of bins,
Nbin, from which the target bin width is determined so as to
obey the periodicity of the system. Hence, for a periodic
interval of 2π, the bin width is Δxd = 2π/Nbin. Unlike the
nonperiodic case, there is no need to pad the grid; rather, the
B-spline weights are simply “wrapped” to the appropriate
interval of periodic grid points.

Cardinal B-Splines. The model form of the reduced free
energy is a weighted average of the B-spline control parameters
pc associated with the grid corners, and the weights are the
cardinal B-spline values evaluated at the corner positions, xc

∑ θ= −
=

f px p x x( ; ) ( )
c

N

n cc
1

, c

c

(6)

where θn(x − xp) is a Ndim-dimensional cardinal B-spline of
order n centered about the point xp
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−
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jjjjj
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and Mn is given by eq 8.

∑=
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n
k
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( 1)
( 1) max( , 0)n

k

n
k n

0

1i
k
jjj

y
{
zzz

(8)

Cardinal B-splines have compact support; that is, they are
nonzero only within a well-defined range. Only the nearest
Nnear,d = 2⌊(n + 1)/2⌋ corners in each dimension can have a
nonzero value of Mn; therefore, only Nnear = ∏d=1

NdimNnear,d total
corners need to be considered for any FES evaluation. For
example, if n is even, then Mn will be nonzero for the n nearest
corners. If n is odd, then the location of the n nearest corners
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will depend on whether the evaluation point is located before
or after the bin midpoint. For notational purposes, let c(̂x, c) be
an operator that accepts a point in space x and an integer in the
range c ∈ [1, Nnear] and returns the global index of a nearby
corner. Equation 6 can then be rewritten to emphasize the B-
spline’s compact support, when appropriate.

∑ θ= −
=

̂ ̂f px p x x( ; ) ( )
c

N

n c c c cc x x
1

, ( , ) ( , )

near

(9)

Inserting eq 6 into eq 2 yields

∑ ∑= +
= =

O Z p hx p p( , ) ln ( )
a

N

a
c

N

c cobs
1 1

sim c

(10)

where hc arises from regrouping of parentheses.

∑ ∑ θ= −
=

−

=

h N g x x( )c
a

N

a
i

N

ai n c aic obs
1

1

1
, ,

asim

(11)

The hc values can be precomputed and stored at the start of the
nonlinear optimization procedure to eliminate B-spline
evaluations for every observed data point in each optimization
step.
Numerical Integration of Za. Gauss−Legendre quad-

rature is an efficient numerical solution for integration in the
range [−1, 1].72

∫ ∑=
− =

f x x w f x( ) d ( )
i

N

i i
1

1

1
q, q,

dq,

(12)

The xq,i values are the roots of a Legendre polynomial of order
Nq,d, PNq,d(x), and the weights are wq,i = 2/{(1−xq,i2 )-
P′Nq,d

(xq,i)]
2}. The range of integration is easily adjusted via u

substitution; an integral over the range [−Δx/2, Δx/2] merely
requires scaling of wq,i and xq,i by 2/Δx. Integration in multiple
dimensions leads to an analogous summation over a mesh of
Nq = ∏d=1

NdimNq,d quadrature points xq, whose weights are an
outer-product of appropriately scaled, 1D weights. The
configurational integral, Za, evaluated over all-space can be
replaced by the sum of Ndim-dimensional Gauss−Legendre
quadratures, each integrating the volume of an occupied bin.

∫ ∫∑
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bin q
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The quadrature weights and umbrella biasing potential
exponential have been absorbed into a single term Eaib = wq,i
e−wa(xq,i+xb,b), xb,b is the center of bin b, and f ib(p) is a shortened
notation for eq 14.

= +f fp x x p( ) ( ; )ib i bq b, , (14)

In our notation, the mesh of quadrature points xq,i is the same
for each bin (ranging from − Δx/2 to Δx/2); the only spatial
difference between the local quadrature meshes are the
location of their bin centers. Consequently, the B-spline
evaluations can be precomputed as a matrix for a single,
prototype bin centered at the origin, and the FES evaluation at
the quadrature mesh points becomes matrix−vector product

between the prototype B-spline weight matrix and the petite
list of nearby corner parameters.

∑=
=

̂f T pp( )ib
c

N

ic c cx
1

( , )bb

near

, (15)

θ= ̃ −T x x( )ic n c ic q, , (16)

The x ̃c,c values are the positions of the Nnear nearby corners
about the prototype bin centered at the origin.
Within the context of the numerical optimization procedure,

the computational scaling of the cardinal B-spline vFEP
objective function is O(Nbin(nNq,d)

Ndim + NsimNbinNq,d
Ndim), where

n is the B-spline order and Nq,d is the quadrature rule in each
dimension. The scaling behavior is dominated by the
calculation of the Za values. The (nNq,d)

Ndim component of
the scaling is the evaluation of the reduced free energy at each
quadrature point (eq 15) within one bin. The scaling is
proportional to Nbin because each occupied bin contributes to
the integration. The second term in the scaling expression
corresponds to the double summation in eq 13 for each of the
Nsim configuration integrals. In practice, the number of
occupied bins that need to be integrated does not scale
proportionally to the number of simulations, because there is
often some overlap between the simulated distributions.
Furthermore, distant bins (relative to the umbrella window
center) do not significantly contribute to the configuration
integral because the umbrella biasing potential becomes very
large and thus the integrand becomes very small. One should
therefore expect the scaling to be proportional to Nsim rather
than Nsim

2 in practice.
Parameter Gradients. Some nonlinear optimization

methods require the derivative of the objective function with
respect to the parameters. These gradients are given by eqs
17−19.
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n
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High-Dimensional Free Energy Profiles Using the
Multistate Bennett Acceptance Ratio Method. We have
also implemented an algorithm for producing arbitrarily high
dimensional FESs using the multistate Bennett acceptance
ratio (MBAR) formalism, described in ref 51. In this approach,
the reduced free energy is computed for each bin from an
unbiased probability density obtained from reweighting the
observed samples. The expression for the reduced free energy
at the bin center (eq 20) makes use the indicator function (eq
21), which acts to select the frames within the volume of the
bin.
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The fa values appearing in eq 20 are the reduced free energy of
each biased simulation. Formally, the fa values can be obtained
from self-consistent solution of the coupled MBAR equations
(eq 22); however, our implementation solves the MBAR/
UWHAM equations46,50,71,73,74 (eqs 23 and 24), which were
first derived in ref 46. The MBAR/UWHAM method benefits
from leveraging existing nonlinear parameter optimization
software to obtain a solution.
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In the present context, the MBAR/UWHAM method
minimizes the objective function shown in eq 23 with respect
to the ba parameters. The fa values are then obtained from eq
24.
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The N = ∑a=1
NsimNa quantity appearing in eqs 23 and 24 is the

total number of observations drawn from all umbrella window
simulations.
Within the context of the numerical optimization procedure,

the computational scaling of the MBAR/UWHAM objective
function is O(NaNsim

2 ), where Na is the number of samples per
simulation. The scaling is dominated by the calculation of the
first term in eq 23.
The MBAR free energy values (eq 20) are obtained from

histogram binning. To view the free energy as a surface, one
could assume the value of the free energy is a constant within
each bin; however, this would make it difficult to use the
surface for obtaining minimum free energy paths. A better
approach is to assume the computed values are the free
energies at the histogram bin centers and then construct a
continuous surface by interpolating between the bin centers.
An appropriate choice for the interpolating function depends
on factors such as whether the reaction coordinates are
periodic or if the available data forms a regular grid. For
example, if the MBAR histogram bin centers form a complete
uniform grid over a periodic range, then cardinal B-splines are
good interpolation functions, because they offer compact
support and the spline coefficients can be easily determined.
The B-spline coefficients that reproduce the free energy values
are the reverse Fourier transform of the ratio between the free
energy’s Fourier coefficients and the B-spline function’s
Fourier coefficients.63,75 If the histogram centers do not form
a complete uniform grid, then the data is “scattered”, and the
cardinal B-spline representation is not well suited. However, a
smooth, differentiable interpolation of scatter data can be
constructed using multiquadric radial basis f unctions
(RBFs).76,77 A radial basis function is any function that

satisfies φ(x) = φ(∥x∥), where ∥·∥ returns the Euclidean
distance of a vector. The multiquadric radial basis function is
the particular form of φ(x) shown in eq 25.

φ = + ϵr r( ) 1 ( )2
(25)

The ϵ value is a “shape parameter”. The optimal choice of the
shape parameter is a subject of active research77−79 which has
led to a number of heuristics for choosing its value; however, it
remains quite common to choose an acceptable value from
trial and error.79 Our experience is that ϵ = 10 yields good
interpolations for the free energy surfaces we have studied.
Small values of ϵ may lead to interpolations that display
unphysical oscillations. Radial basis functions are advantageous
because few restrictions are placed on the data to be
interpolated. The data does not need to be uniformly
distributed, and their locations can be of any dimensionality.
The disadvantage of RBFs is that they become expensive to
evaluate as the amount of input scatter data increases. This
expense is not a significant issue when applied to MBAR
because RBF evaluations are not required to evaluate eqs 20
and 23; the RBFs are only used to interpolate the data to
create an analytic representation. The expense associated with
RBFs do not make them an ideal model for solving the vFEP
equations, however, because the numerical integration of the
configuration integral would require their re-evaluation within
every step of the vFEP objective function optimization.
The interpolation of scattered MBAR free energies at an

arbitrary position, x, is a weighted sum of multiquadric radial
basis functions evaluated at the histogram centers, xb,b.

∑ φ= −
=
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The weights are chosen by solving a set of linear equations that
guarantee reproduction of the free energy values at each
histogram center.
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The solution for the weights is unique if the interpolation
matrix (eq 28) is nonsingular.

φ′ = − ′A x x( )bb b bb b, , (28)

The multiquadric radial basis functions are positive-definite
functions, making it unlikely to encounter a singular
interpolation matrix, in practice.
In summary, the MBAR method addresses reweighting of

the data to obtain free energy values within occupied bins. As a
second step, the binned values must be represented using
analytic functions to analyze the FES. The analysis of the FES
often includes the determination of pathways and stationary
points that provide insight into mechanism. The analytic
model of the FES could potentially be exploited to enhance
sampling or correct potential functions. We have described
general procedures for creation of an analytic FES from MBAR
data using either B-splines (for uniform grid data) or RBFs (for
“scattered” data).

Computational Details. We carried out simulations of
three sets of systems to generate data used to compare the
vFEP and MBAR FES analysis methods. A description of the
simulations is provided here. For 1D surfaces, umbrella
window simulations were carried out of a model phosphoryl
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transesterification reaction with an ethoxide leaving group
(Figure 1).

The reaction coordinate, ξPT, is the difference in distances
RP−O5′ − RP−O2′, which was sampled from −4 to 5 Å using 91
umbrella window QM/MM simulations. The solute was
treated with the PBE0/6-31G* hybrid density functional
method,80,81 and the solvent was modeled with 1510 TIP4P/
Ew water molecules.82 The system density was equilibrated at a
constant pressure of 1 atm, and the production simulations
were carried out at constant volume and temperature (298 K)
using a Langevin thermostat. A 50 kcal mol−1 Å−2 umbrella
potential force constant was used, and each simulation was
carried out for 25 ps using a 1 fs time step. The reaction
coordinate was saved every 25 frames. The Lennard-Jones
potential was cutoff at 9 Å, and a long-range tail correction was
used to model the LJ interactions beyond the cutoff. Long-
range electrostatics were treated with the ambient potential
composite Ewald method.83

For 2D surfaces, we carried out a series of umbrella window
simulations that explore the glycine, alanine, and valine
dipeptide FESs with respect to the ϕ and ψ peptide dihedral
angles. The dipeptide solute was modeled with the Amber
ff14SB force field84 solvated by 1398 (alanine), 1493 (valine),
or 1335 (glycine) TIP4P/Ew waters.82 A 45-by-45 array of
umbrella window simulations that sample the ϕ and ψ
coordinates every 8° (from 0 to 352°) were carried out
using an umbrella force constant of 200 kcal mol−1 rad−2 for
each coordinate. Each production simulation was run in the
isothermal−isobaric ensemble using the Langevin thermostat
and Berendsen barostat to maintain 298 K and 1 bar for 200
ps. The simulations were carried out with a 2 fs time step and
hydrogen mass repartitioning to allow for a larger time step.
The reaction coordinates were recorded every 1000 steps. The
Lennard-Jones potential was truncated at 8 Å, and a long-range
tail correction was used to model the LJ interactions beyond
the cutoff. Long-range electrostatics were treated with the
particle mesh Ewald (PME) method.85,86

For 3D, 4D, and 6D surfaces, we carried out simulations to
characterize the associative transphosphorylation reaction
mechanism catalyzed by the hammerhead ribozyme (HHr),
where residues G8 and G12 act as the general acid and base,
respectively. The mechanism is depicted in Figure 2. The HHr
system was built starting from the crystal structure87 (Protein
Data Bank ID: 2OEU). The Mn2+ ions were replaced with
Mg2+. The GTP-, OMC-, and 5BU-modified nucleobases were
replaced with wild-type G, C, and U, respectively. The
nucleophile (N-1:O2′) was deprotonated and connected to the
scissile phosphate to create a transition state (TS) mimic. The

system was then placed in a 85 Å truncated octahedron water
box. Ions were added to balance the system charge and achieve
a bulk ion concentration of 0.14 M NaCl. The solvated system
was equilibrated (as described in ref 58) and simulated for 100
ns. During the simulation, the active site Mg2+ shifted from the
crystallographic position at C-site to the B-site,88 where it
coordinates N+1:pro-RP, A9:pro-RP, and G8:O2′. The MM
simulations were carried out using AMBER18,89 employing the
ff99OL3 RNA force field,90,91 the TIP4P/Ew water model,82

and the corresponding ions.92−95 Simulations were carried out
under periodic boundary conditions at 300 K using an 12 Å
nonbond cutoff and PME electrostatics.85,86 The Langevin
thermostat with γ = 5 ps−1 and Berendsen isotropic barostat
with τ = 1 ps were used to maintain a constant pressure and
temperature. A 1 fs time step was used along with the SHAKE
algorithm to fix hydrogen bond lengths.96 The HHr umbrella
window simulations were carried out using the AM1/d-PhoT
semiempirical Hamiltonian97 to model a QM region consisting
of 89 atoms, including the following: the scissile phosphate and
flanking sugars, the G12 nucleobase and sugar, the G8 sugar,
the A9 phosphate, a Mg2+ ion, and four nearby waters (three of
which are directly coordinating Mg2+). The remainder of the
system was treated with the molecular mechanical force field,
described above.
The minimum free energy paths were determined by

repeating finite temperature string umbrella sampling simu-
lations using different sets of reaction coordinates in
successively higher dimensions. For 3D surfaces, the
mechanism was described by 3 bond length differences that
track the progress of the general base (ξGB = RO2′−H −
RG12:N1−H), phosphoryl transfer (ξPT = RO5′−P − RO2′−P), and
general acid (ξGA = RG8:O2′−H − RO5′−H) steps (Figure 2). For
the 4D surface, a separate set of umbrella window simulations
were carried out to explicitly track the O2′-P and O5′-P bond
distances rather than the combined coordinate ξPT used to
monitor the phosphoryl transfer. In other words, the four
reaction coordinates are ξGB, RO2′−P, RO5′−P, and ξGA. A 6D
profile was similarly constructed by decomposing the
combined ξGB and ξGA coordinates into their component
distances as well. The umbrella window locations were
iteratively refined to converge upon the minimum free energy
path using the string method described in ref 98. This method

Figure 1.Model phosphoryl transfer reaction with an ethoxide leaving
group and the reaction coordinate studied.

Figure 2. Associative transphosphorylation mechanism catalyzed by
the hammerhead ribozyme and the three reaction coordinates used to
represent progression of the general base (ξGB), phosphoryl transfer
(ξPT), and general acid (ξGA) steps. Atoms in the QM and MM
regions are shown as black and gray, respectively. Although not shown
in the scheme to avoid crowding, the QM region additionally includes
the sugar of G12, and four waters, three of which coordinate the Mg2+.
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combines the finite temperature string method66 with umbrella
sampling simulations,37 and it has sometimes been referred to
as the finite-temperature string umbrella sampling method.99

In brief, an initial guess is made for a parametric curve that
defines the reaction pathway. Umbrella window molecular
dynamics simulations are carried out along the parametric
curve by uniformly discretizing the path. The parametric curve
is then updated by fitting it to the observed average reaction
coordinate values from each simulation. In the present work,
the parametric curve is obtained by Akima spline discretized
with 32 umbrella window simulations, and the iterative process
is repeated 50 times. A 100 kcal/mol force constant was used
for each reaction coordinate in all umbrella simulations. Each
umbrella window simulation was run for 2 ps. The reported
free energy pathway is the parametric curve generated by the
last iteration, and the free energy values are obtained by
analyzing the data from all 50 iterations.

■ RESULTS AND DISCUSSION

We implemented a free energy analysis program, available for
download on the internet,69 that enables the use of MBAR and
vFEP for FESs of any dimension. The results discussed in this
section include a comparison of these methods for 1D, 2D, and
3D FESs. We also compare the results obtained from a
previously published vFEP method based cubic splines;
however, that program is limited to 1D and 2D FESs only.
Furthermore, we explore the sensitivity of the FESs with
respect to grid spacing, cardinal B-spline order, umbrella
window spacing, and their computational cost. Finally, we
examine how 1D projections of minimum free energy paths
vary with respect to the dimensionality of the calculated FES.
1D Example: Nonenzymatic Transphosphorylation

Reaction in Solution. The purpose of this section is to
concisely demonstrate that for a simple 1D example there is
consistency between vFEP methods using cubic spline and B-
spline representations of the data and that these FESs are also
consistent with MBAR results. The 1D FES of a model

transphosphorylation reaction (Figure 1) simulated with an ab
initio QM/MM method is shown in Figure 3. The cardinal B-
spline solution uses fifth-order B-splines and a 0.15 Å node
spacing. The MBAR histogram spacing is 0.15 Å, and the 1D
FESs connects the MBAR histogram values using RBFs. The
cubic spline vFEP method is described in ref 52. The MBAR,
cardinal B-spline vFEP, and cubic spline vFEP methods are all
nearly indistinguishable from each other. Furthermore, each
method requires only a fraction of a second to compute the
FES. The rate limiting barriers (kcal/mol) are 19.65 (MBAR),
19.67 (B-spline vFEP), and 19.67 (cubic spline vFEP). Hence,
for the 1D example, all methods provide very consistent and
affordable results.

2D Example: ϕ/ψ (Ramachandran) Conformational
Maps for Dipeptides in Solution. The purpose of this
section is to illustrate that the vFEP B-spline method is of
equivalent or superior accuracy and computational efficiency
for 2D applications to the vFEP cubic spline implementation
and that both vFEP methods perform better than MBAR using
a numerical histogram data representation. The 2D Ram-
achandran FESs of glycine, alanine, and valine dipeptide are
shown in Figure 4.
The cardinal B-spline FESs use fifth-order B-splines and a

10° node spacing. The MBAR histogram spacing is 10°. The
colored blocks in the MBAR FES are the histogram free energy
values, whereas the stationary points and minimum energy
path are determined from a B-spline representation of the
histogram values. The free energy pathways were obtained
from minimizations on the reduced dimensional FES rather
than explicit dynamical simulation of the physical system. The
procedure is analogous to our description of the finite
temperature string umbrella sampling method; however,
minimizations are carried out on the umbrella-biased FES
rather than performing umbrella simulations. In this sense, one
can consider the procedure to be a zero-temperature string
umbrella minimization method. The peptide dihedral angles
are periodic coordinates; therefore, the positions of the

Figure 3. Free energy curve (1D) for the associative transphosphorylation reaction of a nonenzymatic model system with an ethoxide leaving group
(illustrated in Figure 1) simulated with PBE0/6-31G* QM/MM in explicit TIP4P/Ew water. Analysis with vFEP (B-spline) was carried out using
B-spline order 5 and 0.15 Å node spacing.
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observed reaction coordinates are treated with a minimum
image convention. The cardinal B-spline vFEP method does
not require a buffer region to define the free energy within the
periodic range. Instead, evaluation of the FES near the
boundary make use of the B-spline node parameters that wrap
to the other side of the periodic range. Similarly, the cubic
spline vFEP method52 must vary the spline coefficients with
consideration of the periodic boundary conditions.
We selected 3 or 4 minima from each system, connected

them by a minimum energy path, and tabulated the stationary
point positions and FES values in Table 1. In summary, the
mean difference in the stationary point locations between B-
spline vFEP and MBAR are 3.7, 1.5, and 0.7° for glycine,
alanine, and valine, respectively. The larger differences in the
glycine FES appear to be related to the broad, shallow minima.
The root-mean-square deviation between the B-spline vFEP
and MBAR stationary point FES values are less than 0.08 kcal/
mol for each system. The cubic spline vFEP method does not
compare as well to the MBAR results; the mean difference in
locations are 5.8, 2.2, and 1.4° for glycine, alanine and valine,
respectively, and the root-mean-square deviation between the

cubic spline vFEP and MBAR FES values are 0.16, 0.57, and
0.68 kcal/mol.
Figure 5 illustrates the sensitivity of the glycine minimum

energy path with respect to grid spacing and cardinal B-spline
order. The grid spacing does not effect the number of umbrella
window simulations being analyzed, but it does effect the
number of optimizable B-spline parameters. As the grid spacing
decreases, the number of optimizable parameters increase and
the B-splines are more capable of capturing the numerical
noise in the data by introducing polynomic oscillations. The
MBAR method suffers from a similar phenomenon whereby
numerical noise becomes more pronounced when the
histogram bin sizes are small. Figure 5 also shows the glycine
minimum energy path is not sensitive to the cardinal B-spline
order. Order 3 B-splines are the smallest order that produce
smooth curves. Order 1 B-splines are discontinuous offset
constants, and order 2 B-splines linearly interpolate between
the nearest corners.
The nonenzymatic transphosphorylation reaction and

Ramachandran profiles are expected to yield smooth FESs
due to their simplicity; however, it may be difficult to

Figure 4. Glycine, alanine, and valine dipeptide FESs analyzed with vFEP and MBAR. The ϕ and ψ coordinates are the peptide dihedral angles.
The umbrella window spacing is 8° in each dimension. Analysis with vFEP (B-spline) was carried out using B-spline order 5 and 10° node spacing.
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distinguish between numerical noise and physically relevant
features in FESs of highly diffusive processes such as those
which might appear in protein conformational changes and
protein folding. One approach explored in previous work to
deal with numerical noise is to use Gaussian process regression
to f it a smooth function to binned free energy values
contaminated with numerical noise.51 The approach used in
the present work is to choose a sufficiently large bin width to
reduce the numerical noise and then interpolate between the
observed values. In the context of MBAR, the histogram bins
effectively average the free energy in a their respective regions
of space, thus eliminating features within their interior. The
free energy at the bin center is assumed to be the average

value, and values near the histogram edges are approximated
by interpolation. The strategy is to choose a small bin width to
reduce the errors in these approximations, but large enough for
each bin to contain a sufficient number of samples to
adequately model the probability density. If the bins become
too small, then the FES will contain noise and possibly artificial
minima. For example, Figure 6a plots the number of minima
on the nonenzymatic transphosphorylation reaction profile as a
function of MBAR histogram bin width. The number of
minima stabilizes for widths larger than 0.1 Å. This does not
mean that the FESs using widths near 0.1 Å are free of
numerical noise; it only means that the magnitude of the noise
is not large enough to produce additional minima. The

Table 1. Selected Stationary Points from the Glycine, Alanine, and Valine Dipeptide FESs Shown in Figure 4

vFEP (B-spline) MBAR (B-spline) vFEP (Cubic)

label ϕ (deg) Ψ (deg) ΔG (kcal/mol) ϕ (deg) ψ (deg) ΔG (kcal/mol) ϕ (deg) ψ (deg) ΔG (kcal/mol)

Glycine
(1) 68.9 206.8 0.03 67.9 203.1 0.05 66.6 206.3 −0.05
(1−2) 122.7 179.1 1.65 125.8 182.2 1.58 124.3 170.2 1.44
(2) 181.0 181.7 0.60 183.8 177.6 0.54 182.7 181.1 0.80
(2−3) 235.1 170.7 1.69 235.0 169.0 1.64 234.5 173.3 1.83
(3) 287.8 168.2 0.00 288.7 164.6 0.00 287.8 169.8 0.00

Alanine
(1) 52.4 32.7 0.81 52.9 33.6 0.73 52.8 33.6 1.42
(1−2) 59.2 112.3 4.45 58.9 111.6 4.37 59.2 112.3 5.08
(2) 61.0 168.4 2.76 60.7 163.5 2.75 60.9 170.8 3.37
(2−3) 127.4 150.0 13.20 127.5 149.3 13.06 127.1 150.6 13.69
(3) 211.3 158.3 0.88 210.8 157.9 0.81 212.3 157.0 1.40
(3−4) 243.7 156.1 1.63 244.5 155.9 1.57 241.5 157.6 1.95
(4) 291.9 154.0 0.00 292.3 152.6 0.00 292.7 153.2 0.00

Valine
(1) 55.6 49.9 1.92 55.9 49.4 1.98 55.4 50.7 2.80
(1−2) 59.4 98.0 2.80 59.5 98.5 2.88 59.7 100.5 3.67
(2) 65.0 128.5 2.46 65.1 129.2 2.59 66.1 127.9 3.45
(2−3) 135.1 134.0 14.56 135.6 133.2 14.62 135.4 132.6 15.14
(3) 292.2 133.0 0.00 292.3 133.5 0.00 293.4 133.9 0.00

Figure 5. Comparison of vFEP glycine dipeptide minimum free energy paths as a function of cardinal B-spline order and node spacing. The
stationary points labels correspond to those shown in Figure 4. The dotted line in each pane is the vFEP result using fifth-order B-splines and a 10°
node spacing.
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addition of noise will also effect the activation energy (the
difference between the lowest free energy near the reactant
minimum and the highest free energy near the transition state),
as shown in Figure 6b. As the noise increases, the gap between
these limits will also increase. Alternately, if the bin widths
become large, then the binning of data may result in an
underestimation of the transition state free energies and

overestimation of the free energies near the minima. Figure 6c
plots the activation energy for bin widths between 0.1 Å
(which is the smallest width that yields a stable number of
minima) and 0.15 Å. In this range, the activation energy ranges
from 19.6 to 19.7 kcal/mol. Ultimately, the inspection of
Figure 6b is not a very good approach for choosing bin widths
because it compares two points on the surface to make a
judgment on the entire surface. We find Figure 6a to be a
better means for distinguishing between noise and real features
in simple surfaces. For complicated systems, a general
mechanism for properly distinguishing numerical noise from
real features may require multiple, independent umbrella
window simulations.
Figure 7 compares the MBAR and vFEP wallclock times as a

function of the number of windows included in the 2D analysis
of the alanine dipeptide system. To make this plot, entire rows
or columns from the 2D matrix of umbrella windows were
uniformly deleted to create a sparse set of data to compare
timings. For the vFEP methods, the timings include the
nonlinear optimization of eq 2. The MBAR timings include the
optimization of eq 23 and the evaluation of eq 20. The B-spline
and cubic spline vFEP methods scale linearly with respect to
the number of umbrella windows. The MBAR method scales
quadratically. The quadratic character of the MBAR timings is
more easily seen by comparing the ratio of timings between
MBAR and B-spline vFEP, which scales linearly. The cardinal
B-spline vFEP method is the fastest of the three. When the full
set of data is analyzed, the B-spline vFEP method is 42 times
faster than the cubic spline vFEP method and 166 times faster
than MBAR. Optimization of the MBAR/UWHAM objective
function using the full set of simulation data required 12 h on a
single Intel Xeon E5−2630 v3 (2.60 GHz) core, whereas the
optimization of the vFEP B-spline parameters was completed
within 5 min.
Figure 8 illustrates the behavior of the vFEP and MBAR

FESs of alanine dipeptide as the number of umbrella window
simulations included in the analysis becomes sparse. As the
umbrella window spacing increases, fewer simulations are
included in the analysis. The regular grid spacing of B-spline

Figure 6. (a) Number of minima in the 1D nonenzymatic
transphosphorylation reaction computed with MBAR and interpo-
lated with RBFs. The image shows how the number of minima change
as the histogram bin width is varied. (b) Activation free energy as a
function of histogram bin width. The reactant and transition state free
energies are the lowest and highest free energies found in the region
of the reactant well and transition state region, respectively. (c)
Zoomed version of (b) in the range of 0.10−0.15 Å bin width.

Figure 7. Wallclock time required to optimize the vFEP (eq 2) and MBAR/UWHAM (eqs 20 and 23) objective functions for the 2D alanine
dipeptide FES as a function of the number of umbrella window simulations. Each simulation contributes 2000 data points.
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control points increases from 10° to 24 and 40° as the regular
grid of umbrella windows increases from 8° to 24 and 40°,
respectively. The regular grid spacing of MBAR histogram bins
and the cubic spline vFEP control points are similarly
increased. By increasing the width of the histogram bins (or
separation between control points), we avoid encountering
spatial gaps in the observed samples when the number of
simulations becomes sparse. The blocks of solid colors in the
MBAR FESs are the histogram free energy values; however, the
free energy pathway and stationary point locations are
determined from B-spline interpolation through the histogram
values. The cubic spline and cardinal B-spline vFEP methods
produce nearly indistinguishable surfaces using 8 and 24°
umbrella window spacing. When the spacing is increased to
40°, the vFEP methods still appear to be qualitatively correct.
In contrast, the quality of the MBAR surface degrades as the
spacing is increased. At a 40° spacing, the MBAR method fails
to predict one of the minima and associated transition state.
The observation that vFEP yields good quality FESs with
sparse umbrella window data is consistent with previous
work.52,53

3D, 4D, and 6D Examples: Enzymatic Transphosphor-
ylation Reaction Catalyzed by HHr. Previous formulations
of vFEP could only be applied to 1D and 2D FESs;52,53

therefore, the purpose of this section is to apply the B-spline
vFEP and MBAR methods to the calculation of a 3D FES. We
have chosen a well studied archetype RNA enzyme, using HHr
for the example.88,100−103 Study of HHr, along with other small
self-cleaving ribozymes,104 has provided new insight into RNA
enzyme design.61 HHr catalyzes the self-cleavage of the RNA
phosphodiester backbone using a general acid−base mecha-
nism60 illustrated in Figure 2. The reaction involves activation
of a 2′OH nucleophile by a general base guanine residue
(deprotonated at the N1 position). The resulting 2′O
oxyanion then makes an in-line attack to the adjacent scissile
phosphate to form a pentavalent dianionic transition state (or
high-energy intermediate), followed by departure of the O5′
leaving group with the assistance of a proton that is donated
from a general acid. Hence, there are three fundamental
reaction coordinates used to represent progression of the
general base (ξGB = RO2′−H − RG12:N1−H), phosphoryl transfer

Figure 8. Alanine dipeptide FESs analyzed with vFEP and MBAR. The ϕ and ψ coordinates are the peptide dihedral angles. The umbrella window
spacing are 8, 24, and 40° in the left, center, and right columns, respectively.
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(ξPT = RO5′−P − RO2′−P), and general acid (ξGA = RG8:O2′−H −
RO5′−H) steps (Figure 2).
Figure 9 illustrates the 3D FESs of the associative

transphosphorylation reaction pathway catalyzed by the HHr
computed using AM1/d-PhoT97 QM/MM. The MBAR and
cardinal B-spline vFEP method yield near identical results. The
B-spline vFEP reaction barrier is 35.24 kcal/mol, which closely
agrees with the MBAR value of 35.20 kcal/mol. The
comparison of analysis times is shown in Figure 10. When
all 50 string iterations are included in the analysis, the MBAR
method is 4.5 times faster than the B-spline vFEP method.
When fewer string iterations are included, the MBAR method
is 10−20 times faster. The vFEP method becomes more
competitive as the number of simulations increase because the
B-spline vFEP and MBAR methods scale linearly and

quadratically with respect to the number of simulations,
respectively. Relative to the 2D timings, the performance of the
MBAR and B-spline vFEP methods are far more comparable to
each other for 3D analysis because the scaling of the MBAR
method does not depend on dimensionality, whereas the
numerical integration of the vFEP configuration integral
quickly increases as the dimensionality increases. On the
basis of the formal scaling of the algorithms and the observed
timings of 2D and 3D analysis, we conclude that the MBAR
approach is more practical for analyzing FESs involving four or
more reaction coordinates, and thus we use this approach in
the 4D and 6D examples below.
Calculated reaction pathways and barrier heights are effected

by restricting the free energy profile to a reduced hypersurface
of reaction coordinates. Performing the analysis with limited

Figure 9. Free energy surface (3D) for the associative transphosphoylation reaction catalyzed by the HHr (illustrated in Figure 2) computed from
AM1/d-PhoT QM/MM. Subplot (a) shows the umbrella window locations encountered by the finite temperature string umbrella sampling
method. The umbrella window locations are projected onto planes intersecting the final path, which is shown as the colored line. The RBF MBAR
and B-spline vFEP free energy profile of the final path is shown in (b). (c and d) RBF MBAR and B-spline vFEP free energy surfaces projected onto
planes that intersect the final path.
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degrees of freedom effectively imposes constraints on the free
energy. The remainder of this section illustrates application of
the MBAR method for analyzing 3D, 4D, and 6D FESs from
the finite-temperature string umbrella sampling method.
Comparison of 3D, 4D, and 6D FESs enable one to explore
the degree to which the pathway and barriers are affected by
choice of reaction coordinates. The 3D surface of the
associative reaction consisted of ξGB, ξPT, and ξGA coordinates.
Each of these coordinates are bond length differences between
3 atoms. We constructed a 4D profile by explicitly tracking the
O2′−P and O5′−P bond distances, rather than the combined
coordinate ξPT, to describe the phosphoryl transfer coordinate.
In other words, the four reaction coordinates are ξGB, RO2′−P,
RO5′−P, and ξGA. Exploration of these degrees of freedom
separately can help to identify and distinguish associative
pathways where nucleophilic attack occurs first versus
dissociative pathways where leaving group departure occurs

first. A 6D profile was similarly constructed by decomposing
the combined ξGB and ξGA coordinates into their component
distances as well. The minimum free energy path was searched
in the space of 3D, 4D, and 6D reaction coordinates, and the
MBAR free energies along the converged pathways are shown
in Figure 11. The free energy barriers and average distances in
the transition state ensemble are summarized in Table 2. The
umbrella window simulations used to characterize the 3D, 4D,
and 6D profiles were carried out independently; that is, the 4D
and 6D profiles are not a reanalysis of the umbrella window
simulations generated for the 3D profile. Overall, the profiles
are qualitatively similar (Figure 11a); however, the 4D and 6D
reaction barriers are 0.6 and 1.5 kcal/mol lower than the 3D
barrier, respectively. This is consistent with the added degrees
of freedom that enable identification of a slightly lower free
energy pathway. Figure 11b shows that the 6D profile yields an
“earlier” transition state (larger degree or O2′−P bond
formation and smaller degree of O5′−P bond cleavage) than
the 3D or 4D profiles. The comparison of transition state bond
lengths suggests that the largest difference in the 6D profile is
the O5′−P distance which undergoes a systematic contraction
as the degrees of freedom increase. This contraction of the
O5′−P distance is coupled with an increase in the O5′−H
distance. This implies that cleavage of the O5′−P bond is less
advanced, as is the degree of proton transfer (O5′−H bond
formation) from the general acid. While this is a fairly subtle
difference, it is nonetheless significant and could be detected
experimentally by measurement of linear free energy
relations105,106 or kinetic isotope effects107,108 at primary and
secondary oxygen positions, similar to those carried out
recently for similar reactions in the Varkud satellite ribozyme56

and RNase A.109,110

Hence, the ability to analyze and construct robust
multidimensional free energy surfaces is important for
mechanistic studies of protein and RNA enzymes. Frequently,
2D or 3D surfaces are used with fairly dense sampling and
coverage throughout the coordinate space in order to identify
the main reaction pathways in a reduced coordinate space.
These pathways can then undergo refinement to provide
further resolution. The methods presented in the present work
provide powerful analysis tools for construction of robust
analytic FESs for both of these scenarios. It is the hope that the

Figure 10. Comparison of evaluation times for generating the 3D
hammerhead ribozyme FES as a function of the number of finite
temperature string umbrella sampling iterations. Each iteration
contributes 32 umbrella window simulations, and each umbrella
window simulation contributes 80 data points.

Figure 11. Comparison of minimum free energy paths from 3D, 4D, and 6D representations of the associative transphosphoylation reaction
catalyzed by the HHr. Left panel: RBF MBAR free energy with respect to progress along the path. Right panel: MBAR results with respect to the
phosphoryl transfer coordinate ξPT.
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use of these tools which have been implemented in the FE-
ToolKit software package69 will enable new insights to be
gained and facilitate discovery for a wide array of free energy
applications.

■ CONCLUSIONS

We implemented two strategies for calculating high-dimen-
sional FES profiles. We provided examples that utilized the
methods to analyze 1D, 2D, 3D, 4D, and 6D FESs. The first
strategy that we implemented is based on the vFEP method.
Previous implementations of vFEP used a cubic spline function
to parametrize the FES; however, the software was limited to
1D and 2D FES analysis. Our implementation uses cardinal B-
spline functions to parametrize the FES. This functional form
allowed us to extend the implementation to arbitrary
dimensions and improve the efficiency of vFEP by exploiting
the B-spline’s compact support. Our B-spline vFEP method
was shown to be 50 times faster than a previous
implementation of cubic spline vFEP when applied to the
analysis of 2D Ramachandran profiles. The second strategy
that we implemented used the MBAR method to generate an
unbiased probability density from a global reweighting of the
observed samples. The principles behind the MBAR approach
are not new to this manuscript; however, we note the
following: (1) Our implementation makes use of the fast
MBAR/UWHAM method for generating FESs, rather than
solving the coupled MBAR equations. (2) We made the use of
MBAR FESs practical for high dimensions. (3) We introduced
the use of B-splines and multiquadric radial basis functions to
interpolate between the histogram FES values. We demon-
strated that the cardinal B-spline and MBAR FESs produce
nearly identical 1D, 2D, and 3D FES profiles. We compared
the performance between the vFEP and MBAR methods and
found that the B-spline vFEP method is 150 times faster than
MBAR when applied to periodic 2D FESs but that the MBAR
method is 4.5 times faster than vFEP when evaluating
unbounded 3D profiles. In other words, both methods are
useful, but they appear to offer different performance
advantages depending on the situation. In addition to vFEP
being much faster at computing 2D FESs, we also
demonstrated that the vFEP method produced FESs of
superior quality when the surface was only sparsely sampled.
The associative mechanism of Hammerhead ribozyme was
examined using 3D, 4D, and 6D profiles, and it was found that
the 4D and 6D reaction barriers were 0.6 and 1.5 kcal/mol
smaller than 3D profiles. This work has thus developed and
demonstrated new B-spline vFEP and MBAR methods for
creation and analysis of robust, analytic free energy surfaces in
arbitrary dimensions, and provided the broad scientific
community with new software tools in FE-ToolKit that will
enable their application to important problems.
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