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ABSTRACT: We present a fast, accurate, and robust approach for
determination of free energy profiles and kinetic isotope effects for
RNA 2′-O-transphosphorylation reactions with inclusion of nuclear
quantum effects. We apply a deep potential range correction
(DPRc) for combined quantum mechanical/molecular mechanical
(QM/MM) simulations of reactions in the condensed phase. The
method uses the second-order density-functional tight-binding
method (DFTB2) as a fast, approximate base QM model. The
DPRc model modifies the DFTB2 QM interactions and applies
short-range corrections to the QM/MM interactions to reproduce
ab initio DFT (PBE0/6-31G*) QM/MM energies and forces. The
DPRc thus enables both QM and QM/MM interactions to be
tuned to high accuracy, and the QM/MM corrections are designed
to smoothly vanish at a specified cutoff boundary (6 Å in the present work). The computational speed-up afforded by the QM/MM
+DPRc model enables free energy profiles to be calculated that include rigorous long-range QM/MM interactions under periodic
boundary conditions and nuclear quantum effects through a path integral approach using a new interface between the AMBER and
i‑PI software. The approach is demonstrated through the calculation of free energy profiles of a native RNA cleavage model reaction
and reactions involving thio-substitutions, which are important experimental probes of the mechanism. The DFTB2+DPRc QM/
MM free energy surfaces agree very closely with the PBE0/6-31G* QM/MM results, and it is vastly superior to the DFTB2 QM/
MM surfaces with and without weighted thermodynamic perturbation corrections. 18O and 34S primary kinetic isotope effects are
compared, and the influence of nuclear quantum effects on the free energy profiles is examined.

1. INTRODUCTION

RNA strand cleavage by 2′-O-transphosphorylation is ubiq-
uitous in biology1−3 and has far-reaching implications for
medicine.4 There is thus great interest in obtaining a predictive
understanding of the mechanisms of these reactions and the
nature of the transition states that control their rates. The most
sensitive experimental probes that report on changes in the
structure and bonding in the transition state are the
measurement of kinetic isotope effects (KIE).5−7 These
experiments are challenging, often requiring painstaking
synthetic efforts and careful, highly sensitive measurements
to realize.5 For complex systems, the interpretation of these
measurements in terms of structure and bonding requires
recourse into computational simulations.8−10

Ab initio combined quantum mechanical/molecular mechan-
ical (QM/MM) simulations with rigorous treatment of long-
range electrostatic interactions under periodic boundary
conditions11,12 affords a powerful tool to gain insight into
the pathways of these reactions, their transition states and
intermediates, and environmental factors that modulate
reactivity.13,14 However, ab initio QM/MM methods are

extremely computationally intensive, and hence the elucidation
of the free energy surfaces (FESs) for complex reactions that
require extensive sampling is often not practical. Methods that
enable the treatment of nuclear quantum effects, despite great
advances in new methods and software for their computation,
nonetheless considerably exacerbate the computational cost
making all but the most modest calculations prohibitive.
Machine learning potentials offer a potential mechanism to

improve the accuracy and efficiency of QM/MM simulations,
and they have had considerable impact in the development of
methods to study chemical reactions.15−21 Herein, we develop
an approach whereby we employ a recently described deep-
potential range correction (DPRc) model22 to enhance the
accuracy of a fast, approximate base QM/MM model to
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reproduce the energies and forces of a much more computa-
tionally costly target QM/MM model. The new model
parametrizes the DPRc potential using a machine learning
neural network training procedure22 to correct the second-
order density-functional tight-binding (DFTB2) semiempirical
method23−25 to reproduce the PBE0/6-31G* energies and
forces in explicit solvent QM/MM calculations. We describe a
framework for introducing nuclear quantum effects into the
calculations using path integral molecular dynamics (PIMD)
through an interface between AMBER2026 and i-PI27 software
packages. Together, this enables the calculation of QM/MM
+DPRc free energy profiles28−30 with and without nuclear
quantum effects and the prediction of primary and secondary
KIE values. The methods are demonstrated and tested using a
well-characterized native nonenzymatic RNA transphosphor-
ylation reaction model for which KIE values are available
experimentally, as well as a series of chemically modified (thio-
substituted) reactions that are often used experimentally in
mechanistic studies.31,32

Figure 1 shows the specific reactions examined in this work.
The “native” model reaction is a hydroxyalkyl phosphate ester

that undergoes phosphoryl transesterification with an ethoxide
leaving group. The other systems explored in this work differ
only by thio-substitution(s) at key oxygen positions. Similar
model reactions with various leaving groups have been studied
using implicit solvent ab initio calculations and linear free
energy relationships (LFER).9,33 It was found that the
mechanistic pathway is correlated to the pKa of the leaving
group. “Enhanced” leaving groups (leaving groups with a pKa <
11) were found to proceed through a concerted mechanism
containing a single, “early” (ξPT < 0) transition state. The
reaction mechanism of “poor” leaving groups (leaving groups
with a pKa > 12) was found to be associative and proceeds
through two distinct barriers separated by a minimum.9,33 The
early transition state is characterized by partial formation of the
O2′−P bond, whereas the second rate-controlling transition
state is “late” (ξPT > 0) and is characterized by partial cleavage

of the O5′−P bond. Two-dimensional FESs of model
phosphoryl transfer reactions with ethoxide (poor) and
phenoxide (enhanced) leaving groups have been performed
with ab initio umbrella sampling in explicit solvent.11 The
phenoxide FES was found to possess one, early transition state,
and the ethoxide FES possessed two barriers with a late, rate
limiting transition state.11 These results are consistent with the
LFER analysis.33 The stability of the intermediate encountered
with poor leaving groups should be sensitive to the solvation
environment, that is, by the chosen solvation radius used in
implicit solvent calculations or the Lennard-Jones radii
employed in explicit solvent simulations. Furthermore,
estimation of the expected lifetime of the intermediate requires
one to also consider a mechanistic pathway that involves
pseudorotation of the pentacoordinate structure.34−37 The
model reactions in the present work involve an ethoxide
leaving group, and the FES explored by the ζPT reaction
coordinate is not intended to explore a pseudorotation
mechanism; therefore, the native reaction model is expected
to display two barriers with a late, rate limiting transition state.
If the 2′ nucleophilic or 5′ leaving group oxygen is thio-
substituted, however, then the asymmetric electron affinities
may result in a single transition state.
The development of machine learning correction potentials

is not intended to supplant the use of free energy perturbation
reweighting approaches. Methods such as weighted thermody-
namic perturbation38−40 (wTP) can be a cost-effective means
to estimate the FES of an expensive, target Hamiltonian by
reweighting the umbrella sampling performed with a reference
potential; however, the success of reweighting methods heavily
relies upon the degree of agreement between the reference and
target potentials. A particularly useful metric to gauge the
reliability of the free energy estimate is the “reweighting
entropy”.41 Machine learning corrections are particularly well
suited to situations where there is significant disagreement
between the reference and target potentials, which corresponds
to a low reweighting entropy. The reactions examined in the
present work are not well modeled by the DFTB2/MIO
semiempirical method25,42,43 because the P−S repulsive
potentials were not specifically trained to reproduce the
chemistry of small phosphates.43,44 We will show that
reweighting of the DFTB2/MIO umbrella sampling yields
poor estimates of the ab initio FESs, which motivates our
development of the DPRc correction.

2. METHODS
2.1. Reaction Models and Initial System Setup. The

ML network parameters within the DFTB2 QM/MM+DPRc
method were parametrized to reproduce PBE0/6-31G* QM/
MM total energies and forces46,47 for a series of RNA-like
nonenzymatic model systems, as shown in Figure 1.
The initial solute structures were generated from SMILES

using Open Babel.48 The QM region was defined as the entire
RNA-like solute molecule. The solute was solvated by 1510
TIP4P/Ew waters.49 Simulations were performed with the
SANDER program within AMBER2026 using a 1 fs time step.
The systems were equilibrated by performing DFTB2 (“MIO”
parameter set25,42,43) QM/MM simulations that gradually
heated the system from 0 to 298 K over the course of 100 ps.50

This was followed by 100 ps of density equilibration in the
isothermal−isobaric ensemble at 1 atm and 298 K using the
Berendsen barostat and Langevin thermostat.51 The Lennard-
Jones potential was truncated at 8 Å, and a long-range tail

Figure 1.Model nonenzymatic phosphoryl transesterification reaction
in solution. In a native RNA system, the positions labeled “X”
correspond to oxygen positions (canonical RNA numbering scheme is
used to identify atomic positions). However, chemically modified
variants involving thio-substitution at one or more of these positions
are commonly used in experimental mechanistic studies of RNA-
cleaving enzymes.45 In addition to the native model system, we will
consider single thio-substitutions at the 2′, 3′, 5′, and OP1 positions,
as well as a double thio-substitution at the OP1 and OP2 positions.
We designate these reactions as S2′, S3′, S5′, S1P, and S12,
respectively. The phosphoryl transfer reaction coordinate, ξPT =
RX5′−P − RX2′−P, is a difference between bond-breaking and bond-
forming bond lengths RX5′−P and RX2′−P, respectively.
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correction was used to model the interactions beyond the
cutoff.52 The long-range electrostatics were evaluated with the
QM/MM particle mesh Ewald method using a 1 Å3 grid
spacing, a 8 Å real-space cutoff, and tinfoil boundary
conditions.53−55

2.2. Ab Initio Quantum Mechanical/Molecular Me-
chanical Simulations. PBE0/6-31G* QM/MM umbrella
sampling was performed to obtain reference free energy
surfaces and to provide structures, energies, and forces to
initiate the DFTB2 QM/MM+DPRc network parameter
optimization. The RNA cleavage reaction56 is described by
the collective variable (progress variable) for phosphoryl
transfer (PT), ξPT, defined as the difference between the 5′−
P and 2′−P bond distances.

ξ = −′− ′−R RPT X5 P X2 P (1)

RX5′−P and RX2′−P are the bond-breaking and bond-forming
bond lengths in Figure 1, respectively, and X is either O or S,
depending on the thio-substitution. The FESs were recon-
structed from a series of umbrella sampling simulations that
vary the location of the restraining potential from −3.5 to 5 Å
in steps of 0.1 Å. The umbrella force constants were 100 kcal
mol−1 Å−2. The simulations were performed with TIP4P/Ew
rigid water in the canonical ensemble for 25 ps at 298 K. The
ambient potential composite Ewald method was used to
compute the ab initio QM/MM electrostatic interactions using
a 1 Å3 regular grid spacing, a 8 Å real-space cutoff, and tinfoil
boundary conditions.11 The value of ξPT was written to file
during the simulation, and the FESs were generated by
analyzing the ξPT time series using the variational free energy
profile (vFEP) method28,29 implemented in the FE-ToolKit
software.30

2.3. Range-Corrected Deep Potential (DPRc). The
DFTB2 QM/MM+DPRc method modifies the DFTB2 QM/
MM total energy by the inclusion of a machine learning
potential which provides a nonelectronic correction to the
QM-QM and nearby QM-MM interactions

= + + +E E E E ER P R P R P R R( ; ) ( ; ) ( ; ) ( ) ( )QM QM/MM MM ML

(2)

where R is an N × 3 array of atomic coordinates, and P is the
QM Hamiltonian’s single particle density matrix. EQM(R; P)
and EMM(R) are the QM and MM energies, respectively.
EQM/MM(R; P) contains the electrostatic and Lennard-Jones
(or other nonelectrostatic-nonbonded model) interactions
between the QM and MM regions. The MIO parameter
set25,42,43 is used in both the DFTB2 and DFTB2 QM/MM
+DPRc models. EML(R) is the DPRc potential.22 In brief, the
DPRc potential is an extension of the DeepPot-SE model57

that includes corrections for the QM-QM and QM-MM
interactions. The key features of the correction are that it does
not modify the interactions between MM atoms, the MM
atoms do not contribute a constant to the total energy, and the
correction between the QM and MM atoms smoothly
approaches zero as the distance between the QM and MM

atoms nears the correction cutoff (a parameter that can be
adjusted). By constructing the correction potential to have
these properties, the system total energy is conserved as the
MM atoms approach or diffuse from the vicinity of the QM
region during the course of simulation. The DPRc correction
does not directly effect the calculation of the long-range
interactions, which continue to be evaluated with the DFTB2
QM/MM PME method using a 1 Å3 reciprocal space grid, a 8
Å real space cutoff, and tinfoil boundary conditions.53−55 Our
in-house ab initio software11 also performs PME, which greatly
simplifies the training of the network parameters; the reference
PBE0/6-31G* QM/MM energies and forces of the entire
periodic unit cell are computed without needing to truncate
the system.12,19 The DPRc energy correction is a sum of
atomic contributions.

∑=
=

E E
i

N

iML
1 (3)

The atomic energy Ei is the output layer of a “fitting network”
(denoted 2) composed of 3 hidden layers using 240
neurons/layer.
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The input layer of 2 is the atomic descriptor ∈ ×i
M M1 2,

and ∈ ×0 M M1 2 is a matrix of zeros with the same shape as i.

= ( ) ( )i i
T

i i
T

i1 2 (5)

The embedding matrix ∈ ×i
N M

1
1 is the output layer of a

“filtering network” 1 composed of 2 hidden layers with 13
and 26 neurons, respectively, and an output layer consisting of
52 neurons (M1 = 52). The columns of the truncated
embedding matrix ∈ ×i

N M
2

2 correspond to the first M2 =
12 columns of i1. By decreasing the M2 filter axis, one
improves the computational efficiency by reducing the size of
the descriptor i.

= s R( ) ( ( ))i j ij1 1 (6)

The “coordinate matrix” ∈ ×i
N 4 contains 4 elements for

each row.
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Xij, Xij, and Zij are the Cartesian components of the difference
vector Rij = Ri − Rj, and Rij is the internuclear separation. The
s(Rij) quantity causes the correction to the QM-MM
interactions to smoothly approach zero from Rij = Ron to Rij
= Roff. In the present work, Ron = 1 Å, Roff = 6 Å, and there is
no correction cutoff between the QM and other QM atoms.
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The filtering and fitting networks are both activated by the
tanh function, and their parameters vary by element. The role
of the filtering network is to provide a description of an atom
and its surroundings, whereas the fitting network outputs an
energy correction for an atom, given the atom’s description.
The underlying DeepPot-SE model, on which the DPRc
potential is based, uses “atom type” assignments to describe
the environment around each atom. For the QM atoms, we use
the atomic number. For MM atoms, we prepend the atomic
number by the letter “m”, so that the MM atoms can be
corrected differently than the QM atoms. We have
implemented the DPRc method into the DeePMD-kit software
package58 and created an interface with a development version
of AMBER’s SANDER program.26

The network parameters are optimized using an active
learning approach described in detail elsewhere.22 The
parameter optimizations were performed with the DP-GEN
software,59 and the DP Compress algorithm60,61 was applied to
the trained models to improve computational performance and
reduce the memory requirements. The active learning
procedure involves 3 stages: training, exploration, and labeling.
The training stage uses the available reference data to perform
a stochastic “small-batch” minimization of the loss function62

to reproduce the difference between the DFTB2 and PBE0/6-
31G* QM/MM energies and forces. The training is performed
4 times using different random number seeds, yielding 4 trial
parameter sets. The exploration stage searches for relevant
structures that should be used to retrain the correction. The
search is made by performing DFTB2 QM/MM+DPRc
umbrella sampling with one of the trial parameter sets for 25
ps/window. Every 50 steps, the DFTB2 QM/MM+DPRc
energies and forces are re-evaluated using each of the 4 trial
parameter sets, and the standard deviation (between DPRc
corrections) of atomic forces is calculated. If the maximum
standard deviation is in the range 0.1−0.25 eV/Å, then the
trajectory frame is saved. The labeling stage evaluates the
DFTB2 and PBE0/6-31G* QM/MM energies and forces of
the periodic unit cell (with inclusion of long-range electro-
statics). The differences between the methods are used as
additional reference data in the next active learning cycle’s
training stage.
The active learning procedure is terminated when the 4

parameter sets agree for 99.8% of the frames in the current
cycle. The 99.8% termination criteria is an empirical
optimization threshold intended to strike a balance between
the computational resources required to continue the active

learning procedure and the current uncertainty in the model
fit. One can always imagine that including additional active
learning iterations may discover new structures where the trial
parameters yield disagreement; however, this concern is
reduced if the number of new structures converges toward
zero as the active learning cycle progresses. Table S2 in the
Supporting Information lists the number of new structures
encountered at each active learning iteration, which monotoni-
cally decays toward zero. A 2-parameter exponential fit results
in a 0.97 Pearson correlation coefficient, which could be used
to predict the number of new structures one may find in future
iterations. The parameters of the fit will likely depend on the
complexity of the systems being trained and the discrepancies
between the base and target Hamiltonians. The correlation
between the DPRc atomic force correction and the difference
between the PBE0/6-31G* and DFTB2 forces is shown in
Figure S1 of the Supporting Information.
In the present work, we perform PBE0/6-31G* umbrella

sampling to make a comparison; therefore, we reused these
PBE0/6-31G* trajectories to initiate the DPRc training
procedure. Table S1 in the Supporting Information provides
the number of PBE0/6-31G*structures used from each system
to initiate the training. In principle, one could begin the first
active learning cycle from DFTB2 QM/MM umbrella
sampling. If the training was initiated from the semiempirical
base model, the active learning procedure will likely need more
cycles to reach convergence than what was required in the
present work. Furthermore, if the base and target Hamiltonians
significantly differed, then the initial training may include
irrelevant high-energy structures; however, each active learning
cycle begins with retraining, so each successive exploration
phase should progressively approach an ensemble of relevant
structures.

2.4. Path Integral Molecular Dynamics (PIMD)
Simulations. After training the DFTB2 QM/MM+DPRc
network parameters to the Born−Oppenheimer umbrella
sampling, we applied the final 4 parameter sets to the
calculation of FESs that consider nuclear quantum effects by
performing umbrella sampling with PIMD. The PIMD
simulations were performed by interfacing the i-PI software27

to a development version of AMBER’s SANDER program.26

The i-PI software is responsible for dynamically evolving the
system through time, and it sends requests (either via Linux
sockets or Internet protocol) for energy and force evaluations.
In this respect, SANDER is merely used as a calculator of the
QM/MM total energy and force of the system, which is
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returned to i-PI via the Internet protocol interface. The QM/
MM total energy includes the particle mesh Ewald treatment of
electrostatics,11,53−55 described above for the classical MD
simulations, for all methods (DFTB2, PBE0/6-31G*, and
DFTB2 QM/MM+DPRc). When launching SANDER, new
command line options were introduced that supply the
Internet protocol address of the computer running i-PI and
the network port number to communicate messages. Rather
than performing classical MD, SANDER enters an infinite loop
in which it listens for messages on the specified port until a
message is received to stop execution. A PIMD simulation
requires multiple energy and force evaluations at each time
step, which can be easily parallelized by launching multiple
instances of SANDER, each of which may further parallelize
the energy and force evaluation.
The PIMD dynamical motion was propagated with 6 beads

(replicas) at a 0.25 fs time step at 298 K using the PIGLET
quantum thermostat;63,64 therefore, up to 6 SANDER
instances can be launched. The parameters for the PIGLET
thermostat were taken from the GLE4MD Web site.65,66 The
parameters were chosen to reproduce the quantum fluctuations
at 298 K and span a range of frequencies up to 4142 cm−1. The
DFTB2 QM/MM+DPRc PIMD umbrella sampling was
performed with the q-SPC/Fw flexible water model.67,68 The
systems were prepared by replacing the TIP4P/Ew solvent
with q-SPC/Fw, and the system density was re-equilibrated at
298 K and 1 atm pressure for 100 ps using classical MD. The
final structure of the classical QM/MM density equilibration
was used as the initial structure in the PIMD simulations. The
PIMD restraint potentials were applied to the centroid
positions, rather than the positions within each bead, to
avoid an artificial perturbation of the nuclear wavepackets. The
umbrella potentials were therefore applied via i-PI, as opposed
to SANDER, by making use of the i-PI interface to
PLUMED.69,70 An extended discussion regarding the applica-
tion of restraints can be found in the Supporting Information.
Each simulation was performed 16 times for 20 ps (0.25 fs
time step) using a 200 kcal mol−1 Å−2 force constant. The 16
runs correspond to 4 simulations initiated from different
thermostat random seeds for each of the 4 network parameter
sets. During the course of simulation, the value of ξPT (as
calculated from the centroid positions) was written to file, and
the vFEP method was used to produce 16 FESs for each
nonenzymatic system. At each point along ξPT, we report the
average and standard deviation of the 16 FESs. An alternative
approach for calculating FESs from PIMD simulations40 is to
use a semiempirical reference potential, which is a viable
strategy when the reference and target potentials have good
phase space overlap.38−40

For comparison, we performed classical MD DFTB2 QM/
MM+DPRc umbrella sampling with SPC/Fw solvent.67 Four
sets of classical MD umbrella sampling simulations were
performed with SANDER, corresponding to the 4 sets
optimized network parameters. Each simulation was run for
100 ps using a 1 fs time step, and each set of simulations was
independently analyzed with vFEP to produce 4 FESs. At each
point along ξPT, we report the average and standard deviation
of the 4 FESs. Note that the FESs obtained from classical MD
were performed with the SPC/Fw water model, whereas the
PIMD simulations were performed with the q-SPC/Fw water
model. The SPC/Fw water model was designed for use in
classical MD simulations,67 whereas the q-SPC/Fw water
model has slightly modified parameters tuned to improve the

properties of bulk water in PIMD simulations.68 We compare
the FESs obtained from classical MD simulations using both
water models in Figure S2 of the Supporting Information. In
brief, the minor differences between the two water models do
not significantly impact the calculated FESs; the FESs agree to
within the uncertainties of the calculations. Figure S4 in the
Supporting Information also provides a comparison between
FESs calculated from classical MD simulations performed with
SANDER and classical MD simulations performed through i-
PI (in which case SANDER is used to evaluate the energies
and forces). The resulting FESs obtained from both programs
agree to within the uncertainties of the calculations.

2.5. Kinetic Isotope Effects. We applied the parametrized
DFTB2 QM/MM+DPRc models to the calculation of O5′ and
O2′ heavy atom kinetic isotope effects (KIE). KIE values are
the ratios of reaction rate constants upon isotopic substitution;
that is, η = kL/kH, where kL and kH are the rate constants of the
light and isotopically substituted (heavy) systems, respectively.
There are many methods for approximating the KIE,71−76

including the Bigeleisen-Mayer equation,77,78 which uses light
and heavy normal mode vibrational frequencies of the reactant
({ωL} and {ωH}) and the transition state ({ωL

‡} and {ωH
‡ }).

η
ω

ω
=

∏

∏

ω

ω

βω

βω

ω
ω

βω
βω

‡

‡

=
− ℏ

ℏ

=
− ℏ

ℏ

‡

‡

‡

‡
L

H

i
N

i
N

BM ,1

,1

2
3 6 sinh( / 2)

sinh( / 2)

1
3 6 sinh( / 2)

sinh( / 2)

L i

H i

H i

L i

L i

H i

H i

L i

,

,

,

,

,

,

,

, (9)

Eq 9 assumes there are 3N-6 internal degrees of freedom, and
ωL/H,1

‡ is the sole imaginary frequency. An alternate approach is
to approximate the rate constants from Kramers’ theory in the
high-friction limit.79−82
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γ is a mass weighted friction coefficient, and kTST is the
conventional transition state theory rate constant. In this work,
we estimate the KIE from eq 11, where ΔATS and ΔAMin are
the free energies associated with changing the light isotope
mass to a heavy isotope mass in the transition state and
reactant minimum, respectively, and ηTST = exp[β(ΔATS −
ΔAMin)].
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The ΔATS and ΔAMin values are calculated from PIMD
simulations using the thermodynamic free energy perturbation
(TD-FEP) method,83 described in the next subsection. The
leading ratio of frequencies is estimated from the normal-mode
analysis of many, independently optimized transition states
starting from different initial structures. The brackets in eq 11
indicate that we use the average ratio obtained from the
independent estimates. The transition states used to obtain the
estimate are also used to calculate KIE values from eq 9 for
comparison. The computational details of the geometry
optimizations are described below.

PIMD TD-FEP Approach. The TD-FEP method calculates
ΔATS and ΔAMin from free energy perturbation of the atomic
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masses.83 This makes the TD-FEP method conceptually
similar to the path integral free energy perturbation theory
presented by Gao.84 In brief, the free energy of transforming a
mass from m to m′ is estimated from eq 12

∫β
μ

μ
μΔ =

′
− ⟨ ⟩′

A
d m

m
T

2
log

( )
d

m

m

(12)

where d is the dimensionality of the problem, and ⟨T(μ)⟩ is
the ensemble average quantum kinetic energy of the atom with
mass μ. In principle, one could evaluate the integral by
performing a series of PIMD simulations that differ only by the
chosen atomic mass μ and writing the atom’s quantum kinetic
energy to file during the course of simulation. From the series
of PIMD simulations, the ⟨T(μ)⟩ averages can be computed,
and the integral could be performed either by numerical
quadrature or by integrating a spline. This would be analogous
to performing multiple thermodynamic integration simulations
at intermediate states that connect two physical states. An
advantage of the TD-FEP method is its ability to provide
estimates of T(μ) for many values of μ from a single PIMD
simulation performed using the light atomic masses. In this
respect, the TD-FEP method is similar to the free energy
perturbation umbrella sampling method (PI-FEP/UM)
developed by Major and Gao.72 We instruct i-PI to calculate
T(μ) of the selected atoms at 11 uniformly spaced mass values
that range from the most abundant isotopic mass to the second
most abundant isotopic mass. In this work, we calculate KIE
values that transform 16O to 18O at the 2′ and 5′ positions. The
thio-substituted model systems transform 32S to 34S when the
selected positions have been replaced with sulfur atoms. The
integral appearing in eq 12 is calculated by representing the
⟨T(μ)⟩ values as an Akima spline and interpolating its values at
1000 uniformly spaced masses for trapezoidal-rule numerical
integration.
Because ΔATS and ΔAMin are both required, one must

perform PIMD simulations of both the reactant and transition
state. To perform simulations of these states, we restrain ξPT to
the appropriate value, based on the location of the minimum
and transition state identified on the FES by applying a 200
kcal mol−1 Å−2 harmonic restraint to the centroid positions.
The simulations were performed with the SPC/Fw water
model for 10 ps (0.25 fs time step) at 298 K using a 6-bead
PIGLET quantum thermostat.63,64 Each DFTB2 QM/MM
+DPRc simulation was repeated 4 times, corresponding to the
use of the 4 active learning parameter sets, yielding 4
independent estimates of the KIE. We also performed an
analogous set of DFTB2 QM/MM PIMD simulations
(without the DPRc correction) with different random seeds
to provide 4 estimates of the KIE for comparison.
Furthermore, we performed PBE0/6-31G* QM/MM PIMD
simulations to estimate the KIE; however, due to the much
higher cost of the ab initio QM/MM PIMD simulations, only 1
estimate of each KIE was made. The uncertainty is estimated
by calculating the standard error of the KIE from the analysis
of 4 nonoverlapping segments of the trajectory.
Local Minimum Harmonic Approximation. Bigeleisen-

Mayer Equation. An alternative approach to estimating KIE
values is their calculation from vibrational analysis at
geometrical stationary points using the Bigeleisen-Mayer
equation.77,78 The application of this approach to condensed
phase systems with explicit waters is complicated by the myriad
possible stationary points. To make a comparison with this

approach, we attempted to find many minima and transition
state structures starting from structures encountered during
classical QM/MM simulations. The stationary point geometry
optimizations were performed by interfacing SANDER to the
DL-Find geometry optimization software.85

A set of reaction minimum structures was found by
performing classical QM/MM simulations near the minimum
of the FES, extracting configurations from the trajectory file,
removing the harmonic restraints, and optimizing the geometry
for a minimum using the limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm (LBFGS). Only the solute and the
nearby 6 Å of SPC/Fw solvent molecules were allowed to
change their atomic positions. The atomic positions of the
remaining system were fixed; however, the energy and forces
are computed for the entire unit cell. After the stationary point
was found, the Hessian was calculated from finite differ-
entiation of the atomic gradients. The dimensions of the
Hessian are proportional to the number of optimizable atoms;
however, the forces are obtained from the full periodic system.
The vibrational frequencies were obtained from diagonaliza-
tion of the mass weighted Hessian upon removal of the
translational and rotational degrees of freedom.
The vibrational frequencies of the transition state structures

were performed analogously; however, the optimization of the
transition state structures used the following procedure: (1) A
structure near the transition state was taken from a stored
trajectory file. (2) The solute and nearby 6 Å of solvent
molecules were selected for optimization. (3) A series of
restrained geometry minimizations were performed, each
differing by the position of a ξPT harmonic restraint. (4) The
unrestrained potential energy of each structure was monitored,
and the structure with the maximum potential energy was
selected for further optimization. (5) The solute and nearby 3
Å of solvent molecules were allowed to move during transition
state search using the partitioned rational function algorithm.
We have described a procedure for calculating KIE values

using the Bigeleisen-Mayer equation, and we apply this
procedure to obtain an average KIE value (and uncertainty)
from independent estimates generated from different initial
conditions. In principle, one could use multistructural
variational transition state theory (MS-VTST)86−88 or multi-
path variational transition state theory (MP-VTST)87−89 to
treat multiple stationary points. The VTST methods have seen
success when applied in conjunction with the equilibrium
solvation path approximation90 or microsolvation.74 The
application of any approach that incorporates Boltzmann
averaging of geometry optimized periodic, condensed-phase
systems, however, is complicated by the myriad possible local
minimum that may exist far from the chemical event of
interest.

3. RESULTS AND DISCUSSION
3.1. Ab Initio QM/MM and QM/MM+DPRc Free Energy

Profiles. Figure 2 compares FESs produced by DFTB2 QM/
MM, PBE0/6-31G* QM/MM, and DFTB2 QM/MM+DPRc
classical MD simulations in the TIP4P/Ew solvent. The
DFTB2 QM/MM simulations were run 4 times initiated from
different random number seeds, yielding 4 estimates of the
FES. The figure plots the mean, and the vertical bars are the
standard error of the mean. The DFTB2 QM/MM+DPRc
simulations were similarly run 4 times, once for each set of
optimized network parameters. The PBE0/6-31G* simulations
were run once, except for the native nonenzymatic model,
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which was run 4 times. The relevant collective variable
coordinates and free energies describing the free energy
surfaces are summarized in Table 1.
The uncorrected DFTB2 model differs significantly from

PBE0/6-31G*. When one (S1P) or both (S12) nonbridge
oxygens are replaced with sulfurs, the DFTB2 model is likely to
result in a nonphysical bond-breakage of the nonbridge P−S
bond, resulting in a S2− ion drifting into solution. This can
occur in the range −0.90 ≤ ζPT ≤ 0.80 Å for S12 and −1.30 ≤
ζPT ≤ 0.90 Å for S1P. Regardless, we show these DFTB2 FESs
to emphasize the significant degree of correction the DPRc
model must undertake to achieve agreement with PBE0/6-
31G*. The DFTB2 S5′ stationary points are not included in
Table 1 because it does not display any local minima or
transition states. In comparison, the DFTB2 QM/MM+DPRc
free energy surfaces agree much more closely with the PBE0/6-
31G* results. Whereas the mean absolute error (MAE) for
activation and reaction free energies for DFTB2 with respect to
PBE0/6-31G* reference values are 3.4 and 9.4 kcal/mol,
respectively, the corresponding MAE values for the
DFTB2+DPRc are 1.0 kcal/mol. For DFTB2, the MAE of
the reaction coordinate at the minimum is fairly small (0.08
Å), whereas for the transition state, it is significantly larger
(0.56 Å). The DFTB2+DPRc model, on the other hand, has
corresponding MAE values of 0.02 and 0.03 kcal/mol,
respectively. Thus, overall the DFTB2+DPRc model is able
to very closely reproduce the PBE0/6-31G* results, whereas
DFTB2 exhibits significant differences. Table S4 in the
Supporting Information compares the PBE0/6-31G* penta-
coordinate intermediate free energies calculated from umbrella
sampling to results obtained from geometry optimizations
within continuum implicit solvent. Both approaches predict the
presence of a pentacoordinate intermediate for all model
systems containing 2′ and 5′ oxygens. Both approaches also

predict that thio-substitution at these positions results in only
one transition state.
Figure 3 compares the ab initio FESs to the estimates made

from reweighting the DFTB2 umbrella sampling used to
prepare Figure 2. The reweighting was performed with the
wTP method described in ref 38, which we have implemented
in the NDFES program30 distributed within the FE-ToolKit
package.91 A 0.2 kT histogram was used to apply Gaussian
smoothing on the density-of-states, and the reaction coordinate
bin width was set to 0.05 Å. Figure 3 also shows the
reweighting entropy of each bin. The entropy provides a
measure for the “flatness” of the reweighting factor’s
distribution; it approaches 1 when the reweighting factors
are uniform and 0 when a small number of samples contribute
a non-negligible weight.41 Previous applications of the wTP
method found that target FESs were well reproduced when the
reweighting entropy is greater than 0.6, but the uncertainty in
the estimate becomes very large when the entropy decreases
below 0.3.39 The reweighting entropies shown in Figure 3 are
around 0.1, indicating that there is poor phase space overlap
between the ab initio and DFTB2 reference potentials. This
result motivates our development of the DPRc correction
potential.

3.2. QM/MM+DPRc Free Energy Profiles with and
without Nuclear Quantum Effects. In order to gain insight
into the effect of nuclear quantum effects on the FES, we
compared simulations using two closely related flexible water
models, SPC/Fw67 and q-SPC/Fw,68 that were designed for

Figure 2. Comparison of DFTB2 QM/MM, PBE0/6-31G* QM/
MM, and DFTB2 QM/MM+DPRc FESs generated from classical
QM/MM simulations.

Table 1. Summary of the Free Energy Surfaces Shown in
Figure 2a

system method
ξPT
Min

(Å)
ξPT
TS

(Å)
ΔA‡

(kcal mol−1)
ΔA

(kcal mol−1)

Native DFTB2 −2.27 0.32 21.65 ± 0.04 −6.3 ± 0.6
PBE0/
6-31G*

−2.11 0.94 19.68 ± 0.13 1.5 ± 0.4

DPRc −2.13 0.88 19.82 ± 0.28 1.1 ± 0.1
S12 DFTB2 −2.39 1.40 17.15 ± 1.65 2.5 ± 1.7

PBE0/
6-31G*

−2.38 1.15 17.94 5.0

DPRc −2.40 1.16 19.92 ± 0.20 6.0 ± 0.5
S1P DFTB2 −2.25 1.05 11.79 ± 2.36 5.2 ± 2.4

PBE0/
6-31G*

−2.20 1.03 19.25 2.6

DPRc −2.21 1.05 18.92 ± 0.17 1.7 ± 0.5
S2′ DFTB2 −2.47 0.11 55.93 ± 0.43 55.2 ± 0.6

PBE0/
6-31G*

−2.58 0.47 51.33 35.6

DPRc −2.57 0.47 52.98 ± 0.60 37.5 ± 0.4
S3′ DFTB2 −2.54 −0.68 12.58 ± 0.05 −9.2 ± 0.7

PBE0/
6-31G*

−2.47 0.86 14.59 5.2

DPRc −2.53 0.95 14.85 ± 0.60 3.6 ± 0.6
S5′ DFTB2 ··· ··· ··· ···

PBE0/
6-31G*

−1.62 −0.21 7.87 −33.2

DPRc −1.64 −0.18 9.55 ± 0.40 −33.4 ± 0.3
MAE DFTB2 0.08 0.56 3.37 9.4
MAE DPRc 0.02 0.03 1.01 1.0

aListed are the location of the minimum ξPT
Min and rate-controlling

transition state ξPT
TS (where ξPT = RX5′−P − RX2′−P), the activation free

energy ΔA‡, and the reaction free energy ΔA. Mean absolute errors
(MAEs) for DFTB2 and DFTB2 QM/MM+DPRc models with
respect to PBE0/6-31G* reference curves are shown at the bottom.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00151
J. Chem. Theory Comput. 2022, 18, 4304−4317

4310

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00151/suppl_file/ct2c00151_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00151?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00151?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00151?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00151?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


classical MD and PIMD simulations, respectively (see Methods
for details). The classical MD simulations using SPC/Fw were
overall very similar to those using the rigid TIP4P/Ew model
(Figure S3 of the Supporting Information).
Figure 4 compares DFTB QM/MM+DPRc FESs produced

by classical MD and PIMD simulations. The classical MD and
PIMD curves are the average of 4 and 16 FESs, respectively,
and the vertical bars are the standard error of the mean. The
classical MD simulations were performed usingthe SANDER
module of AMBER20, whereas the PIMD simulations were
performed with i-PI interfaced with SANDER to calculate
energies and forces. In our approach for calculating the FESs,
we must choose an arbitrary zero of free energy, which we
choose as the lowest local free energy minimum. That is, we do
not directly obtain a nuclear quantum correction to the free
energy as an absolute quantity. Nevertheless, the practical
consequences of including nuclear quantum corrections on the
FESs can be seen in Figure 4. In all cases, the PIMD FES
activation energies are smaller than those calculated from
classical MD by 1.48 kcal/mol on average. Specifically, the
PIMD activation energies are lowered by 2.10 (Native), 1.48
(S12), 1.32 (S1P), 1.65 (S2′), 1.14 (S3′), and 1.20 (S5′) kcal/
mol. This reflects, among other things, differences in the
vibrational environments of the reactant minimum and
transition state, the latter being overall more “loose”,5 thus
leading to smaller zero point energies in the transition state
relative to the reactant state and resulting in lower barriers
when nuclear quantum effects are included. As will be seen in
the next section, these differences are important in the

calculation of KIE values to aid in the interpretation of
experimental measurements and provide insight into the
structure of the transition state and the mechanism of the
chemical reaction.8,92−94

3.3. KIE Values Calculated with TD-FEP and the
Bigeleisen-Mayer Equation. Table 2 compares DFTB2 and
DFTB2 QM/MM+DPRc KIE estimates of the native and thio-
substituted nonenzymatic models using the TD-FEP method
to those computed from ab initio PIMD simulations and
available experimental values. The DFTB2 and DFTB2 QM/
MM+DPRc simulations were performed 4 times, and the
results shown in the table are the average of the 4 KIE values
and the standard error of the mean. The PBE0/6-31G* QM/
MM simulations were performed only once, and the
uncertainties are the standard error of the mean upon
analyzing 4 nonoverlapping segments of the trajectory. The
experimental values are for UpG in alkaline conditions, and the
uncertainties are reported to be estimates from numerical
fitting errors to the HPLC chromatogram data.8 The DFTB2
and DFTB2 QM/MM+DPRc mean absolute errors (MAEs)
are relative to the PBE0/6-31G* values. The DFTB2MAE
values exclude the S5′ KIE values because they do not predict a
barrier separating the products from the reactant. Inclusion of
the DPRc correction reduces the O2′ KIE errors from 1.4% to
0.2%, and the O5′ KIE errors are reduced from 2.4% to 0.2%.
The DFTB2 QM/MM+DPRc MAE values are similar in size
to the uncertainties in the PBE0/6-31G* results. To put the
magnitude of the DFTB2MAE values into perspective, the
experimental O2′ and O5′ KIE values of a 2′-O-trans-
phosphorylation reaction catalyzed by RNase A are 0.994 ±
0.002 and 1.014 ± 0.003, respectively.8 These KIE values
suggest that the mechanism catalyzed by RNase A is
associative (KIE O2′ ≤ 1 ≤ KIE O5′); however, the KIE
values differ by only 0.02. As discussed in previous work,95 the
calculated phosphoryl transfer reaction KIE values should
agree to within 1% of the experimental values to reasonably

Figure 3. Comparison of the PBE0/6-31G* QM/MM free energy
surfaces to those predicted from wTP analysis of the DFTB2 QM/
MM umbrella sampling. The green line is a Gaussian Process
Regression (GPR) fit to the wTP estimated free energy surface using a
radial basis function kernel. The vertical bars are 95% confidence
intervals in the wTP estimate obtained from bootstrap error analysis.
Parts (c), (d), (g), (h), (k), and (l) are the reweighting entropies
(RE) of the Native, S12, S1P, S2′, S3′, and S5′ model reactions,
respectively. The “⟨RE⟩” values are the average reweighting entropies
for each system.

Figure 4. Comparison of DFTB2 QM/MM+DPRc FESs generated
from classical MD with SPC/Fw and PIMD with q-SPC/Fw.
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discern between “large inverse” (less than 0.97), “inverse”
(0.97−0.99), “near unity” (0.99−1.01), “normal” (1.01−1.03),
or “large normal” (greater than 1.03) isotope effects.5

Table 3 compares DFTB2 QM/MM+DPRc KIE values
computed from the Bigeleisen-Mayer equation applied to an
ensemble of stationary structures and the TD-FEP KIE values
calculated from PIMD simulations. As we have described, the
Bigeleisen-Mayer equation is applied many times correspond-
ing to a collection of stationary structures obtained by
geometry optimizing trajectory frames either for a minimum
or a transition state. The table lists the mean KIE value, the
standard error of the mean, the number of KIE values (the
number transition state structures that we found), the standard
deviation of the KIE values, and the minimum and maximum
value in the observed KIE distribution.
The average O5′ (or S5′) KIE values obtained from the

Bigeleisen-Mayer equation ⟨ηBM⟩ are in good agreement with
the estimates made from PIMD/TD-FEP simulations using eq
11. The two methods agree to within 0.003 for all systems. For
comparison, Table 3 also shows the ηTST KIE values computed
from PIMD/TD-FEP (These values assume the ratio of
imaginary frequencies is unity.). The ηTST values are often 0.01
smaller than those obtained from the Bigeleisen-Mayer

equation. Table 3 emphasizes the importance of performing
multiple transition state searches when attempting to apply the
Bigeleisen-Mayer equation to explicitly solvated condensed
phase systems. The average difference between the maximum
and minimum ηBM estimates (the “Max.” and “Min.” columns
in Table 3) is 0.03. Therefore, caution should be exercised
when using the harmonic approximation in explicit solvent if
only 1 structure is used.

3.4. QM/MM+DPRc Isotope Effects along the Reac-
tion Coordinate. Enzymatic transition states are often
interpreted using a “kinetic isotope effect approach” that
combines experimental measurements with quantum mechan-
ical calculations.7 In this approach, model transition states are
systematically constructed until the calculated KIE value
matches the experimental measurement. The corresponding
transition state model is then used to infer properties of the
enzymatic transition state7 such as structure, bonding, and
electrostatics. This information can be used to gain a predictive
understanding of the catalytic mechanism or act as a guide to
design drugs based on transition state analogues.7 Ideally, a
complete model system of the full enzyme environment can be
constructed, and the catalytic reaction path(s) and rate-
controlling transition state(s) can be determined. This can be a

Table 2. Comparison of the KIE Values (Eq 11) Computed from PIMD Simulations to Available Experimental Measurements
(Ref 8)a

system atom DFTB2 DPRc PBE0 expt

Native O2′ 0.988 ± 0.000 0.993 ± 0.001 0.993 ± 0.003 0.984 ± 0.003
O5′ 1.046 ± 0.001 1.040 ± 0.001 1.038 ± 0.002 1.034 ± 0.004

S12 O2′ 0.984 ± 0.001 0.996 ± 0.001 0.993 ± 0.001 ···
O5′ 1.059 ± 0.002 1.026 ± 0.002 1.027 ± 0.002 ···

S1P O2′ 0.964 ± 0.001 0.994 ± 0.000 0.995 ± 0.001 ···
O5′ 1.063 ± 0.001 1.033 ± 0.001 1.037 ± 0.002 ···

S2′ S2′ 1.000 ± 0.000 1.001 ± 0.001 1.002 ± 0.001 ···
O5′ 1.047 ± 0.003 1.033 ± 0.002 1.037 ± 0.003 ···

S3′ O2′ 1.019 ± 0.001 0.991 ± 0.001 0.995 ± 0.002 ···
O5′ 0.991 ± 0.001 1.034 ± 0.002 1.036 ± 0.003 ···

S5′ O2′ No TS 1.029 ± 0.001 1.031 ± 0.003 ···
S5′ No TS 1.001 ± 0.000 1.001 ± 0.000 ···

MAE O2′ >0.014 0.002
MAE O5′ >0.024 0.002

aThe rows labeled “MAE” provide the mean absolute error relative to the PBE0/6-31G*values.

Table 3. Comparison of DFTB2+ML KIE Values Computed from Path Integral Simulations to Those Computed from the
Bigeleisen-Mayer Equationa

TD-FEP Bigeleisen

system atom ηTST η ⟨ηBM⟩ N σ Min. Max.

Native O2′ 0.989 ± 0.001 0.993 ± 0.001 0.991 ± 0.001 26 0.005 0.980 0.998
O5′ 1.024 ± 0.000 1.040 ± 0.001 1.038 ± 0.002 26 0.008 1.023 1.051

S12 O2′ 0.993 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 19 0.005 0.989 1.010
O5′ 1.013 ± 0.000 1.026 ± 0.002 1.024 ± 0.002 19 0.009 1.004 1.035

S1P O2′ 0.990 ± 0.000 0.994 ± 0.000 0.993 ± 0.001 62 0.005 0.983 1.005
O5′ 1.018 ± 0.000 1.033 ± 0.001 1.032 ± 0.001 62 0.009 1.010 1.051

S2′ S2′ 0.997 ± 0.000 1.001 ± 0.001 1.001 ± 0.001 30 0.007 0.996 1.028
O5′ 1.021 ± 0.000 1.033 ± 0.002 1.032 ± 0.002 30 0.014 0.993 1.054

S3′ O2′ 0.988 ± 0.001 0.991 ± 0.001 0.994 ± 0.001 19 0.005 0.986 1.005
O5′ 1.021 ± 0.001 1.034 ± 0.002 1.037 ± 0.002 19 0.010 1.016 1.050

S5′ O2′ 1.008 ± 0.001 1.029 ± 0.001 1.026 ± 0.001 111 0.012 0.988 1.051
S5′ 1.000 ± 0.000 1.001 ± 0.000 1.003 ± 0.000 111 0.002 0.998 1.024

aThe columns N, σ, “Min.”, and “Max.” are the number of KIE values, the standard deviation of the KIE distribution, and minimum and maximum
KIE values, respectively.
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complex and computationally intensive endeavor that does not
always lead to quantitative agreement with the experimental
KIE values. In the event the predicted KIE values do not agree
with measurements, it is useful to analyze trends in the isotope
effects on the free energy at different positions along the
reaction path to gain insight into the likely structure and
bonding of the true transition state. With this knowledge, one
can then use reverse engineering to explore what changes in
the enzyme environment might lead to the predicted altered
transition state. The use of KIE approaches to enzyme
transition states has been reviewed elsewhere;7,96−100 here,
we extend some of the ideas to the application of PIMD in the
context of QM/MM+DPRc free energy profiles to examine
isotope effects (IEs) along the reaction coordinate.
One can use PIMD TD-FEP simulations to examine the

isotope effect on the free energy surface as a function of the
reaction coordinate. Whereas the KIE values discussed in
section 3.3 are measurable quantities, the isotope effects (IEs)
along the reaction coordinate are generally not; rather their
purpose is for the analysis and prediction described above.
Figure 5 illustrates the 18O primary (O2′ and O5′) ηTST IE
values of the native nonenzymatic reaction as a function of ξPT.
The IE values were generated by restraining the centroid
collective variable position with a harmonic restraint and
treating the sampled state as the effective transition state
ensemble when computing ηTST, whereas the reactant state
ensemble was simulated at the FES minimum. Each of the 4
ML parameter sets was simulated twice with different random
number seeds, yielding 8 IE estimates per ξPT value. The dots
in Figure 5 are the raw ηTST IE value estimates, and the black
line is a Gaussian process regression fit through the scattered
data. The red line is the ensemble average of the centroid ξPT
value. The dashed green line is an overlay of the FES to aid the
reader in orienting the relationship of the ξPT values to the
location of the reaction minimum and transition state. It is
noteworthy that the maximum O2′ and O5′ IE values are
normal (ηTST > 1) and occur at the corresponding early and
late transition states, respectively, where the bonding environ-
ments are the most “loose” (lower frequency local vibrational
modes), as expected for associative phosphoryl transfer
mechanisms.5,101

3.5. Performance. Table 4 compares the computational
cost of performing Born-Oppenheimer umbrella sampling with
PBE0/6-31G* QM/MM, DFTB2 QM/MM+DPRc, and the
wTP analysis of the DFTB2 QM/MM simulations. The net
computational cost is decomposed into parametrization
(param), sampling, and analysis. The DFTB2 QM/MM
+DPRc parametrization cost is the overhead associated with
performing the active learning procedure to yield 4 DPRc
parameter sets. Table S2 in the Supporting Information further
decomposes this cost into training, exploration, and labeling
stages. In summary, 8% of the parametrization cost is spent
performing the training. Only 16% of the effort is dedicated to
labeling. The majority of the parametrization is associated with
the exploration stage (81%). The “sampling” column is the
cost of generating 4 estimates of the 6 free energy surfaces
from QM/MM umbrella sampling. The wTP method performs
the sampling with DFTB2 QM/MM, which is a factor 2.3
faster than DFTB2 QM/MM+DPRc on a single CPU core
(909 ps/day versus 390 ps/day). This is in close agreement
with timings reported in related works, which found that ML
corrections reduce the semiempirical QM/MM performance
by a factor of 2-to-4, depending on the implementation and
depth of the neural network.18,19 Our implementation of the
DPRc correction also supports GPU acceleration via the
tensorflow library102 and several custom operators.60,61,103,104

The DFTB2 QM/MM+DPRc performance is only 26% slower
than DFTB2 QM/MM when the correction is evaluated on a
V100 NVIDIA GPU. In comparison to ab initio sampling, the

Figure 5. O5′ and O2′ TD-FEP estimate of ηTST IE values for the native reaction as a function of the collective variable defining the position of the
effective transition state. The solid black line is a fit through the IE values. The red line is the average value of the covalent bond length. The green
line is an overlay of the FES.

Table 4. Computational Cost (Core Days) to Evaluate 4
Estimates of the Free Energy Surface for Each of the 6
Model Systemsa

method param sampling analysis net

PBE0/6-31G* ··· 34,883 ··· 34,883
wTP ··· 60 698 758
DFTB2 QM/MM+DPRc 323 139 ··· 462

aAll timing estimates are based on single core performance
measurements using a 2.10 GHz Intel Xeon Gold 6230 CPU with
28MB of cache. The umbrella sampling consists of 25 ps using a 1 fs
timestep, and the wTP analysis of the PBE0/6-31G*energies is
performed once every 50 steps.
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DFTB2 QM/MM+DPRc method is faster by a factor of 251.
Table S3 in the Supporting Information provides further
comparisons of computational cost. The analysis cost is only
relevant to the wTP method, which reweights the DFTB2
QM/MM trajectories. It is important to note that the sampling
and analysis costs both depend on the amount of production
simulation, whereas the DPRc training cost is a constant
overhead. For example, in addition to performing classical
umbrella sampling, we also applied the DFTB2 QM/MM
+DPRc method to PIMD umbrella sampling and TD-FEP
calculations. If one wants to make a single estimate of an FES,
then trajectory reweighting is certainly a cost-effective
approach; however, if one wants to perform multiple,
independent simulations to estimate uncertainties or perform
PIMD, then the savings gained from the DFTB2 QM/MM
+DPRc sampling quickly outweighs the parametrization
overhead.

4. CONCLUSION
We developed a new DFTB2 QM/MM+DPRc model
(DFTB2 with a DPRc machine learning potential correction)
and parametrized it to reproduce the PBE0/6-31G* QM/MM
energies and forces of native and thio-substituted non-
enzymatic models of RNA 2′-O-transphosphorylation. The
DPRc potential applies corrections to the QM interactions and
the QM/MM interactions within 6 Å of the QM region. The
parametrized model was found to significantly improve the
prediction of free energy surfaces computed from umbrella
sampling in explicit solvent. The DFTB2 QM/MM+DPRc
simulations were found to be 2 orders of magnitude faster than
the ab initio QM/MM simulations and 2.3 times slower than
the uncorrected DFTB2 QM/MM simulations.
We interfaced the SANDER with the i-PI software package

to perform path integral molecular dynamics umbrella
sampling. The resulting free energy surfaces were compared
to those obtained from classical QM/MM molecular dynamics.
It was found that nuclear quantum effects lower the activation
free energy of these reactions by 1.5 kcal/mol, on average.
The new interface between i-PI and SANDER allowed us to

compute primary 18O KIE values using the TD-FEP method.
Although there were minor discrepancies between the DFTB2
QM/MM+DPRc and experimental KIE values, the para-
metrized model was found to reproduce the PBE0/6-31G*
KIE values to within the uncertainties of the calculations. The
agreement with experiment can likely be improved by training
the model to better ab initio reference data. We compared the
KIE values using two methods: TD-FEP and the Bigeleisen-
Mayer equation. The two methods agreed to within 0.003 for
all systems; however, the individual estimates made using the
Bigeleisen-Mayer equation were found to span a range of 0.03.
The DFTB2 QM/MM+DPRc method was used to map the
TD-FEP isotope effect values along the phosphoryl transfer
reaction coordinate, and it was found that the O2′ and O5′
isotope effects were largest at the early and late transition
states, respectively. Taken together, the QM/MM+DPRc
model and i-PI PIMD simulations provide a powerful new
tool to study mechanisms and pathways of phosphoryl transfer
reactions.
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