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ABSTRACT: We report QDπ-v1.0 for modeling the internal
energy of drug molecules containing H, C, N, and O atoms. The
QDπ model is in the form of a quantum mechanical/machine
learning potential correction (QM/Δ-MLP) that uses a fast third-
order self-consistent density-functional tight-binding (DFTB3/
3OB) model that is corrected to a quantitatively high-level of
accuracy through a deep-learning potential (DeepPot-SE). The
model has the advantage that it is able to properly treat
electrostatic interactions and handle changes in charge/proto-
nation states. The model is trained against reference data
computed at the ωB97X/6-31G* level (as in the ANI-1x data
set) and compared to several other approximate semiempirical and
machine learning potentials (ANI-1x, ANI-2x, DFTB3, MNDO/d,
AM1, PM6, GFN1-xTB, and GFN2-xTB). The QDπ model is demonstrated to be accurate for a wide range of intra- and
intermolecular interactions (despite its intended use as an internal energy model) and has shown to perform exceptionally well for
relative protonation/deprotonation energies and tautomers. An example application to model reactions involved in RNA strand
cleavage catalyzed by protein and nucleic acid enzymes illustrates QDπ has average errors less than 0.5 kcal/mol, whereas the other
models compared have errors over an order of magnitude greater. Taken together, this makes QDπ highly attractive as a potential
force field model for drug discovery.

1. INTRODUCTION
Computational methods that enable the prediction of the
binding affinity and selectivity of small molecule drugs to
protein or nucleic acid targets are essential tools for drug
discovery.1−4 Among the most powerful of these methods are
so-called “alchemical free energy” (AFE) simulations: physics-
based approaches that strive to rigorously calculate the
absolute and/or relative binding free energy (ABFE and
RBFE, respectively) through atomistic simulations.5 The
accuracy of such predictions depends critically on the quality
and robustness of the underlying potential energy model from
which atomic forces are derived.6

ABFE and RBFE simulations require the construction of
thermodynamic cycles whereby ligands must dynamically
sample phase space in “unbound” (aqueous solution) and
“target-bound” (e.g., protein complexed) environments.
Electrostatic interactions in these environments can differ
substantially, and hence a desirable feature of the ligand
potential energy model is the ability to explicitly polarize in
order to electronically respond to these changes.7 Further,
roughly 25% of potential drug molecules can exist in alternative
tautomeric forms, and almost all of them can have multiple
ionizable protonation states. These states are important as they
are sensitive to their environment (e.g., pH, ionic conditions,
aqueous versus membrane, etc.) and can change upon

binding.8−10 In order to accommodate these changes, it is
advantageous to have a “universal” potential energy model that
is not restricted to a specific predetermined bonding pattern or
protonation state within the same simulation, unlike conven-
tional molecular mechanical (MM) force fields (including
polarizable force fields). High-level ab initio quantum
mechanical (QM) models are universal in this sense and also
have been demonstrated to be robust and accurate,11 but these
methods require tremendous computational resources making
them intractable for routine simulations. Approximate “semi-
empirical” QM models, on the other hand, are orders of
magnitude faster and can be routinely applied in simulations
where the QM region is limited to up to a few hundred atoms
(which encompasses most drug molecules); however, these
models typically do not have the quantitative accuracy that
real-world drug discovery applications demand.12
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An alternative approach is to develop machine learning
(ML) potentials that are both fast and accurate within the
scope of their training.13−18 To date, many such models have
been developed and more continue to emerge.19−35 So-called
“pure” ML potentials face many challenges for use in free
energy simulations. They must be able to model a wide range
of intra- and intermolecular interactions,36−38 including
relative conformational energies,38 hydrogen bonding,39 π
stacking, London dispersion, and mixed interactions,40,41 in
addition to different tautomers8 and protonation states10,42,43

as mentioned previously. The models must be able to
distinguish variable electron number (charge) and spin
(multiplicity). Finally, the models not only need to be trained
to give back accurate energies and forces for the regions of
configurational space expected to be sampled under relevant
temperature and pressure conditions but also must be trained
to avoid inaccessible regions of configurational space.
Among the first and most widely recognized ML potentials

are the ANI30,36,44,45 class of models that to a large degree
formed the inspiration for the current work. These pure ML
models are both robust and computationally efficient. The ANI
models take as basic arguments the positions and identity of
atoms in order to return an energy and through derivative
relations a set of forces. However, challenges remain for these
models to distinguish different charge and/or spin states and
properly treat electrostatic interactions (although there has
been recent progress to determine atomic charges33). This is
currently a serious limitation, as it has been estimated that up
to 95% of drug molecules contain ionizable groups that can
cause variations in the charge state and greatly alter
electrostatic interactions.46

In the present work, we develop a Quantum Deep-learning
Potential Interaction (QDπ) model that uses a fast third-order
self-consistent density-functional tight-binding (DFTB3/3OB)
model47,48 that is corrected to a quantitatively high-level of
accuracy through a range-corrected deep-learning potential
(DPRc).49,50 In this way, the QDπ model developed here is the
form of a quantum mechanical/machine learning potential
correction (QM/Δ-MLP).35,49−54 The use of DFTB3 as a
robust QM base model has several important advantages. First,
it provides a reasonable description of the conformational
potential energy landscape, greatly reducing the requirement to

explicitly train the MLP to avoid inaccessible high-energy
regions. Second, DFTB3 uses polarizable atomic charge
densities that are easily integrated into an efficient particle-
mesh Ewald55 framework to capture long-range electrostatic
interactions in condensed phase QM/MM56 and QMFF57−59

simulations. Third, DFTB3 is able to model changes in the
charge, protonation, and spin states in a size-consistent
manner. QDπ is developed and validated with respect to a
number of existing and new databases (DBs).36,37,39−43,60−66

Special emphasis is placed on developing a universal model
that is able to quantitatively predict tautomers8 and
protonation states.10 The present work develops QDπ for
internal ligand energetics. This advance sets the stage for
intermolecular interactions to be fully developed through the
quantum mechanical/molecular mechanical (QM/MM) Δ-
MLP. This would enable alchemical free energy simulations for
drug discovery to be made using the QDπ model through the
use of indirect MM → QDπ free energy “book-ending”
methods.67−70

2. METHODS
This paper brings together several facets in order to develop
the QDπ model for drug discovery. The first is the collection
and curation of several existing molecular databases of
structures, energies, and forces. The second is the generation
of new data sets that fill needed gaps in training and/or testing
data. Third, we develop new tools within DeePMD-kit71,72 that
enable more general flexible forms of the loss function
(including relative energies) used in training of the neural
networks. Fourth, we create computational infrastructure for
consistent comparison of a wide array of existing potential
energy models. Each of these is described in detail below.
2.1. Preparation for Data Sets. The purpose of this first-

generation QDπ model is to create a highly robust universal
potential that can accurately model drug-like molecules
containing H, C, N, and O atoms as relevant for binding to
biological targets. Important properties for consideration
include the following: relative conformational energies, a
wide range of intermolecular interactions, as well as relative
energies associated with different tautomers and protonation
states. While ultimately this model can be extended to predict

Table 1. Data Sets Used in the Current Worka

# of data points

usage data set E F ΔE ref

ANI-1x 4,956,005 227,101,443 36, 37

training

ANI-1xm 2,641,429 130,421,121 36, 37
S66×8 528 31,536 462 36, 40, 41
HB375×10 3750 192,690 3375 39
AEGIS:BP 32 1953 10 60
AEGIS:TAUT 37 1668 25 60
Tautobase 700 39,216 350 61, 62
AAMC 50 1527 25 43
NAMC 68 3018 53 43
PA26 34 1137 17 42
RegioSQM20 (95%) 1088 84,576 544 63

testing
COMP5m 64,667 5,215,848 36, 64−66
TAUT15 21 831 13 42
RegioSQM20 (5%) 50 4023 25 63

aData sets are described in the Methods section. In the current work, all reference DFT data is computed at the ωB97X/6-31G* level of theory for
consistency.
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covalent binding (irreversible inhibition), the initial focus here
is on noncovalent binding.
We prepared several data sets for training and (benchmark)

testing of the QDπ model. These are summarized in Table 1
and described in more detail below. As a general theme, we
endeavored to be consistent with the ANI-1x data set that was
generated using the ωB97X/6-31G* level of theory. Toward
that end, where needed, we recalculated the energy and forces
and performed geometry optimizations at a consistent ωB97X/
6-31G* level of theory73 (all using Gaussian 1674) in order to
train evolving versions of the QDπ model. The QDπ model is
trained to be a QM/Δ-MLP; i.e., a nonelectronic DPRc
“correction” to the DFTB3/3OB75 QM model potential
energy similar to previous work.49,50

2.1.1. Broad Data Sets: ANI-1xm and COMP5m. These
data sets contain a diverse range of bio and drug-like molecules
at equilibrium and nonequilibrium conformations and contain
structures, potential energies, and forces. Generally, previous
chemical space data sets76−78 are usually derived from the
GDB databases64,65,79 that contains billions of SMILES
strings80 for organic small molecules. Herein, we use modified
versions of the public ANI-1x37 and COMP636 databases as
follows.

ANI-1xm. The ANI-1x data set is an open-source chemical
space data set proposed by Smith et al.37 that includes ωB97X/
6-31G* energies and forces generated by diverse normal mode
sampling (DNMS). We examined the ANI-1x data set and
observed that the DNMS procedure would in some cases
generate free radicals by breaking covalent bonds (which were
still computed with a singlet spin state in the reference data
set), and this led to problems in QDπ training (an example is
provided in Section 1 of the Supporting Information). Thus,
we curated a subset of the ANI-1x data to create a modified
data set we refer to as ANI-1xm by analyzing and removing
such predicted free radicals in addition to a few other select
outlier molecules through the procedure described below.
As an example, the DFTB3/3OB base QM model is known

to have rare anomalous outlier energies for some inorganic
molecules such as cyanogen75 that we did not consider as
highly relevant for drug discovery. In other cases, it has been
reported that some reference values in the ANI-1x data set are
not reliable.51 We thus used the following outlier detection
criteria to remove 50 points that satisfy the condition

E E
E( )

8k

(1)

where Ek is the energy difference between ωB97X/6-31G* and
DFTB3, and E and σ(E) are the mean and standard deviation
of the energy differences for all molecules with the same
chemical formula. The threshold is taken from the TorchANI
program.81 After curating the ANI-1xm data set in this way, we
obtained a total of 2,641,429 points (a 46.7% reduction from
the original ANI-1x data set).

COMP5m. The COmprehensive Machine-learning Potential
(COMP6)36 benchmark is a chemical space data set that was
built from six separate data sets: 1) the original S66×8
benchmark,40,41 2) ANI-MD,36 3) GDB7to9,64 4)
GDB10to13,65 4) Tripeptide,36 and 5) DrugBank66 data sets.
We begin by extracting the S66×8 data set, which we will
analyze separately, and we refer to the truncated data set as
“COMP5”. The COMP5 data set, like ANI-1x, used the
DNMS procedure which cleaved covalent bonds in some

instances; therefore, we applied the same outlier detection
procedure described above to arrive at a modified COMP5m
data set containing 64,667 data points (a 35.9% reduction from
the original COMP5 data set).

2.1.2. Intermolecular Data Sets. Intermolecular data sets
contain dimers at multiple separations. Each dimer was
geometry optimized at the reference theoretical level and the
intermonomeric distances without altering the internal geo-
metries.40 The ωB97X/6-31G* and DFTB3 energies and
forces were evaluated at the reference geometries.
For the S66×8 data set and the HB375×10 data set, we

compute the relative energies as follows

=E E Emin (2)

where Emin is the minimum energy of the dimer (at the most
favorable intermolecular separation). The QDπ model was
trained using all available dimer separations. Because most of
the interaction energies are quite small, we report only the ΔE
of the most separated dimer configuration. The following
intermolecular data sets are used in the current work.

S66×8. The S66×8 data set41 is a nonbonded interaction
data set containing 66 noncovalent pairs at 8 separations. The
ωB97X/6-31G* energy and forces are directly taken from the
COMP6 benchmark.36 The 8 relative energies are computed
for each of the 66 dimers.

HB375×10. The HB375×10 data set39 is an S66×8-like
nonbonded interaction data set containing 375 hydrogen
bonding pairs. We use geometry provided by the data set to
compute the ωB97X/6-31G* energy and forces.

AEGIS:BP. The AEGIS:BP data set is a subset of 10
hydrogen-bonded nucleic acid base pairs (BPs) within the
artificially expanded genetic information system (AEGIS)60,82

database. The entire list of BPs is given in Figure S2 of the
Supporting Information. The structures were generated by
Open Babel and optimized at the ωB97X/6-31G* level.

2.1.3. Tautomerization Data Sets. The tautomerization
data sets described below are used to evaluate the relative
energy of the tautomeric configurations. The relative energy
between A and B is the difference between their total energies
(EA and EB).

=E E EA B (3)

Each tautomer is optimized from the initial geometry at the
ωB97X/6-31G* level. The relative energies and force
corrections between ωB97X/6-31G* and DFTB3 at the
reference geometries are used in the neural network training.
When tabulating the results to compare different methods, we
report the mean absolute errors (maEs) and root mean
squared errors (rmsEs) of the relative energies; these values
evaluate the energies upon geometry optimizing the structures
with each method.

Tautobase. The Tautobase data set61 is a broad tautomer
data set. A subset of the Tautobase data set was constructed by
Wieder et al.62 that includes 354 tautomer pairs with C, H, O,
and N elements. Each pair involves the relocation/bonding of a
hydrogen atom. The initial geometry is generated by Open
Babel83 and optimized at the ωB97X/6-31G* level.

TAUT15. TAUT15 is a tautomer data set from the GMTK55
database42 containing 15 relative energies. The initial geometry
is provided by the data set and further optimized at the
ωB97X/6-31G* level.

AEGIS:TAUT. The AEGIS:TAUT data set is a subset of 25
tautomeric (TAUT) equilibria extracted from the AEGIS60
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database. The entire list of TAUT is given in Figure S3 of the
Supporting Information. The initial geometry is provided by
the data set and further optimized at the ωB97X/6-31G* level.

2.1.4. Protonation Energy Data Sets. These data sets are
intended to be reflective of titratable sites in biological and
ligand/drug-like molecules. We depart from public data sets
that provide SMILES strings of absolute deprotonation
energies AH → A− + H+; however, we train and test the
methods against relative protonation energies AH + B− → A−

+ BH. Each reactant or product is optimized. For a generic
chemical reaction

+ + + +A B . . . X Y . . .A B X Y (4)

the relative energy for a reaction (donated ΔErxn) is defined as
the potential energy difference between total reactants and
total products

=E E Erxn
products,p

p
reactants,r

r
(5)

where νp and νr are the stoichiometric coefficients of each
product p and reactant r.

Amino Acid Model Compounds (AAMCs). The AAMC data
set contains 21 O−H and N−H bond-containing molecules
(OHNH) with deprotonation energies, including amino acid
model compounds from ref 43. The entire list of compounds is
given in Section 5.1 of the Supporting Information. The initial
geometries were generated by Open Babel83 and optimized at
the ωB97X/6-31G* level.

Nucleic Acid Model Compounds (NAMCs). The NAMC
data set contains 53 deprotonation energies of nucleic acid
(DNA and RNA bases) model compounds introduced in ref
43. The entire list of compounds is given in Section 5.2 of the
Supporting Information. The initial geometry is generated by
Open Babel83 and optimized at the ωB97X/6-31G* level.

PA26. The PA26 data set is a subset of the GMTKN55
database42 containing 26 adiabatic proton affinities. The initial
geometry is provided by the data set and optimized at the
ωB97X/6-31G* level.

RegioSQM20. We selected a subset of the RegioSQM2063

database containing C, H, O, and N elements. The subset was
randomly divided into the training and test sets. Some outliers
were removed using the procedure described above for the
ANI-1x and COMP5m data sets. Then, there are 544 and 25
deprotonation energies in the training and test sets,
respectively. The entire list of compounds is given in Section
5.3 of the Supporting Information. The initial geometry is
generated by Open Babel83 (or RDKit84 for some compounds
to get better structures) and optimized at the ωB97X/6-31G*
level.
2.2. QDπ (v1.0). In this work, we develop a general QDπ

model as a Δ-MLP correction54 to DFTB3/3OB. The
correction is parametrized to reproduce target energies and
forces for closed-shell bio and drug-like organic molecules and
ions composed of C, H, O, and N elements. The QDπ energy
is the sum of DFTB3 and neural network potential (NNP)
model energies

= +E E EQD DFTB3 NNP (6)

where EDFTB3 is the DFTB3/3OB energy, and ENNP is the Δ-
MLP correction using the Deep Potential-Smooth Edition
(DeepPot-SE) functional form.28 DFTB3 was chosen as the
base model because it is robust and internally consistent and

has been reported36 to have better overall accuracy for the
ANI-1x data set compared to PM6.

2.2.1. DeepPot-SE. The QDπ model parametrizes a Deep
Potential (DP) using the DeepPot-SE descriptor28 used as a Δ-
MLP correction. The functional form of the DP and DeepPot-
SE descriptor has been previously described,85 and additional
details can be found in Section 2 of the Supporting
Information. DeepPot-SE is a popular descriptor implemented
in the DeePMD-kit package71,72 which has seen use in over
100 works86 since its proposal in 2018. It also serves as the
foundation for the DPRc49 Δ-MLP. The DPRc correction
includes corrections for QM/MM interactions. Although the
present work does not involve QM/MM interactions, the
common framework between the DPRc and DP potentials
affords the opportunity to extend the QDπ model to QM/MM
applications using the DPRc potential.
A recent work18 has compared the theories of different

NNPs, including ANI-1 and DeepPot-SE. NNPs that use
atomic-centered symmetry functions (ACSFs),19 such as ANI-
1, have fixed descriptors that must be determined before
training. In contrast, the descriptors used in the SchNet24 and
DeepPot-SE NNPs are trained to improve accuracy. It was
found that NNPs with trainable descriptors require more
computational effort to train because the descriptor includes
additional parameters (and thus the additional parameter
gradients must be evaluated during training).87 To address this
issue, a model compression scheme has been introduced that
can freeze and compress the DeepPot-SE descriptor to
improve performance (either during or after training).87 In
this work, we apply this model compression scheme in the
latter part of training (see below).

2.2.2. Relative Energy Loss. In this work, we introduce a
new component to the loss function to train relative energies.
It is common for ML training algorithms to update the neural
network parameters using a subset (a “batch”) of the available
training data. A “loss function”, L, is evaluated using the data
contained within the batch, the neural network parameters are
updated, and a new batch is created for the next optimization
step by randomly selecting another subset of data.88 In the
past, a batch consisted of molecules whose total energies and
forces are to be trained. In which case, the loss function
consisted of two components: errors arising from the total
energies LE and forces Lf.

= +L p L p LE E f f (7)

In the present work, we allow relative energies to be included
within a batch

= + +L p L p L p LE E E E f f (8)

where LΔE is the relative energy loss

= *
=

L
N

E E1 1
( )E

E k k
k k

1

2
E

(9)

where E is the number of relative energies within the batch.
Nk is the total number of atoms for system k (the sum of all
product and reactant atoms in the case of reaction energy).
ΔEk and *Ek are the model and reference relative energies,
respectively. LE and Lf are defined in the same way

= *
=

L
N

E E1 1
( )E

E k k
k k

1

2
E

(10)
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= *
=

L
N

f f
1 1

3
( )f

f k k
k k

1

2
f

(11)

where E and f are the number of relative energies and forces

within the batch, respectively. Ek and *Ek are the model and
reference energy components, and f k and *fk are the model and
reference force components, respectively. pE, pΔE, and pf are
weights assigned to energy, relative energy, and force
contributions to the loss function. The weights are linearly
updated with the learning rate, α:

= +p t p
t

p
t

( )
( )
(0)

1
( )
(0)E E E

0 i
k
jjjj

y
{
zzzz

(12)

= +p t p
t

p
t

( )
( )
(0)

1
( )
(0)E E E

0 i
k
jjjj

y
{
zzzz

(13)

= +p t p
t

p
t

( )
( )
(0)

1
( )
(0)f f f

0 i
k
jjjj

y
{
zzzz

(14)

The learning rate decays exponentially with the training step, t

=t( ) t
0

/ (15)

where α0 is the initial learning rate, λ is the decay rate, and τ is
the decay steps. If energy, relative energy, or force is not
available in a batch, pE, pΔE, or pf will be set to zero to disable
the corresponding loss contribution. In this work, we set

=p 2E
0 , =p 20E , =p 2E

0 , =p 20E , =p 100f
0 , =p 0.1f ,

α0 = 0.0001, λ = 0.99, and τ = 400. It is worth mentioning that
direct training to the relative energies typically will not improve
the accuracy of the absolute atomic energies (the energy of an
atom in a vacuum). We have implemented the relative energy
loss contributions into the DeePMD-kit package.71,72

2.2.3. Training Process. The QDπ model was trained using
the DeePMD-kit software package. As shown in Table 2, we
performed 6 training iterations with different data sets and
training properties. In the first two iterations, the model was
trained to reproduce the total energies and forces of the
molecules contained within the relative protonation energy
data set. After the first iteration, the DP Compress87 algorithm
was applied to freeze the model descriptor to improve
performance. All subsequent iterations restart the training from
the previous iteration. Starting from iteration 3, the loss
function was changed to train against relative energies rather
than molecular total energies. All of the tables in the main text
show results only for QDπ-v1.0, but the Supporting
Information contains extended tables that have results for
each version to compare.

2.3. Energy/Force Calculation and Geometry Opti-
mizations. This section describes the various potentials
compared, in addition to the basic methods used for
performing geometry optimizations. Additional details for
relaxed 2D potential energy surface scans are provided in
Section 3 of the Supporting Information.

ωB97X/6-31G*. We used Gaussian 1674 to evaluate
ωB97X/6-31G* energies and perform geometry optimiza-
tions.73

Semiempirical methods. The AMBER 2089 SQM module90

was used to perform geometry optimizations and evaluate the
energies and forces of several semiempirical models, including
DFTB391,92 (3OB parameters75), MNDO/d,93 AM1,94 and
PM6.95 The DFTB+96 package was used to validate DFTB3
results from AMBER.
The DFTB+96 package was used to calculate GFN1-xTB97

and GFN2-xTB98 energies and forces. For these models, the
ASE package99 was used to optimize the geometries with the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) algorithm.100

QDπ Models. The QDπ energy is the sum of the DFTB3
and the DP contributions. The DP contribution was directly
evaluated within the DeePMD-kit program.71 The ASE
package99 was used to optimize the QDπ structures.

ANI Models. The TorchANI program81 was used to provide
energies and forces of the ANI-1x36 and ANI-2x45 models.
Each ANI model consists of 8 independent parameter sets. We
only use the first model (index 0) for benchmarking. It has
been suggested that using an average of multiple models will
improve the accuracy44 but at additional computational cost.81

We performed the geometry optimizations with the ASE
package.99

3. RESULTS AND DISCUSSION
For consistency, all the reference data used to train and test the
QDπ model was performed at the ωB97X/6-31G* level, as in
the ANI databases30,36,44,45 used to train the ANI-1x and ANI-
2x models. In making the comparison with the target reference
data, we report various error metrics such as mean absolute
and root-mean-square errors (maEs and rmsEs, respectively).
Other models compared in this work have been trained to
different reference data (levels of theory and data sets). Hence,
it should not be concluded that deviation of these other
models from the reference data used in this work implies they
are necessarily less accurate in the theoretical electronic
structure limit (which cannot be practically obtained for any of
the data considered here). Thus, a comparison of results from
other models is not meant to be critical but rather provide a
broader context with respect to variation from a well-defined
reference. In our view, the real litmus test for a drug discovery
force field is the accuracy of binding free energy predictions

Table 2. Data Sets and Neural Network Optimization Steps Used in Training Different QDπ Model Versions

iter data set steps descriptor
output
model

1 ANI-1x (E,F) 10,000,000 normal
2 ANI-1xm (E,F) 60,000,000 compressed QDπ v0.0
3 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F) 31,000,000 compressed QDπ v0.1
4 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F), NAMC (ΔE, F), S66×8 (ΔE, F) 50,000,000 compressed QDπ v0.2
5 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F), NAMC (ΔE, F), S66×8 (ΔE, F), PA26 (ΔE, F),

RegioSQM20 (95%) (ΔE, F), HB375×10 (ΔE, F)
47,000,000 compressed QDπ v0.3

6 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F), NAMC (ΔE, F), S66×8 (ΔE, F), PA26 (ΔE, F),
RegioSQM20 (95%) (ΔE, F), HB375×10 (ΔE, F), AEGIS:BP (ΔE, F), AEGIS:TAUT (ΔE, F)

43,800,000 compressed QDπ v1.0
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from rigorous and precise AFE simulations,5,101 which is
beyond the scope of this work. The current work focuses on
developing a robust and internally consistent internal energy
model from drug-like molecules that provide a foundation
from which to extend to accurate intermolecular interactions as
a Δ-MLP to the QM/MM potential.
3.1. Performance for Internal (Intramolecular) Poten-

tial Energy. The majority of data used to train the QDπ
model was from the ANI-1xm data set using energies and
forces and validated against the COMP5m data set. The ANI-
1x model was trained to the energies only, whereas the ANI-2x
was trained to both energy and forces. Comparison of the force
component errors for these models is illustrated in Figure 1,
and error results for QDπ and all of the established comparison
models are summarized in Table 3. Not surprisingly, the ANI-
2x model performs best among the established models
compared, having mean absolute errors (maEs) of 1.07 kcal/
mol and 2.11 kcal/(mol·Å) for the energy and forces,
respectively. Moreover, these errors are transferable to
COMP5m, for which neither the ANI nor QDπ models were

trained (maEs of 1.67 kcal/mol and 1.86 kcal/(mol·Å) for
energy and force, respectively). The other models ranged in
maE in forces of 4.69−15.14 kcal/(mol·Å) for ANI-1xm and
3.68−12.13 kcal/(mol·Å) for COMP5m (energies were not
compared for the semiempirical models as the zero of total
energy uses a different reference than for ωB97X/6-31G*).
The worst models overall are the NDDO-based semiempirical
models (MNDO/d, AM1, and PM6), which require additional
fixes such as orthogonalization corrections102 or other
empirical terms103 in order to accurately reproduce relative
conformational energies. The tight-binding models that
explicitly account for orthogonalization through the inclusion
of an overlap matrix in the generalized eigenvalue problem
perform generally better, with the GFN models slightly out-
performing DFTB3/3OB. QDπ performs exceptionally well on
both the ANI-1xm training and COMP5m testing data sets,
having an maE of 0.83 and 1.48 kcal/mol for the energy,
respectively, and 1.16 and 1.14 kcal/(mol·Å) for the forces,
respectively.

Figure 1. Relation between forces in kcal/(mol·Å) calculated by ωB97X/6-31G* and QDπ, ANI-2x, and ANI-1x, respectively, for the ANI-1xm
and COMP5m data sets.

Table 3. Mean Absolute Error (maE) and Root Mean Square Error (rmsE) of Energies in kcal/mol and Forces in kcal/(mol·Å)
for the ANI-1xm Training and COMP5m Testing (Marked with an “*”) Data Sets (Table 1)a

ANI-1xm COMP5m*

energy force energy force

model maE rmsE maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.83 1.22 1.16 1.77 1.48 2.44 1.14 1.79
ANI-1x 1.48 2.07 4.48 6.91 1.96 3.33 3.72 5.74
ANI-2x 1.07 1.58 2.11 3.35 1.67 2.66 1.86 3.11
DFTB3 7.58 12.45 5.46 8.76
MNDO/db 15.14 24.53 11.52 17.77
AM1 14.95 24.29 12.13 18.07
PM6 12.96 23.63 9.33 14.30
GFN1-xTB 4.69 7.02 3.68 5.40
GFN2-xTB 5.81 8.65 4.33 6.33

aModels and data sets are described in the Methods section. bSome points (<0.1%) fail to converage and are removed.
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In order to illustrate the degree to which the QDπ model
can reproduce conformational energy landscapes, we examined
relaxed 2D torsion profiles for three systems: the alanine
dipeptide and the drug molecules ibuprofen and ketorolac
illustrated in Figure 2. Figure 3 compares the potential energy
surface for 2D torsion scans at the ωB97X/6-31G*, QDπ,
ANI-2x, GFN2-xTB, and DFTB3 levels. All of the models
qualitatively predict the correct trends. Overall, QDπ and ANI-
2x are quite similar and have the closest agreement with
ωB97X/6-31G*. While none of the models is able to
reproduce conformational energy barriers below 1 kcal/mol
in all cases (see Table S4 of the Supporting Information), the
DFTB3 model errors are the largest and most systematic in
their underestimation of the barriers between minima.

3.2. Performance for Intermolecular Interactions.
Despite the focus being on training a QDπ internal energy
model, we felt it important to include training and testing data
to intermolecular interaction DBs (S66×836,40,41 and
HB375×1039) as some large, drug-like molecules can form
similar interactions (e.g., intramolecular hydrogen bonds).
Figure 4 and Table 4 compare intermolecular interactions (ΔE
values) for S66×8. Overall, QDπ has the smallest maE (0.30
kcal/mol) relative to the other models that ranged in maE
from 0.59 kcal/mol (ANI-2x) to 3.59 kcal/mol for DFTB3. A
more detailed breakdown of the errors into hydrogen bonding
(HB), π stacking, London dispersion (LD), and mixed
interactions is provided in Table 4. QDπ has maE values
that range from 0.21 to 0.41 kcal/mol (the largest is the LD
subset), whereas ANI-2x ranges from 0.40 to 0.91 kcal/mol

Figure 2. Model (a) alanine dipeptide; (b) ibuprofen; and (c) ketorolac. ϕ and ψ represent the 2D torsion angles.

Figure 3. Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; and (c) ketorolac. Each molecule was computed using ωB97X/6-
31G*, QDπ, DFTB3, ANI/2x, and GFN2-xTB, respectively. ωB97X/6-31G* is the reference potential, and the other potentials are compared with
ωB97X/6-31G*. The color bars represent the potential energy (with respect to the minimum energy) ωB97X/6-31G* in kcal/mol. The black and
red points represent the minima and the transition states, respectively, and the black curves represent the transition paths between minima.

Figure 4. Relation between relative energies in kcal/mol calculated by ωB97X/6-31G* and QDπ, ANI-2x, GFN2-xTB, and DFTB3, respectively,
for the S66×8 data set. Relative energies consist of the difference between the optimized structure and the structure with the furthest distance in
each of the 66 dimer pairs.
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(the largest being for the HB subset). Closer examination of
the more extensive HB735 data set indicates that QDπ has the
lowest maE (0.44 kcal/mol), whereas ANI-2x, GFN2-xTB, and
DFTB3 have maE values of 1.40, 0.85, and 1.17 kcal/mol,
respectively. In the case of ANI-2x, the distribution of errors
has a considerably larger variance as indicated by the rmsE
value of 3.84 which is over 2.5 times larger than the maE.
3.3. Performance for Tautomers. Figure 5 compares the

tautomer energies for the Tautobase61 data subset and
TAUT1542 and AEGIS:TAUT data sets. The QDπ model is
the only model that has quantitative (less than 1 kcal/mol)
accuracy for tautomer energies (maE values that range from
0.70 to 0.82 kcal/mol for data subsets listed in Table 5 and
0.79 kcal/mol overall). Of the other models, ANI-2x performs
the best but still has an maE roughly twice as large (maE 1.63
kcal/mol, with data subset values that range from 1.00 to 1.76
kcal/mol). The GFN2-xTB and DFTB3 models have maE
values exceeding 4.5 kcal/mol overall with the largest
contributions coming from the Tautobase data subset (maE
values for GFN2-xTB and DFTB3 both approximately 5.5
kcal/mol). Both QDπ and ANI-2x have a high linear
correlation with ωB97X/6-31G* (0.99 and 0.95, respectively),
whereas GFN-xTB and DFTB3 have moderate correlation
(0.69 and 0.55). Hence, the QDπ model is the only model that
consistently provides tautomer energies with errors below 1
kcal/mol relative to the reference.
3.4. Performance for Relative Protonation States.

Figure 6 compares the differences in protonation energies for a
series of amino acid and nucleic acid model compounds,43 as
well as molecules in the PA2642 data set. Changes in the charge

state are notoriously challenging for minimal valence basis
models104 and particularly problematic for the ANI-2x model
that cannot distinguish molecules from ions and thus breaks
down. Both the GNF2-xTB and DFTB3 models have a high
correlation (0.99) with ωB97X/6-31G*, owing mainly to the
large range of values that are clustered into two sets (0−75 and
125−225 kcal/mol), and large maE values that are 7.78 and
10.24 kcal/mol, respectively. The QDπ model performs
exceptionally well with an maE of 0.17 kcal/mol and almost
perfect correlation.

Table 4. Mean Absolute Error (maE) and Root Mean Square Error (rmsE) of Relative Energies (ΔE) in kcal/mol for
Hydrogen Bonding (HB), π Stacking, London Dispersion (LD), and Mixed Influence (Mixed) Subsets of the S66×8 and
HB375×10 Training Data Sets (Table 1)a

S66×8 ΔE (subsets)

HB π stacking LD mixed HB375×10

ΔE ΔE ΔE ΔE ΔE

model maE rmsE maE rmsE maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.21 0.26 0.35 0.47 0.41 0.51 0.31 0.38 0.90 1.18
ANI-1x 2.01 3.12 1.34 1.49 0.78 0.98 1.42 1.70 1.54 1.97
ANI-2x 0.91 1.11 0.49 0.57 0.40 0.48 0.40 0.49 1.62 3.49
DFTB3 4.64 4.75 3.14 3.39 2.93 3.07 3.06 3.15 4.12 4.34
MNDO/d 5.37 5.73 2.68 2.83 2.49 2.58 2.66 2.75 6.44 7.04
AM1 7.07 7.63 3.76 4.21 3.04 3.26 3.74 3.83 5.28 5.74
PM6 9.86 10.87 3.83 4.33 3.28 3.42 4.12 4.24 3.92 4.23
GFN1-xTB 3.31 3.45 0.88 1.09 0.90 1.03 1.95 2.03 2.52 2.68
GFN2-xTB 3.53 3.59 0.96 1.12 0.65 0.82 1.55 1.69 2.66 2.89

aModels and data sets are described in the Methods section. Relative energies consist of the difference between the optimized structure and the
structure with the furthest distance in each of the dimer pairs.

Figure 5. Relation between tautomerization energies in kcal/mol calculated by ωB97X/6-31G* and QDπ, ANI-2x, GFN2-xTB, and DFTB3,
respectively, for the TAUT15 data set and the artificially expanded genetic information system: Tautomer (AEGIS:TAUT) data set.

Table 5. Mean Absolute Error (maE) and Root Mean
Square Error (rmsE) of Energies and Relative Energies
(ΔE) in kcal/mol for the Tautobase/AEGIS:TAUT
Training and TAUT15 Testing (Marked with an “*”) Data
Sets (Table 1)a

Tautobase TAUT15* AEGIS:TAUT

ΔE ΔE ΔE

model maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.82 1.09 0.70 0.89 0.71 0.97
ANI-1x 1.73 2.42 1.63 1.83 1.54 2.08
ANI-2x 1.76 2.39 1.00 1.20 1.41 1.94
DFTB3 5.45 6.93 3.65 4.60 5.25 6.12
MNDO/d 9.69 11.35 7.78 9.55 8.20 9.43
AM1 5.01 6.34 3.99 5.85 3.88 4.66
PM6 4.90 6.12 5.60 7.11 7.39 8.85
GFN1-xTB 5.23 6.51 5.32 6.53 5.61 6.58
GFN2-xTB 5.68 6.81 2.84 3.62 3.16 3.59

aModels and data sets are described in the Methods section.
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A closer examination of the data subsets is listed in Table 6.
The maE values between AAMC, NAMC, and PA26 data
subsets have ranges 0.09−0.39 (QDπ), 5.77−8.45 (GFN2-
xTB), 8.63−12.54 (DFTB3), and 23.8−70.5 kcal/mol (ANI-
2x). Examination of errors from the RegioSQM* data set that
was not used in training reveals more similar maE values: 2.53
(QDπ), 4.12 (GFN2-xTB), 4.59 (DFTB3), and 13.6 kcal/mol
(ANI-2x). The reason for this may be due in part to the design
of the database to predict the regioselectivities of electrophilic
aromatic substitution reactions from the calculation of proton
affinities, but this is not fully clear.
3.5. Example Application: Acid/Base Reactions Im-

portant in Enzyme Catalyzed RNA Cleavage. Although
the current QDπ model has been designed with the intent
ultimately for applications to drug discovery, it is nonetheless
instructive to consider well-studied examples where proto-
nation/deprotonation events are of biological significance. One
such example presents itself in the chemistry of RNA strand
cleavage105−107 that is catalyzed by protein ribonu-
cleases108−110 as well as small self-cleaving ribozymes111,112

and several artificially engineered DNAzymes.113−116 In this
reaction, the 2′-OH group of an RNA nucleotide is activated
by deprotonation by a general base. The resulting activated
nucleophile makes an in-line attack to the adjacent phosphorus
of the scissile phosphate, and the reaction proceeds through a
pentacovalent transition state followed by departure of the 5′-
O leaving group that is facilitated by donation of a proton from
a general acid. In the case of protein ribonucleases, the general
base−acid catalysis is thought to be carried out by active site
histidine residues,108−110 although early work speculated that a
functionally important lysine residue might also be a plausible
candidate.117 In the case of small self-cleaving ribozymes and

DNAzymes, the general acid−base catalysis is carried out by
nucleobases and metal ions or in some cases assisted by the 2′-
OH of the ribose sugar moiety. Considering the nucleobase
candidates, the general base is often an active site guanine (at
the N1 position), whereas the general acid can be either a
cytosine (at the N3 position) or else an adenine (either N1 or
N3 positions).
We hence consider the energetics of reactions that involve

the relative protonation/deprotonation of the general acid and
base models with respect to the 2′-OH nucleophile (a
secondary alcohol modeled as isopropyl alcohol, iPrOH) and
the 5′OH leaving group (a primary alcohol modeled as
ethanol, EtOH). These are listed in Table 7. The model
reactions where iPrOH is deprotonated to form iPrO− is
meant to represent a model system for general base activation
of the 2′-OH nucleophile, whereas the reactions where EtO− is
protonated to form EtOH is meant to represent a model
system for general acid stabilization of the 5′-O− leaving group.
The values shown in Table 7 show the relative energetics of
the noninteracting molecular and ionic reaction species. In the
gas phase, the formation of neutral molecules from non-
interacting ions from neutral molecules is highly exothermic;
although for interacting systems in an enzyme environment,
the differences are expected to be much smaller. Nonetheless,
the inherent energetics associated with the relative proto-
nation/deprotonation events still is a major factor that
regulates reactivity. For the protein enzyme model reactions
(top block, Table 7), QDπ performs exceptionally well with
errors all less than 0.5 kcal/mol, whereas the DFTB3 and
GFN2-xTB errors range from −11.33 to 11.72 and −7.02 to
9.66 kcal/mol, respectively. For the nucleobase reaction
models (middle block, Table 7), QDπ has larger errors that

Figure 6. Relation between relative protonation energies (AH + B− → A− + BH) in kcal/mol calculated by ωB97X/6-31G* and QDπ, ANI-2x,
GFN2-xTB, and DFTB3, respectively, for AAMC, NAMC, and PA26 data sets.

Table 6. Mean Absolute Error (maE) and Root Mean Square Error (rmsE) of Energies and Relative Energies (ΔE) in kcal/mol
and Forces in kcal/(mol·Å) for Relative Protonation Energies for the AAMC, NAMC, and PA26 Training and RegioSQM*
Testing (Validation) Data Sets (Table 1)a

AAMC NAMC PA26 RegioSQM*

ΔE ΔE ΔE ΔE

model maE rmsE maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.09 0.14 0.17 0.22 0.39 0.49 2.53 3.19
ANI-1x 86.95 112.31 52.68 71.74 43.02 62.28 16.85 22.15
ANI-2x 70.52 89.39 52.48 72.33 23.80 30.54 13.64 17.24
DFTB3 8.63 11.12 10.85 13.33 12.54 15.84 4.59 5.74
MNDO/d 11.71 14.13 11.29 14.08 13.07 16.10 5.18 6.29
AM1 4.43 5.49 7.32 9.10 13.51 20.89 4.13 5.11
PM6 11.23 13.86 11.03 13.58 17.84 34.36 5.30 6.57
GFN1-xTB 5.00 6.07 11.73 35.39 4.43 5.39 4.10 5.07
GFN2-xTB 5.77 7.14 8.45 10.40 7.35 11.73 4.12 4.96

aModels and data sets are described in the Methods section.
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range from −1.11 to 1.25 kcal/mol, whereas the corresponding
ranges are −8.63 to 16.00 and −2.69 to 11.40 for DFTB3 and
GFN2-xTB, respectively. For the relative errors between
nucleobase general acid and base (bottom block, Table 7),
again QDπ is in very close agreement with the reference values
(maximum error −0.27 kcal/mol), where the DFTB3 and
GFN2-xTB models have considerably larger errors (maximum
errors 6.99 and 6.07 kcal/mol, respectively). Overall, the
average error for QDπ is below 0.5 kcal/mol. As mentioned
earlier, the ANI-2x model breaks down for a system that has a
varying charge, with average errors of over 100 kcal/mol.
These results provide an example in a biological context that
emphasizes the importance of modeling relative protonation/
deprotonation events with quantitative accuracy. For drug
discovery, these will be especially important, as it has been
estimated that over 95% of drug molecules have ionizable sites,
many of which may potentially change upon binding to a
biological target.
3.6. Current Limitations and Future Directions. A key

aspect of this project was to create a first-generation potential
energy model trained against broad data all computed at the
same level of theory (and where possible, even using the same
software package). At the time this project was initiated, the
largest such data set was ANI-1x DB37 at the ωB97X/6-31G*
level that only contained compounds with elements H, C, N,
and O. This chemical space is incomplete, as many drug
molecules contain phosphorus, sulfur, and halogen atoms, and
some contain metal ions.118−120 The ANI-2x model was

extended to include S, F, and Cl,45 but the full data set,
including the important reference energies and forces at the
ωB97X/6-31G* level, to our knowledge, has not yet become
publicly available. Currently, there are a number of recent data
sets that include compounds that contain phosphorus, sulfur,
and halogens at various levels of theory121−125 as well as metal
ions.118 Among them, only the SPICE data set124 includes
forces at the ωB97M-D3BJ/def2-TZVPPD level and currently
includes over 420K phosphorus, 520K sulfur, 750K halogen,
and 8K metal-containing structures.
Hence, current limitations of the QDπ-v1.0 model include

restricted chemical space (molecules containing H, C, N, and
O) and the ωB97X/6-31G* reference level of theory. The
ωB97X/6-31G* reference level, like the DFTB3/3OB base
QM model, lacks dispersion corrections and also does not
include counterpoise corrections and complete basis set
extrapolations that are important for intermolecular inter-
actions. Further, this reference level of theory is not ideal for all
molecular properties, including ionization energies and in some
cases proton affinities of anions that may be sensitive to
inclusion of diffuse basis functions. So while it is important to
start with an established and consistent reference level of
theory and chemical scope, ultimately as higher-level data sets
become more complete and made publicly available, QDπ and
other machine learning potentials can continue to evolve.
The next step of future work will involve developing an

intermolecular QM/MM interaction potential as a new range-
corrected deep-learning potential.49,50 The full (internal and
intermolecular interaction) QDπ model is designed to be a
correction to the QM/MM potential energy using DFTB3/
3OB and the latest AMBER FF19SB for proteins,126 OL3/
OL15 for nucleic acids,127−129 OPC model for water,130,131

and 12−6−4 ion models.132−134 Once the intermolecular
interaction component of the QDπ model has been developed
and validated in alchemical free energy simulations,5 next steps
will be to extend the chemical space of drug molecules to
include P, S, F, and Cl atoms. With GPU acceleration, QDπ is
typically less than 10% overhead relative to a traditional QM/
MM energy/force evaluation with DFTB3/3OB.49 With this
design, QDπ could in principle also be used to modify the
internal energy of protein residues and/or solvent molecules in
contact with the drug, but this would incur greater cost as the
size of the QM region grows larger. Should treatment of these
surrounding residues with a neural network correction
potential be deemed necessary, an alternative strategy would
be to extend the model such that it can directly correct the
MM potential rather than the QM/MM potential.

4. CONCLUSION
We report QDπ-v1.0 for modeling the internal energy of drug
molecules. The development of this model required the
following: 1) collection and curation of several existing
molecular databases of structures, energies, and forces; 2)
generation of new data sets at the ωB97X/6-31G* level that fill
needed gaps in training and/or testing data; 3) development of
new tools within DeePMD-kit that enable more general flexible
forms of the loss function used in training of the neural
networks; and 4) creation of computational infrastructure for
consistent comparison of a wide array of existing potential
energy models. The QDπ model has the advantage that it is
able to properly treat electrostatic interactions and handle
changes in charge/protonation states. The QDπ model is
demonstrated to be accurate for a wide range of intra- and

Table 7. Selected Relative Protonation/Deprotonation
Energies from ωB97X/6-31G* and the Model Error (kcal/
mol) Relevant to Acid/Base Catalysis in RNA Cleavage
Reactionsa

ωB97X/
6-31G* QDπ DFTB3 ANI-2x

GFN2-
xTB

protonation pair ΔE Err Err Err Err

Lys:NH2 + iPrOH →
Lys:NH3

+ + iPrO−
167.76 0.00 6.11 −115.04 0.04

His:Nϵ + iPrOH →
His:NϵH+ + iPrO−

158.33 0.02 −11.33 −126.62 −7.02

His:NϵH+ + EtO− →
His:Nϵ + EtOH

−160.25 0.04 11.71 137.70 9.66

G:N1
− + iPrOH →

G:N1H + iPrO−
43.06 −1.11 −8.63 −28.62 −2.69

A:N1H+ + EtO− →
A:N1 + EtOH

−165.06 1.25 15.21 137.24 10.02

A:N3H+ + EtO− →
A:N3 + EtOH

−190.89 1.21 16.00 143.42 11.40

C:N3H+ + EtO− →
C:N3 + EtOH

−160.33 0.89 4.66 145.20 6.58

A:N1H+ + G:N1
− →

A:N1 + G:N1H
−120.07 0.08 6.20 97.55 4.69

A:N3H+ + G:N1
− →

A:N3 + G:N1H
−145.91 0.04 6.99 103.73 6.07

C:N3H+ + G:N1
− →

C:N3 + G:N1H
−115.34 −0.27 −4.35 105.50 1.25

maE 0.49 9.12 114.06 5.94
rmsE 0.71 9.96 118.72 6.96
aModels and data sets are described in the Methods section. Shown
are model reactions for protein enzymes (top block) and nucleic acid
enzymes (middle block). Additionally, the relative acid and base
protonation/deprotonation energies for different nucleobases are
provided (bottom block).
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intermolecular interactions (despite its intended use as an
internal energy model) and has shown to perform exception-
ally well for relative protonation/deprotonation energies and
tautomers. Comparison with several other approximate
semiempirical and machine learning potentials (ANI-1x,
ANI-2x, DFTB3, MNDO/d, AM1, PM6, GFN1-xTB, and
GFN2-xTB) indicates QDπ agrees much more closely with
training and testing data at the reference ωB97X/6-31G* level.
An example application to model reactions involved in RNA
strand cleavage catalyzed by protein and nucleic acid enzymes
further illustrates the QDπ accuracy in a biological context.
This makes QDπ highly attractive as a potential force field
model for drug discovery.
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for Facilitating Discussion of Catalytic Strategies of RNA-Cleaving
Enzymes. ACS Chem. Biol. 2019, 14, 1068−1076.
(108) Anslyn, E.; Breslow, R. On the mechanism of catalysis by
ribonuclease: cleavage and isomerization of the dinucleotide UpU
catalyzed by imidazole buffers. J. Am. Chem. Soc. 1989, 111, 4473−
4482.
(109) Raines, R. T. Ribonuclease A. Chem. Rev. 1998, 98, 1045−
1066.
(110) Gu, H.; Zhang, S.; Wong, K.-Y.; Radak, B. K.; Dissanayake, T.;
Kellerman, D. L.; Dai, Q.; Miyagi, M.; Anderson, V. E.; York, D. M.;
Piccirilli, J. A.; Harris, M. E. Experimental and computational analysis
of the transition state for ribonuclease A-catalyzed RNA 2’-O-
transphosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 13002−
13007.
(111) Lilley, D. M. J. Classification of the nucleolytic ribozymes
based upon catalytic mechanism. F1000 Res. 2019, 8, 1462.
(112) Gaines, C. S.; Piccirilli, J. A.; York, D. M. The L-platform/L-
scaffold framework: a blueprint for RNA-cleaving nucleic acid enzyme
design. RNA 2020, 26, 111−125.
(113) Breaker, R. R.; Joyce, G. F. A DNA enzyme that cleaves RNA.

Chem. Biol. 1994, 1, 223−229.
(114) Liu, H.; Yu, X.; Chen, Y.; Zhang, J.; Wu, B.; Zheng, L.;
Haruehanroengra, P.; Wang, R.; Li, S.; Lin, J.; Li, J.; Sheng, J.; Huang,
Z.; Ma, J.; Gan, J. Crystal Structure of an RNA-Cleaving DNAzyme.
Nat. Commun. 2017, 8, 2006−2015.
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Cheatham, T. E., III; Jurecǩa, P. Refinement of the Cornell et al.
nucleic acids force field based on reference quantum chemical
calculations of glycosidic torsion profiles. J. Chem. Theory Comput.
2011, 7, 2886−2902.
(129) Bergonzo, C.; Cheatham, T. E., III Improved Force Field
Parameters Lead to a Better Description of RNA Structure. J. Chem.
Theory Comput. 2015, 11, 3969−3972.
(130) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water
Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863−
3871.
(131) Izadi, S.; Onufriev, A. V. Accuracy limit of rigid 3-point water
models. J. Chem. Phys. 2016, 145, 074501−074510.
(132) Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz, K. M., Jr.
Rational design of Particle Mesh Ewald compatible Lennard-Jones
parameters for + 2 metal cations in explicit solvent. J. Chem. Theory
Comput. 2013, 9, 2733−2748.
(133) Li, P.; Merz, K. M., Jr. Taking into account the ion-induced
dipole interaction in the nonbonded model of ions. J. Chem. Theory
Comput. 2014, 10, 289−297.
(134) Li, P.; Merz, K. M. Metal Ion Modeling Using Classical
Mechanics. Chem. Rev. 2017, 117, 1564−1686.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01172
J. Chem. Theory Comput. 2023, 19, 1261−1275

1275

 Recommended by ACS

Accelerated Quantum Mechanics/Molecular Mechanics
Simulations via Neural Networks Incorporated with
Mechanical Embedding Scheme
Boyi Zhou, Daiqian Xie, et al.
FEBRUARY 01, 2023
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Data-Efficient Machine Learning Potentials from Transfer
Learning of Periodic Correlated Electronic Structure
Methods: Liquid Water at AFQMC, CCSD, and CCSD(T...
Michael S. Chen, Thomas E. Markland, et al.
FEBRUARY 02, 2023
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

MLRNet: Combining the Physics-Motivated Potential Models
with Neural Networks for Intermolecular Potential Energy
Surface Construction
You Li, Hui Li, et al.
FEBRUARY 24, 2023
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Electrostatic Embedding of Machine Learning Potentials
Kirill Zinovjev.
FEBRUARY 23, 2023
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Get More Suggestions >

https://doi.org/10.1063/5.0061990
https://doi.org/10.1063/5.0061990
https://doi.org/10.1038/s41467-021-24904-0
https://doi.org/10.1038/s41467-021-24904-0
https://doi.org/10.1038/s41597-022-01390-7
https://doi.org/10.1038/s41597-022-01390-7
https://arxiv.org/abs/2209.10702
https://doi.org/10.1039/D2CP03966D
https://doi.org/10.1039/D2CP03966D
https://doi.org/10.1021/acs.jctc.9b00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1529/biophysj.106.097782
https://doi.org/10.1529/biophysj.106.097782
https://doi.org/10.1021/ct200162x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200162x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200162x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00444?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00444?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501780a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501780a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4960175
https://doi.org/10.1063/1.4960175
https://doi.org/10.1021/ct400146w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400146w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400751u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400751u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00440?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00440?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01131?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01203?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c01049?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
http://pubs.acs.org/doi/10.1021/acs.jctc.2c00914?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1678319703&referrer_DOI=10.1021%2Facs.jctc.2c01172
https://preferences.acs.org/ai_alert?follow=1

