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ABSTRACT: We develop a new deep potentialrange correction (DPRc) machine
learning potential for combined quantum mechanical/molecular mechanical (QM/
MM) simulations of chemical reactions in the condensed phase. The new range
correction enables short-ranged QM/MM interactions to be tuned for higher
accuracy, and the correction smoothly vanishes within a specified cutoff. We further
develop an active learning procedure for robust neural network training. We test the
DPRc model and training procedure against a series of six nonenzymatic phosphoryl
transfer reactions in solution that are important in mechanistic studies of RNA-
cleaving enzymes. Specifically, we apply DPRc corrections to a base QM model and
test its ability to reproduce free-energy profiles generated from a target QM model. We perform these comparisons using the
MNDO/d and DFTB2 semiempirical models because they differ in the way they treat orbital orthogonalization and electrostatics
and produce free-energy profiles which differ significantly from each other, thereby providing us a rigorous stress test for the DPRc
model and training procedure. The comparisons show that accurate reproduction of the free-energy profiles requires correction of
the QM/MM interactions out to 6 Å. We further find that the model’s initial training benefits from generating data from temperature
replica exchange simulations and including high-temperature configurations into the fitting procedure, so the resulting models are
trained to properly avoid high-energy regions. A single DPRc model was trained to reproduce four different reactions and yielded
good agreement with the free-energy profiles made from the target QM/MM simulations. The DPRc model was further
demonstrated to be transferable to 2D free-energy surfaces and 1D free-energy profiles that were not explicitly considered in the
training. Examination of the computational performance of the DPRc model showed that it was fairly slow when run on CPUs but
was sped up almost 100-fold when using NVIDIA V100 GPUs, resulting in almost negligible overhead. The new DPRc model and
training procedure provide a potentially powerful new tool for the creation of next-generation QM/MM potentials for a wide
spectrum of free-energy applications ranging from drug discovery to enzyme design.

1. INTRODUCTION

Classical molecular dynamics simulations using traditional
molecular mechanics (MM) force fields have had a
tremendous impact on life science applications.1−3 However,
the translation of this capability to the latest and most powerful
state-of-the-art and emerging quantum mechanical (QM)
methods has not kept pace.4 These high-level QM methods
are extremely important for the study of catalytic mechanisms
to guide enzyme design,5 drug discovery, and precision
medicine applications.6 However, in practice, the computa-
tional cost of high-level ab initio quantum mechanical/
molecular mechanical (QM/MM)7−10 or quantum mechanical
force field (QMFF)11 simulations prohibits their practical use
for many important applications. An attractive alternative is to
use approximate QM methods such as the semiempirical12 d-
orbital modified neglect of diatomic overlap (MNDO/d)13 or
density-functional tight binding (DFTB)14,15 methods that are
typically 100−1000 times faster than ab initio QM. For large
systems, these methods can be made both much faster (in
terms of scaling) and more accurate for condensed-phase

simulations using a linear-scaling quantum mechanical force
field (QMFF) framework.11,16 Although some promising
progress has been recently made,17 a critical barrier to progress
for both QM/MM and QMFF methods has been in the design
of robust models for the interactions between QM and MM
regions or between QM fragments that provide the
quantitative accuracy demanded by biocatalysis, drug discov-
ery, and precision medicine applications.
Machine learning (ML)-based potentials afford a promising

solution to the development of next-generation molecular
simulation force fields with the efficiency comparable to that of
MM force fields and accuracy that has started to approach that
of high-level QM methods.18 In the past decade, researchers
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have developed a broad spectrum of different ML poten-
tials.19−35 Recently, an ML-based model called deep
potentialsmooth edition (DeepPot-SE)36 was developed to
efficiently represent organic molecules, metals, semiconduc-
tors, and insulators with an accuracy comparable to that of ab
initio QM models. The DeepPot-SE model has recently been
highlighted in simulations of interfacial processes in aqueous
aerosols37 and large-scale combustion reactions in the gas
phase38 and demonstrated great success in providing predictive
insight into complex reaction processes. To improve the
accuracy and transferability of the DeepPot-SE models, the
deep potential GENerator (DP-GEN) scheme39,40 uses an
active-learning algorithm to generate models in a way that
minimizes human intervention and reduces the computational
cost for data generation and model training. The DP-GEN
scheme has been successful in modeling metallic systems,39,40

chemical reactions at the interface of water and TiO2,
41

transition from molecular to ionic ice at high pressure,42 gas-
phase reactive systems,43 etc. These methods have evolved into
an open-source software platform (DeePMD-kit44 and DP-
GEN40) and have been enhanced with GPU acceleration and
applied to simulations of 100 million atoms.45,46 Despite the
achievement of these preliminary applications, in practice, pure
ML potentials alone have had only limited success for
condensed-phase MD simulations.47−52 This is due to the
fact that ML potentials often explicitly model short-ranged
interactions without an explicit treatment of long-ranged
interactions that are critical for modeling heterogeneous
systems in the condensed phase.53 In the present work, we
develop a QM/MM model strategy that departs from a fast
approximate QM method and uses ML potential as a
correction term to greatly enhance the QM/QM and QM/
MM interactions so as to achieve much higher quantitative
accuracy. The fast QM methods provide a robust model for
short-ranged bonding and enable rigorous and efficient
modeling of long-range many-body polarization and electro-
static interactions, which is the part of the interatomic
interactions where pure ML potentials are unreliable. However,
where the fast QM methods lack quantitative accuracy is in the
short- or mid-range interactions where the ML correction
potentials are exceptional. It is noteworthy that Kroonblawd,
Goldman, and co-workers have recently reported promising
success in generating accurate free-energy surfaces for chemical
reactions using a similar-spirited approach using a semi-
empirical QM model and force matching17,54 to improve the
interactions between QM atoms. Other recent works have
applied force matching to collective variables within QM/MM
simulations to calculate free-energy surfaces with an efficient
semiempirical method.55 In this approach, the interactions
between QM and MM atoms are not explictly corrected, but
the reproduction of the net mean forces in the space of the
reaction coordinate collective variables describing the reaction
pathway implicitly accounts for their effect within the scope of
the parameterization.
The ultimate goal is to develop new QM/MM and QMFF

models based on high-level ab initio QM data in environments
that mimic the condensed phase. In particular, we are
interested in models that are able to reproduce free-energy
(potential of mean force) surfaces and reaction pathways. The
goal of the current work is to develop a robust training
procedure for the ML neural networks such that the resulting
models can robustly reproduce free-energy profiles from a
reference model. Recall, however, that for high-level ab initio

QM methods, we cannot generally afford to simulate the QM/
MM reference free-energy profiles, at least not to sufficiently
high precision to allow assessment of the new models. After all,
this is the reason we wish to develop ML correction potentials
that can be used along with an affordable QM/MM model for
practical applications. Hence, in the present work, instead of
using a high-level ab initio free-energy profile, which would not
be feasible to compute, we examine two different approximate
semiempirical QM models, MNDO/d13 and 2nd-order
DFTB,14 that are substantially different in the functional
form and also in terms of their predicted free-energy profile
results to alternatively serve as baseline and target models.
Specifically, we examine QM/MM simulations of a series of
nonenzymatic model phosphoryl transfer reactions in aqueous
solution (Figure 1).

As both QM models are sufficiently affordable, we can
determine high-level reference free-energy profiles from which
to evaluate the performance of the ML correction potentials
and validate the training procedures. The validated training
procedures can then be applied in future work to develop ML
correction potentials using high-level ab initio QM reference
data, where it is not affordable to rigorously compute the high-
level free-energy surfaces. As will be discussed below, different
QM models affect not only the internal QM energy and forces
but also those arising from QM/MM interactions. This
brought to light limitations in the current DeepPot-SE model
for QM/MM simulations and the need to develop an
affordable solution to improving the QM/MM interactions
as well as the internal QM energy and forces.
To achieve this, we have extended the DeepPot-SE model to

include a range-corrected QM/MM interaction term that is
smooth across the range boundary. This deep potentialrange
correction (DPRc) model is shown to be critical for correctly
reproducing QM/MM reference data where the QM base and
target models are significantly different. We further enhance
the latest AMBER2056 with our QM/MM and QMFF
framework11 interfaced with DeePMD-kit44 and DP-GEN40

to enable ML corrections for high accuracy. To demonstrate
the accuracy and transferability of the approach using these
efficient tools, we studied the 2′-O-transphosphorylation RNA
cleavage reactions57 (Figure 1). This specific phosphoryl

Figure 1. Model nonenzymatic phosphoryl transfer reaction in
solution. In a native RNA system, the positions labeled “X”
correspond to oxygen positions (the canonical RNA numbering
scheme is used to identify atomic positions). However, chemically
modified variants involving thio substitution at one or more of these
positions are commonly used in experimental mechanistic studies of
RNA-cleaving enzymes.65 In addition to the native model system,
several of these variants will be studied in the present work (Table 1).
The phosphoryl transfer reaction coordinate, ξPT = RX5′‑P − RX2′‑P, is a
difference between bond-breaking and bond-forming bond lengths,
RX5′‑P and RX2′‑P, respectively.
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transfer (PT) reaction is essential for living organisms and has
been the focus of many structural and mechanistic computa-
tional enzymology studies of nucleic acid enzymes known to
catalyze it,5,58−61 yielding insight into nucleic acid enzyme
design.62 This approach builds upon our recent work to
develop new methods for construction of multidimensional
free-energy surfaces63 and “quantum mechanical book-ending”
methods64 for alchemical free-energy simulations, adding to
the arsenal of computational tools for free-energy prediction in
the AMBER suite of programs.
The paper is outlined as follows: the Methods section

describes details of the DPRc models, active learning workflow,
and computational details of the free-energy simulations. The
Results and Discussion section first outlines the research
strategy and specific objectives of the paper and then explores
the effects of the QM/MM interaction range cutoff and initial
data set on a native nonenzymatic phosphoryl transfer model
system in solution. Next, we examine the effect of the active
learning workflow on the transferability of the ML-corrected
models outside the scope of their training by considering
reactions of five additional chemically modified variants that
represent thio substitutions used experimentally in mechanistic
studies of RNA-cleaving enzymes.65 Finally, we examine the
behavior of the ML QM/MM interaction potential as well as
the computational performance on both CPUs and GPUs. The
paper concludes with a summary of key results and an outlook
on future work.

2. METHODS

This section describes details of the neural networks and deep
potential (DP) model and our extension to include smooth
range corrections for QM/MM interactions. These methods
have been implemented into the DeePMD-kit software,44 and
neural network training was facilitated by the DP-GEN
software.40 Combined QM/MM and QM/MM/DPRc simu-
lations were performed with the sander program within
AMBER20,56 with interfaces built with DeePMD-kit to
integrate the DPRc term into the potential energy. Analysis
of free-energy surfaces was made using the variational free-
energy profile (vFEP) method66,67 that has recently been
extended to enable analysis of high-dimensional free-energy
profiles63 and implemented into the FE-ToolKit software
package.68 A more detailed description of each of these
methods, along with computational details, is provided below.
2.1. Neural Networks. A neural network consists of an

input layer, an output layer, and a sequence of Nhidden hidden
layers connecting the input to the output. In the context of the
present work, each layer is an array, and the length of the array
is the number of nodes (neurons) within the layer. The Mk
nodes of layer k are denoted as i

(k) (x) (i = 1, ···Mk), where
the input array, x, is all Mk−1 node values from the previous
layer or all M0 node values of the input layer. The node values
are computed from a biased, weighted sum of the inputs,
where the weight W and bias b values are the neural network
parameters to be trained. The dimensionality of the parameter
arrays depends on the dimensionality of the inputs and
outputs.
For example, the Mk nodes of layer k can be expanded from

a scalar quantity x

= + ≤ ≤x xW b i M( ) tanh( ) for 1i
e k

i
e k

i
e k

k
,( ) ,( ) ,( )

(1)

The superscript “e” refers to the “expanded” size of the
output. An array input can be expanded similarly

∑= + ≤ ≤
i

k

jjjjjjj
y

{

zzzzzzzx x W b i M( ) tanh for 1i
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j

M

j ji
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k
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x

(2)

In this case, the weight matrix is a Mx × Mk matrix rather
than an array of length Mk, where Mx is the length of the input
array x.
A scalar output layer can be contracted from an input array

by performing a weighted sum of all node values. We will
denote this with a superscript “c” for scalar “contraction”

∑= +x x W b( )c k

j

M

j j
c k c k,( ) ,( ) ,( )

x

(3)

Layer k could have twice as many nodes as the input layer,
Mk = 2Mx, which shall be denoted with a superscript “d” for a
“doubling” of size
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Finally, consecutive layers may have the same number of
nodes, Mk = Mx, in which case we use a superscript “u” to
denote an “unchanged” size

∑= + +

≤ ≤

i

k

jjjjjjj
y

{

zzzzzzzx x x W b

i M

( ) tanh for

1

i
u k

i
j

M

j ji
u k

i
u k

k

,( ) ,( ) ,( )
k

(5)

2.2. Deep Potential (DP). The DP is a sum of atomic
contributions to the energy

∑=
=

E E
i

N

i
1 (6)

The expression for the atomic contribution Ei is a neural
network consisting of three hidden layers (see eq 7). The input

layer is the “descriptor” array
∼

D( )i (see eq 8), which provides
a description of the environment, inferred from the “environ-

ment matrix”
∼

i (see eq 9), the “embedding” matrix i (see eq
11), and a reduced dimension embedding matrix <

i (see eq
12)
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ij
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(11)
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<j N k M( ) ( ) for 1 , 1i jk i jk neigh (12)

Equation 10 is a switched reciprocal distance function that
controls the range of the environment to be described. If an
atom is separated from atom i by a distance greater than Roff,
then the atom is not included in the environmental description
of atom i. If a neighboring atom is within a distance of Ron,
then the neighbor is given full weight in the description. The
weight smoothly changes between these limits. Consequently,
the environment matrix is a Nneigh × 4 array, where Nneigh is the
number of atoms within Roff.
Equation 11 is a second neural network; therefore, we use

the superscripts (Ei, k) and k( , )i to refer to the layers
appearing in eqs 7 and 11, respectively. The number of nodes
in each layer is a choice that completes the definition of the
neural network. The chosen number of nodes also defines the
array sizes for several of the arrays used in the above
expressions. In the present work, the three layers appearing in

eq 7 use =M 240E
1
( )i , =M 240E

2
( )i , and =M 240E

3
( )i nodes.

The three layers appearing in eq 11 use =M 251
( )i ,

=M 502
( )i , and =M 1003

( )i nodes. Each row of the
embedding matrix corresponds to a neighbor, so the size of

the matrix is ×N Mneigh 3
( )i .

The reduced dimensional embedding matrix has the same
values as i; however, only the first M< columns are stored,

where ≤ ≤<M M1 3
( )i . In other words, the dimensions of <

i
are Nneigh × M<. Small values of M< will increase computational

performance but decrease numerical accuracy. One empirically
chooses the smallest value of M< that yields acceptable
accuracy. We have found M< = 12 to be an acceptable value in
the present work.
The values of the descriptor array can be viewed as elements

of a ×<M M3
( )i matrix (eq 11); however, it is viewed as a

vector of length ·<M M3
( )i when used as the input layer in eq 7.

2.3. Range-Corrected Deep Potential (DPRc). We seek
to develop a computationally efficient approximation to replace
costly ab initio Hamiltonian evaluations within QM/MM MD
simulations. There are several ways that one might approach
this. Some researchers might prefer to eliminate the use of
physics-based models entirely and solely relying on an ML-
trained model; however, current pure ML models do not
explicitly contain a treatment for long-range electrostatic
interactions, which are important to maintain stable RNA and
DNA secondary structures, for example. The approach
explored in this work is to substitute the ab initio QM
Hamiltonian with a semiempirical Hamiltonian and use an ML
model to correct short-range atomic interactions to mimic
those obtained with an expensive Hamiltonian. We are
motivated to use a semiempirical Hamiltonian as a foundation
for correction because the physics built in to semiempirical
Hamiltonians explicitly models long-range interactions, and
they offer a reasonable description of bond making and
breaking events at an affordable cost.
The QM/MM calculations considered in this work use

electrostatic embedding; therefore, the QM electrostatic
interaction with the MM region changes when replacing the
ab initio Hamiltonian with a semiempirical model. The largest
discrepancies between the electrostatic interactions will be
between the QM region and the nearby MM residues. In other
words, to make the semiempirical QM/MM method mimic the
ab initio QM/MM energies and forces, the ML correction
potential needs to modify the interactions between the
semiempirical atoms with the other semiempirical atoms and
the nearby MM atoms. Alternatively, replacing the QM
Hamiltonian has no effect on the MM interactions with
other MM atoms. The DP can be applied to the improvement
of QM/QM interactions; however, a few changes need to be
made for it to include correct QM/MM interactions without
affecting MM/MM interactions in a manner that conserves
energy as MM residues diffuse into (or out of) the vicinity of
the QM region. The modified ML model shall be referred to as
the range-corrected deep potential, which we abbreviate as
DPRc and describe below.
The electrostatically embedded QM/MM energy with a

DPRc ML potential is shown in eq 13

= + +

+

R P R P R P R

R

E E E E

E

( ; ) ( ; ) ( ; ) ( )

( )

QM QM/MM MM

ML (13)

R is an N × 3 array of atomic coordinates, and P is the QM
Hamiltonian’s single-particle density matrix. EQM(R; P) and
EMM(R) are the QM and MM energies, respectively.
EQM/MM(R; P) contains the electrostatic and Lennard-Jones
(or other nonelectrostatic-nonbonded model) interactions
between the QM and MM regions. EML(R) is the DPRc ML
potential.
If the ML correction was applied only to the QM atoms,

then one could train the existing deep potential model to
obtain parameters for each atomic number, and the resulting

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00201
J. Chem. Theory Comput. 2021, 17, 6993−7009

6996

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00201?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model would correct the energies and the forces between the
QM atoms. When considering a layer of MM atoms, some
modifications are necessary. The correction applied to the
interaction between an MM hydrogen and the QM atoms will
be much different from the correction between a QM
hydrogen and the other QM atoms. In other words, ML
weight and bias parameters are trained for QM atomic
numbers and MM force field “atom types”. One can imagine
other schemes, such as training the ML parameters for MM
atoms using the MM atomic charge as an additional input;
however, the MM atomic charge information is partially
encoded within the force field atom type assignments.
The interaction between MM atoms with other MM atoms

remains unchanged upon replacing the ab initio Hamiltonian
with a semiempirical model. The ML correction should not
alter the MM/MM interactions. During the course of an MD
simulation, the MM residues may diffuse away from (or
toward) the QM region. To maintain energy conservation, the
ML correction to the QM/MM interactions must approach 0
as the MM atoms leave the area of the QM region, as defined
by a cutoff distance. Furthermore, the MM atoms cannot
contribute a (one-body) constant to the ML correction to the
energy.
To satisfy these requirements, the definition of the switched

reciprocal function (eq 10) is modified to eliminate MM atoms
from the environment of other MM atoms and formally will
have an explicit dependence on the atom indexes in addition to
their separation distance
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This definition creates different Ron and Roff parameters for
QM/QM interactions and QM/MM interactions, so we may
explore the inclusion of QM/MM corrections without
disturbing the QM/QM interactions. Furthermore, the
definition of the atomic contribution must be modified to
avoid one-body contributions from the MM atoms
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Ei
(0) is the one-body contribution to the energy
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2.4. Computation Details. We seek to use an ML-
corrected semiempirical model as a replacement for an ab initio
Hamiltonian within QM/MM simulations; however, a robust
training procedure for the ML correction must be developed.
The development requires answering several questions, such as

• To what extent does “active learning” improve the fitted
model ability to reproduce free-energy profiles?

• Do the models produce better free-energy profiles if the
training data include samples from high-temperature
ensembles?

• What is an acceptable cutoff for correcting the
interaction between QM and MM regions?

• Do the models reproduce free-energy profiles for
systems not included in the training?

Answering these questions requires extensive ab initio QM/
MM simulation sampling. Our approach to developing a
training procedure is to use the ML model to mimic the
energies and forces of another semiempirical Hamiltonian. For
example, we can extensively sample free-energy surfaces with
MNDO/d and then create an ML-corrected DFTB2 that
reproduces the MNDO/d forces and compare the resulting
free-energy profiles. In addition, we could create a reference
DFTB2 profile, train an ML-corrected MNDO/d model, and
compare the profiles.
For the purpose of developing the training procedure, we

create free-energy profiles of the model nonenzymatic
phosphoryl transfer reaction (Figure 1) in an explicit solvent.
The native state contains oxygens at the 2′, 3′, 5′, and
nonbridging phosphoryl positions. We shall also explore
various thio-substituted model compounds (see Table 1) to

Table 1. Reactions of Native System and Chemically
Modified Variantsa

reaction X2′ X5′ XP2 XP1 X3′
native O O O O O
O2′/S (S2′) S O O O O
O5′/S (S5′) O S O O O
O3′/S (S3′) O O O O S
OP1/S (S1P) O O O S O
OP2/S, OP1/S (S12) O O S S O

aReactions of different modified variants were simulated, where the
phosphorus atom has up to five bonds to different atoms during the
course of the reaction (for chemical illustration, see Figure 1). X2′
and X5′ refer to the nucleophile and leaving group positions,
respectively; XP2 and XP1 refer to the pro-RP and pro-SP nonbridge
phosphoryl positions, respectively; S12 refers to a double thio
substitution at the nonbridge positions; X3′ refers to the bridging
position to the C3′ of the pseudo-sugar ring. Here “X” refers
generically to either oxygen “O” (as in the native reaction) or sulfur
“S” (for a chemically modified non-native reaction). The abbrevia-
tions for the reaction used elsewhere in the figures, tables, and text are
indicated in parentheses.
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explore the transferability of the trained models. That is, ML-
corrected Hamiltonians will be trained using the energies and
forces gathered from a subset of the thio-substituted systems,
and the trained models will be used to calculate the free-energy
profiles of the systems that did not contribute to the set of
training data.
2.4.1. Simulation Setup. The initial structure for each RNA-

like nonenzymatic model system shown in Figure 1 was
generated from SMILES with Openbabel69 and then para-
meterized using the AMBER ff14SB/GAFF force field70,71

together with partial charges generated by AM1-BCC.72 The
entire RNA-like solute molecule was defined as the QM region
(QM solute). For each system, the QM solute was solvated
with 1510 TIP4P/Ew waters.73 Simulations were performed
with the sander program within AMBER2056 using a 1 fs time
step. The equilibration procedure consisted of 100 ps of
heating using a Langevin thermostat to increase the temper-
ature from 0 to 298 K.74 The system density was equilibrated
in the isothermal−isobaric ensemble at 1 atm and 298 K.
Pressure was regulated with a Berendsen barostat using a 5 ps
collision frequency.75 The Lennard-Jones potential was
truncated at 8 Å, and a long-range tail correction is used to
model the interactions beyond the cutoff. The long-range
electrostatics was evaluated with the particle mesh Ewald
method using a 1 Å3 grid spacing.9,76

The RNA cleavage reaction57 is described by the reaction
coordinate (progress variable) ξPT defined as

ξ = −′‐ ′‐R RPT X5 P X2 P (17)

where RX5′‑P and RX2′‑P are the bond-breaking and bond-
forming bond lengths in Figure 1, respectively. After
equilibration of the reactant structure, umbrella window
simulations were prepared to scan the reaction coordinate
ξPT from −4 to 5 Å in steps of 0.1 Å (91 umbrella windows in
total). The initial coordinates of each window were generated
by sequentially equilibrating each umbrella window for 25 ps in
the canonical ensemble at 298 K starting from the nearest
available equilibrated structure. Free-energy profiles were
analyzed from 100 ps of canonical ensemble sampling at 298
K. The 100 ps of sampling for each window was generated
from four independent 25 ps simulations initiated from
different random number seeds. The vFEP method,66,67

which has recently been extended for analysis of high-
dimensional free-energy profiles63 and implemented into the
FE-ToolKit software package,68 was used to analyze the
simulation results to generate the free-energy profiles.

2.4.2. Neural Network Training. The neural network
parameters are optimized to reproduce a target set of energies
and forces. If the DFTB2 QM/MM system is the target, then
the ML model is trained to reproduce the difference between
the DFTB2 QM/MM and MNDO/d QM/MM energies and
forces. Similarly, if the MNDO/d QM/MM system is the
target, then the target quantities are the differences between
the MNDO/d QM/MM and DFTB2 QM/MM energies and
forces. The energies and forces include all atoms in the system.
The training is improved by providing the optimization
algorithm more samples, and the efficiency of the optimization
can be improved by using active learning (AL).

Table 2. Summary of Different ML Parameter Sets That Vary Base and Target QM Models, QM and QM/MM Interaction
Cutoffs, and Initial Data Setsa

ML QM base + ML → QM target RC/RQM (Å) initial data set data size

1a MNDO/d + ML → DFTB2 0.0/∞ TREMD@298,315,330 6284 (1.17%)
2a MNDO/d + ML → DFTB2 3.0/∞ TREMD@298,315,330 6305 (1.18%)
3a MNDO/d + ML → DFTB2 6.0/∞ TREMD@298,315,330 6369 (1.19%)
4a MNDO/d + ML → DFTB2 9.0/∞ TREMD@298,315,330 6370 (1.19%)
5a MNDO/d + ML → DFTB2 6.0/6.0 TREMD@298,315,330 5970 (1.11%)
6a MNDO/d + ML → DFTB2 6.0/∞ TREMD@298,(315),(330) 3354 (0.75%)
7a MNDO/d + ML → DFTB2 6.0/∞ MD@298 2615 (0.59%)
8a MNDO/d + ML → DFTB2 6.0/∞ TREMD/TGT@298,315,330 4429 (0.83%)
1b DFTB2 + ML → MNDO/d 0.0/∞ TREMD@298,315,330 6170 (1.15%)
2b DFTB2 + ML → MNDO/d 3.0/∞ TREMD@298,315,330 4617 (0.86%)
3b DFTB2 + ML → MNDO/d 6.0/∞ TREMD@298,315,330 4697 (0.88%)
4b DFTB2 + ML → MNDO/d 9.0/∞ TREMD@298,315,330 4415 (0.82%)
5b DFTB2 + ML → MNDO/d 6.0/6.0 TREMD@298,315,330 4232 (0.79%)
6b DFTB2 + ML → MNDO/d 6.0/∞ TREMD@298,(315),(330) 2299 (0.51%)
7b DFTB2 + ML → MNDO/d 6.0/∞ MD@298 2267 (0.51%)
8b DFTB2 + ML → MNDO/d 6.0/∞ TREMD/TGT@298,315,330 4617 (0.86%)

aThe notation (QM base) + ML → (QM target) is used to represent the development of an ML correction to the QM base model in order to
reproduce reference results from the target QM model. Models consider different cutoffs, RC ≡ Roff,QM/MM, for the smooth range correction for
QM/MM interactions (a value of 0 indicates no range correction), and RQM ≡ Roff,QMfor the internal QM interactions (a value of ∞ indicates no
cut-off). The value for Ron,QM/MM in the switched reciprocal function in eq 14 was chosen to be fixed to 1 Å (except for RC = 0). The value of Ron,QM
is similarly fixed to 1 Å (except for RQM =∞). These values were chosen to be consistent with previous works using the DP model.38,43 In addition,
we consider different initial data used in the ML potential training. Specifically, we consider (1) “MD@298”, traditional MD at 298 K, (2)
“TREMD@298,(315),(330)”, enhanced sampling with TREMD at 298, 315, and 330 K but data only collected at 298 K, (3) “TREMD@
298,315,330”, TREMD using data at 298 K in addition to data from elevated temperatures of 315 and 330 K, and (4) “TREMD/TGT@
298,315,330”, the same as “TREMD@298,315,330” but performing simulations using the QM target model. All training was conducted using the
active learning workflow described in the text. The number of AL cycles is 9. The number of selected data points used in the training (that required
re-evaluation at the target QM level) is shown in the rightmost column, as well as the percentage of selected data points relative to the total data
points considered (i.e., to what degree the AL procedure pruned the total data points). The QM and QM/MM interaction cutoffs and initial data
sets marked in bold (3a and 3b) were ultimately selected to be applied to develop and test robust DPRc models trained for a broader set of variant
reactions.
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2.4.3. Active Learning (AL) Workflow. AL is a procedure
whereby the set of target data is increased to improve the fit;
however, the new data are selected to avoid including
redundant information within the existing training set. The
three steps in an AL cycle are training, exploration, and
labeling. The training phase parameterizes multiple ML models
from the existing collection of target data. The ML training is a
stochastic procedure, and the multiple ML models are
obtained by initiating the fit procedure from different random
seeds. In the present work, we generate four ML models per fit.
The exploration process uses one of the new ML models to
sample phase space. In the current context, this means that we
perform a new set of ML-corrected semiempirical QM/MM
umbrella window simulations using one of the four ML
models. The trajectories are then reanalyzed to calculate the
ML-corrected QM/MM energies and forces for each of the
four ML models; if the four sets of energies and forces
sufficiently agree, then the trajectory frame is discarded. The
selected frames are chosen from the trajectory according to the
condition

θ ε θ{ | ∈ = { | ≤ < }}n I I n,n ncand cand low high (18)

where the model deviation ϵ, proposed in the previous work,40

is the maximal standard deviation of the atomic force predicted
by four models. In this work, θlow and θhigh are set to 0.1 and
0.25 eV/Å, respectively, as the model deviation of most points
in the training data is less than 0.1 eV/Å. To reduce the
computational cost, if the number of selected frames is larger
than 1000, then 1000 of these frames are chosen at random.
The labeling phase evaluates the target energies and forces of
the selected frames chosen within the exploration step. The
newly analyzed data are included as additional reference data
used to train the network parameters in subsequent active
learning cycles. In this work, we performed nine AL cycles for
each ML parameter set and confirmed that the ratio of accurate
frames (ϵ < θlow) in all final simulations (see Supporting
Information) is greater than 99.6%. The AL procedure is a
valuable tool to efficiently expand the information contained in
the training because the target energies and forces may be
expensive to compute.
2.4.4. Initial Data. The energies and forces used to perform

the fit (or the first fit in an AL procedure) can be analyzed
from the trajectory frames of the umbrella window simulations.
This is denoted by “MD@298” in Table 2. One could instead
perform temperature replica exchange simulations (TREMD);
in Table 2, the rows marked “TREMD@298, 315, 330”
generate initial data from TREMD simulations involving three
temperatures: 298, 315, and 330 K. The rows marked
“TREMD@298, (315), (330)” perform TREMD simulations,
but the training data only contain the samples taken from the
298 K ensemble. “TREMD/TGT@298, 315, 330” performs
the same as “TREMD@298, 315, 330” but uses the target
potential. The initial training data consist of 500 frames per
umbrella window simulation. Each umbrella window simu-
lations was run for 25 ps (1 fs time step), and each frame was
stored every 50 fs. The reaction coordinate is divided into 91
umbrella windows, so the “MD@298” and “TREMD@298,
(315), (330)” protocols each produce 45.5k frames for the
initial training. The “TREMD@298, 315, 330” and “TREMD/
TGT@298, 315, 330” protocol produces 136.5k frames
because all three temperatures are included in the training.
However, to reduce the size of the initial data, we only use
1000 frames from “MD@298” or “TREMD@298, (315),

(330)” or 3000 frames from “TREMD@298, 315, 330” or
“TREMD/TGT@298, 315, 330”.

3. RESULTS AND DISCUSSION
3.1. Research Strategy. Herein, we develop a robust

training procedure for the ML neural networks that can be
used as corrections to a base QM model in order to robustly
reproduce free-energy profiles from a target QM model. Such a
procedure will be extremely important for developing next-
generation fast QM force fields that are accuracy comparable
to very high-level QM methods for which simulation is
prohibitive due to excessive computational requirements.
Hence, in order to develop and validate such a robust
procedure, we chose two fast approximate QM models, and for
both, it is possible to compute benchmark reference free-
energy profiles for a series of chemical reactions: MNDO/d13

and second-order DFTB.14 These QM models make
approximations that enable greatly enhanced computational
efficiency relative to high-level ab initio QM methods and take
recourse into empiricism to recover considerable accuracy.
These models are also significantly different from one another
in terms of the approximations they make and consequently
their functional form. These models were intentionally chosen
because they are known to give significantly different reaction
profiles for the phosphoryl transfer reactions in the present
study.77,78 In this way, the goal of developing a robust training
procedure for an ML potential that “corrects” one QM model
into the other presents a stringent stress test.
Both MNDO/d and DFTB2 allow for d-orbitals in their

representation of third-row elements, which has been shown to
be important for modeling phosphoryl transfer reactions79−81

as well as bonding of sulfur atoms in some cases. The MNDO/
d method is based on the neglect of diatomic overlap, which
enables a framework for electrostatics to be modeled as a set of
atom-centered multipoles. However, the overlap matrix used in
the eigenvalue problem that must be solved self-consistently is
assumed to be the unit matrix, and hence, the normal exchange
repulsions that would normally arise from orthogonalization of
the molecular orbitals are absent and must be modeled in a
different way.82 The DFTB2 method uses a second-order
density functional expansion and a two-center integral
approximation that enables very fast computation of a first-
order effective Hamiltonian (tight-binding) matrix.83 Electro-
static interactions are captured as a second-order term, which,
like the MNDO/d method, demands a self-consistent
procedure to solve. A rigorous atomic overlap matrix is used
in the generalized eigenvalue problem that more naturally
overcomes issues related to orthogonalization. However, this
also introduces complications in the representation of
electrostatic interactions, and in the DFTB2 model, these
interactions are modeled as atomic monopoles with charges
determined from density matrix partitioning.
As mentioned above, these QM methods were not chosen

for their accuracy for the phosphoryl transfer reactions being
used here but rather because their differences pose a stringent
test for the purpose of training ML potentials as QM model
corrections. In fact, phosphoryl transfer reactions are of such
importance in biology that specialized models have been
developed based on a semiempirical MNDO/d-like84 and
third-order DFTB85,86 that greatly improve the accuracy for
these reactions. Of key importance to recognize is that the
MNDO/d and DFTB2 methods have substantial differences in
the way they model orbital orthogonalization and electro-
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statics. The former implies that one can expect significant
differences in short-ranged exchange repulsions, including 1−4
interactions of the QM atoms that effect rotation about single
bonds and in particular the puckering of five-membered
rings.87−89 The latter implies that there will also be differences
in electrostatic interactions from different multipolar repre-
sentations that affect interactions between QM and MM atoms
in the mid-range.

In this way, we introduce a considerable challenge
developing a robust ML training procedure able to correct
one QM model into the other and vice versa. Development
and validation of such a procedure would enable the design of
new fast QM + ML models, built upon the latest, most
advanced QM base models with ML correction potentials
trained with high-level ab initio QM target reference data. It
should be noted that the ML training procedure used here is
designed to match the forces of the target QM model. Here,

Table 3. Comparison of Target and Model Transition-State Coordinate Values, ξPT
‡ (Å), Free-Energy Barriers, ΔG‡ (kcal/mol),

and Reaction Free Energies, ΔG (kcal/mol), for the Native Reaction with Different ML Parameter Setsa

errors (shown in parentheses)

MNDO/d + ML → DFTB2 DFTB2 + ML → MNDO/d

ML ξPT
‡ ΔG‡ ΔG ML ξPT

‡ ΔG‡ ΔG
1a (−0.18) (−2.8) (−0.3) 1b (0.05) (−3.0) (−9.3)
2a (−0.05) (−1.7) (0.0) 2b (0.00) (−0.6) (0.5)
3a (−0.05) (−2.4) (0.2) 3b (0.00) (−0.8) (0.1)
4a (0.00) (−2.3) (0.5) 4b (0.00) (−0.9) (−0.5)
5a (0.05) (−1.9) (1.9) 5b (0.00) (−1.1) (−0.6)
6a (0.00) (−1.6) (0.9) 6b (0.00) (−1.3) (−1.0)
7a (0.00) (−1.8) (1.2) 7b (0.00) (−0.6) (0.2)
8a (−0.05) (−2.6) (1.1) 8b (0.00) (−1.0) (0.1)

aThe ML parameter sets are described in Table 2. These models were all trained on data only for the native reaction in order to identify the optimal
training procedure to then apply to a broader set of variant reactions later. Reaction free-energy values were taken as the difference between the
reactant state minimum and the value of the free-energy profile at 4 Å. Errors are shown in parentheses as the difference between target and model
values. Details are provided in the text, and the full free-energy profile curves are shown in Figure 2. ML parameters sets 3a and 3b (marked in
bold) were determined to be the best balance of accuracy and computational cost, and the corresponding QM and QM/MM interaction cutoffs
and initial data set procedures (Table 2) were selected to be applied to develop and test robust DPRc models trained to a broader set of variant
reactions.

Figure 2. Free-energy profiles of different parameters defined in Table 2, compared with original DFTB2 and MNDO/d curves. The left panels
involve ML parameters that use MNDO/d as the base QM model and DFTB2 as the target QM reference, whereas the right panels use DFTB2 as
the base QM model and MNDO/d as the target QM reference. The top panels compare range correction values of 3, 6, and 9 Å and QM range
values of 6 Å and∞, all using initial data from TREMD at 298, 315, and 330 K. The bottom panels compare initial data from conventional MD and
TREMD at 298 K and from TREMD using 298, 315, and 330 K as well as from data collected from the QM target, all using a range correction of 6
Å. All ML curves were calculated from four independent MD simulations at the last cycle of AL. All reference curves were calculated from four
independent MD simulations with the same method.
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we compare free-energy results derived from performing new
simulations using the QM + ML models and constructing free-
energy profiles63,66,67 for the chemical reactions along 1D and
later in the paper 2D coordinates. Hence, the free-energy
profiles being compared were not themselves explicitly
considered in the training, although reference force data
were obtained from simulations along the reaction path.
Agreement of the analyzed free-energy profile results is thus a
sensitive indicator of the robustness of the training procedure
that considered only force data.
In the sections that follow, we will use the notation (QM

base) + ML → (QM target) to indicate how the ML
correction is being applied, and we will alternatively use
MNDO/d and DFTB2 as QM base and target models. In the
second subsection that follows, we will explore the effects of
the QM/MM interaction range cutoff and initial data set on a
native nonenzymatic phosphoryl transfer model system. In the
third subsection, we develop a robust active learning workflow
and test the robustness of the ML-corrected models on a series
of reactions as well as their transferability outside the scope of
their training. In the fourth subsection, we will illustrate the
nature of the DPRc model in correcting short- and mid-range
QM/MM interaction potential and examine more broadly the
computational scaling on both CPUs and GPUs for different
QM/MM interaction range correction cutoffs.
3.2. Effect of Range Correction and Initial Training

Data. We examined the effect of varying the cutoff for the
range correction, along with the initial data used in training, on
the accuracy of the resulting parameter sets for the native
reaction illustrated in Figure 1 (where the “native” reaction has
oxygen for all the “X” atoms in the figure). Several parameter
sets were developed and tested and are summarized in Table 2.
We tested the degree to which the force accuracy on an atom
might vary with the number of MM neighbors and found this
variation to be negligible compared to the distribution of force
errors (see Supporting Information).
Table 3 and Figure 2 compare the free-energy profiles for

each of the trained parameter sets listed in Table 2. In each
panel of the figure, the uncorrected MNDO/d (red) and
DFTB2 (black) are shown in bold line. It is clear that the
profiles are considerably different in shape, overall reaction free
energy, and curvature around the reactant state minimum. The
top panels (Figure 2a,b) compare QM/MM interaction range
correction cutoff values of Roff,QM/MM = 3, 6, and 9 Å and
Roff,QM = 6 and ∞, all using initial data from TREMD at 298,
315, and 330 K (TREMD@298, 315, 330 protocol). As
Roff,QM/MM increases, a larger radius of MM atoms is included
in the DPRc correction potential. The bottom panel (Figure
2c,d), on the other hand, compares the effect of the initial
training data set (prior to the active learning cycles) using a
cutoff value of Roff,QM/MM = 6 Å. The DPRc models were
initially trained on data derived from one of the four protocols
[MD@298, TREMD@298, (315), (330), TREMD@298, 315,
330, or TREMD/TGT@298, 315, 330]. Each model then
underwent nine cycles of active learning, each of which
produced several additional frames per umbrella window
simulation that were then included in the labeling phases. The
profiles within the figure were generated from final models
after the active learning cycles.
It is clear that in the absence of a range correction

(Roff,QM/MM = 0 Å), the DPRc potential does not lead to close
agreement with the target QM results (particularly for the
DFTB2 + ML model). Consideration of a range correction out

to 3 Å considerably improves the agreement. Extending the
range correction to 6 Å leads to profiles that are visually almost
indistinguishable from the target reference results (and is
within the statistical uncertainty of the calculations; data not
shown in order to maintain better clarity of the plot lines).
Further extension out to 9 Å does not provide any significant
additional benefit. It is also important to apply the interaction
range of ∞ within the QM region.
While the DPRc models were sensitive to the range

correction cutoff, they are less affected by the initial data set
used prior to active learning optimization cycles (bottom
panels of Figure 2). The only notable exception occurs for the
MNDO/d + ML model using replica exchange data only at
298 K, and the overall reaction free energy (orange line,
bottom left panel in Figure 2) is elevated and remains closer to
the uncorrected MNDO/d result. Inclusion of data from
higher temperatures alleviates this issue and provides overall
the closest agreement with the target QM reference data. We
recommend the use of enhanced sampling with TREMD for
generation of initial data in order to broaden the conforma-
tional space considered. As this method also requires coupled
simulations at higher temperatures, we further recommend that
these data be used in the ML training. The philosophy here is
that it is important to include representative data for not only
low-energy conformations that are likely to be frequently
sampled but also higher-energy conformations that should
rarely be sampled at ambient temperatures. In this way, the ML
correction potentials can be trained to appropriately occupy/
avoid low-energy/high-energy regions of conformational space,
as appropriate.
Taken together, these are important results. The need to

include a range correction out to 6 Å suggests that for QM/
MM simulations, it may not be enough to simply correct the
internal QM energies and forces but that explicit consideration
of ML corrections for the mid-range QM/MM interactions is
also crucial. Further, it is prudent to include not only
simulation data at ambient temperatures but also data from
higher-temperature enhanced sampling simulations. Moving
forward, we adopt the use of a 6 Å QM/MM interaction range
correction and include initial data from TREMD simulations at
298, 315, and 330 K.
While our initial training data, in some cases, considered

data from higher-temperature data from TREMD simulations,
our AL procedure only considered new data from simulations
at 298 K. It might be the case that fine tuning of the AL
procedure by integration of higher-temperature TREMD data
could lead to even more robust models. This is a topic that we
intend to explore in the future work.

3.3. Transferability and ML Model Validation. To
check the transferability of the model, we examine five different
variants from the native reaction where one or more oxygen
positions are replaced with sulfur (Figure 1). These variants,
along with their abbreviations, are listed in Table 1. These
substitutions are often used experimentally as probes in
mechanistic studies of RNA-cleaving enzymes65 and partic-
ularly RNA enzymes. Sulfur is larger, softer, less electro-
negative, and more polarizable than oxygen. Thiols tend to
have pKa values that are 4−5 units below that of corresponding
alcohols, indicating that alkyl sulfides are more stable in
solution than alkyl oxides. Hence, for example, an S5′ variant is
an “enhanced leaving group” that can be used to probe to
rescue the effects of knocking out a presumed catalytic general
acid. An S2′ variant, on the other hand, is expected to be more
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reticent toward nucleophilic attack to phosphorus.90 Further,
in the nonbridge (OP1/OP2) positions, sulfur will prevent
binding of hard divalent metal ions such as Mg2+, which is
often seen in RNA enzyme active sites, but will bind softer
thiophilic divalent ions such as Cd2+. Hence, thio substitution
experiments are often used to study thio/rescue effects in order
to probe for functional divalent metal ion binding sites. In the
absence of divalent metal ion binding, these positions have
much smaller effects that involve a balance between electronic
and solvation effects.
Here, we apply ML training procedures using not only the

native reaction but also reactions of S2′, S5′, and S12 variants.
As described above, we use a 6 Å range correction and
TREMD data at 298, 315, and 330 K as initial data. However,
here, we explicitly examine ML parameter sets that were
trained both without and with the active learning approach.
We focus on the analysis of the results that use DFTB2 as the
base QM model and MNDO/d as the target QM model (i.e.,
DFTB2 + ML → MNDO/d). The corresponding results
switching the base and target QM models are provided in
Supporting Information.
Table 4 quantifies the improvement gained by active

learning and the transferability of the trained models. The
table summarizes the reaction profiles by listing the reaction
free energies (ΔG) and transition-state barriers ΔG‡. The
MNDO/d QM/MM profiles are the reference profiles, and the
ML corrections are applied to the DFTB2 system. All ML
corrections use 1 and 6 Å for Ron and Roff, respectively, and the
initial training set was generated with the TREMD@
298,315,330 protocol (ML 8 in Table 2). The initial training
set includes the energies and forces from all 91 windows
spanning the reaction coordinate of the native ligand and the
91 windows for each of the S2′, S5′, and S12 thio-substituted
ligands. The S3′ and S1P thio substitution data are not
included in the training of the ML corrections. The training to
the initial data produces four sets of ML parameters (by
running the optimization four times with different random
number seeds). DFTB2 + ML free-energy profiles are

generated for each set of ML parameters. The four free-energy
profiles are averaged, and the columns in Table 4 labeled “ML
(No AL)” are taken from the average profile. Similarly, the
columns labeled “ML (with AL)” are taken from an averaged
profile after applying nine cycles of AL. Each cycle of AL
produced several additional frames per umbrella window
simulation, all of which were included in the labeling phases.
Overall, the training procedure appears to be remarkably

robust (Figure 3), despite the fact that for the reactions of the
variants, the DFTB2 and MNDO/d profiles are strikingly
different compared with that of the native reaction. Specifically,
the DFTB2 sulfur is considerably softer, leading to dramatically
more stable alkyl sulfide species. This results in reaction ΔG
values that are much more positive and negative for the S2′
(nucleophile position) and S5′ (leaving group position) variant
reactions, respectively. The reactions all occur through an in-
line 2′ nucleophilic attack to form a pentavalent dianionic
phosphorane transition state (or intermediate), followed by
departure of the 5′ leaving group. In the transition state/
intermediate, the 2′ and 5′ positions occupy axial positions in
the pentavalent phosphorane (X2′-P-X5′ angle roughly 180°),
and the XP1, XP2, and X3′ positions are located in equatorial
positions. The X3′ position is a “bridging” position between
the phosphorus and C3′ atom, whereas XP1 and XP2 are
terminal “nonbridge” positions. DFTB2 predicts that sulfur in
an equatorial position in the phosphorane is greatly over-
stabilized (by more than 30 kcal/mol), leading to a deep
artificially stable phosphorane intermediate not observed for
MNDO/d. Nonetheless, for the reactions included in the
training (Figure 3a,c,d,f), the DFTB2 + ML models are in
remarkable agreement with the MNDO/d profiles. ML
training in the absence of AL provides good overall agreement
with the shape of the profiles but tends to have barriers that are
still underpredicted. In all cases, further training with AL leads
to improvement of the barriers. After AL, the greatest error of
reactions used in training with respect to the MNDO/d
reference free-energy barriers occurs for the native and S12
reactions, with errors of −0.3 and −0.9 kcal/mol, respectively

Table 4. Comparison of Target (MNDO/d) and Model (DFTB2 + ML) Transition-State Coordinate Values, ξPT
‡ (Å), Free-

Energy Barriers, ΔG‡ (kcal/mol), and Reaction Free Energies, ΔG (kcal/mol), for Native and Variant Reaction Modelsa

DFTB2 + ML → MNDO/d

target values errors (shown in parentheses)

MNDO/d ML (no AL) ML (with AL) no ML (DFTB2)

reaction ξPT
‡ ΔG‡ ΔG ξPT

‡ ΔG‡ ΔG ξPT
‡ ΔG‡ ΔG ξPT

‡ ΔG‡ ΔG
native 0.61 20.0 −5.2 (0.05) (0.1) (−0.4) (0.00) (−0.3) (−0.5) (−0.32) (1.6) (−2.9)
S2′ 0.16 30.5 4.3 (0.05) (2.8) (1.3) (0.00) (−0.5) (1.4) (−0.23) (23.8) (46.9)
S5′ −0.02 10.0 −18.5 (0.05) (1.5) (−1.4) (0.05) (0.5) (0.4)
*S3′ 0.66 20.1 −5.5 (−0.05) (−1.4) (−1.7) (−0.09) (0.1) (1.0) (−1.31) (−4.7) (−8.7)
*S1P 0.75 23.2 −3.1 (0.00) (1.5) (0.4) (−0.05) (0.5) (0.7) (−2.04) (−19.8) (−15.3)
S12 0.79 28.3 −1.2 (0.00) (2.7) (−1.0) (0.05) (−0.9) (−1.4) (0.59) (−13.1) (−4.7)
ME (0.02) (1.2) (−0.5) (−0.01) (−0.1) (0.3) (−0.84) (−3.7) (−4.8)
MAE (0.03) (1.7) (1.1) (0.04) (0.5) (0.9) (1.03) (12.2) (20.5)

aNative and variant model reactions are described in Table 1. The models were trained on data for the native reaction as well as S2′, S5′, and S12
variants. Note: reactions of variants indicated by an asterisk (*) were NOT used in the ML training and are examined to test the transferability of
the ML correction to reactions outside the training scope. Reaction free-energy values were taken as the difference between the reactant state
minimum and the value of the free-energy profile at 4 Å. The target QM reference is MNDO/d, and the model is DFTB2 + ML correction-trained
using the procedures for ML parameter set 3b in Table 2. Errors are shown in parentheses as the difference between target and model values. Two
ML correction potentials are compared. The first, designated as ML (no AL), is trained on an initial set of simulation data with no active learning.
The second, designated as ML (with AL), uses the AL procedure to further evolve and improve the DL potential. In addition, errors with respect to
the uncorrected (DFTB2) values are shown. The last two rows list mean error (ME) and mean absolute error (MAE). Details are provided in the
text, and the full free-energy profile curves are shown in Figure 3.
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(roughly 3% error in the forward barrier). Errors in the
reaction free-energy values are all below 1.0 kcal/mol in
magnitude.
In order to assess transferability of the DFTB2 + ML model,

we examine 1D profiles for two reactions of S1P and S3′
(Figure 3b,e) that were not considered in the training. DFTB2
+ ML models the S1P reaction reasonably well, whereas for the
S3′ reaction, the barrier is considerably underestimated. The
latter is due to the overstabilization of equatorial sulfur in the
DFTB2 model. The S3′ variant is the only example in all the
reactions where there is a sulfur in a bridging equatorial
position in the pentavalent phosphorane transition state
(whereas this is a stable intermediate with pure DFTB2).
Hence, the neural network did not have data representative of
this situation, and the DFTB2 + ML correction is in greater
error. The S1P reaction also has a sulfur in an equatorial
position in the pentavalent phosphorane transition state;
however, it is nonbridging. In the training of DFTB2 + ML, the
S12 reaction had two sulfur atoms in nonbridging positions,
and this enabled the resulting network to better predict the
behavior for the S1P variant which had only one. One striking
feature of the data shown in Table 4 is the improvement that
the AL procedure affords, which is most pronounced for the

reactions of variants not even considered in the training. After
AL, the S1P reaction barriers had an error that was reduced
from 1.5 kcal/mol to only 0.5 kcal/mol (2.2% error), whereas
the S3′ reaction barrier had an error that was reduced from
−1.4 to 0.1 kcal/mol (0.5% error). This is strongly suggestive
that the AL procedure is a powerful method to create more
robust and transferable ML models.
We further examined transferability by considering 2D free-

energy profiles for the native reaction from umbrella sampling
simulations not included in the training. Figure 4 compares the
2D free-energy surfaces (RP‑O2′ and RP‑O5′ coordinates) and 1D
reaction profiles (derived from the 2D surface) for the native
reaction using MNDO/d + ML → DFTB2 (left panels) and
DFTB2 + ML → MNDO/d (right panels). Only the active
learning ML correction is considered. Transition-state barriers
and reaction coordinate values are provided in Supporting
Information. Overall, for the native reaction, AL very
accurately models the full 2D free-energy surface, reaction
path, and transition-state barrier and geometry for both
MNDO/d and DFTB2 target reference data.

3.4. Behavior and Computational Performance of the
DPRc Potential. In order to illustrate the behavior of the
DPRc QM/MM interaction range correction, Figure 5 shows

Figure 3. Free-energy profiles of different variants listed in Table 1, compared with original DFTB2 and MNDO/d curves. Curves labeled ML
(with AL) were calculated from four independent MD simulations at the last cycle of AL. Curves labeled ML (no AL) were calculated from one
MD simulation at the first cycle of AL.
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the interaction energy between an MM (TIP4P/Ew) water
molecule with the QM solute as a function of the phosphorus−
water oxygen (P-OW) interaction distance. Shown are the
DFTB2 and MNDO/d QM/MM potential energies and a
DFTB2 + ML model trained to reproduce the MNDO/d QM/
MM energies and forces. The ML parameterization is the same
used within Table 4. The interaction potential is seen to be
quite smooth and quickly approaches 0 by 4.0 Å until it is
rigorously and smoothly turned off by 6 Å. In this way, the
DPRc term is able to compensate for differences in the short-
ranged exchange repulsions as well as mid-range electrostatic
interactions between the MNDO/d and DFTB2 QM models.
The inclusion of the DPRc correction to the QM/MM

calculations necessarily causes the simulations to require more
wall clock time to complete the simulation. Table 5 compares
the wall clock time of the DFTB QM/MM simulations shown
in Figure 2b as the DPRc QM/MM cutoff is increased. The
timings are shown when the entirety of the calculation is
performed on one CPU core and when the QM/MM
calculation is performed on one CPU core and the DPRc
correction is accelerated by use of a GPU coprocessor. The

Figure 4. 2D free-energy surfaces (RP‑O2′ and RP‑O5′ coordinates) and 1D reaction profiles (derived from the 2D surface) for the native reaction
using MNDO/d + ML→ DFTB2 (left panels) and DFTB2 + ML → MNDO/d (right panels). Only the AL ML correction is shown. The top row
shows the 2D surface for target QM reference results (left, DFTB2; right, MNDO/d) as well as a 1D profile along the reaction path obtained from
the 2D surface and projected onto the 1D reaction coordinate ξPT = RP‑O5′ − RP‑O2′ (shown as insets, with the transition-state position labeled with
a solid dot). The bottom row shows the 2D surface for base QM + ML model results (left, MNDO/d + ML; right, DFTB2 + ML) as well as a 1D
profile along the reaction path obtained from the 2D surface and projected onto the 1D reaction coordinate ξPT = RP‑O5′ − RP‑O2′ (shown as insets,
with the transition-state position labeled with a solid dot).

Figure 5. Interaction energy ΔE between the native QM solute and a
single MM water calculated at a range of phosphorous (P) and water
oxygen (Ow) distances by 1D rigid translation of the water along the
phosphate plane. The model ML 8 in Table 2 was used to correct the
interaction energy from DFTB2 to the MNDO/d level. The purpose
of this plot is to simply illustrate the nature of the DPRc term for a
simple well-defined interaction energy between QM and MM
molecules.
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simulations were performed using a 2.10 GHz Intel Xeon Gold
6230 CPU with 28 MB of cache and a NVIDIA V100 GPU.
Figure 6 further illustrates the scaling of the DPRc term as a
function of the QM/MM range correction cutoff.

The timings shown in Table 5 suggest that the DPRc
correction is very expensive if performed on CPUs. Extending
the correction to include 6 Å of the MM solvent is 5 times
more expensive than performing an uncorrected DFTB2 QM/
MM force evaluation. Alternatively, the DPRc correction is
relatively inexpensive if it is performed on a GPU owing to our
use of DeePMD-kit, which has been highly tuned for GPU
performance. The GPU evaluation of the DPRc model using a
6 Å correction increases the cost of the underlying QM/MM
(single-core CPU) calculation by only 11%. The cost of an ab
initio QM Hamiltonian is orders of magnitude more expensive
than a semiempirical evaluation in comparison, which is the
primary motivation for developing the DPRc correction. The
cost of the DPRc correction is expected to increase roughly

linearly with number of QM/MM particle−particle inter-
actions, which in the limit of very large values of QM/MM
interaction range correction cutoff, Roff,QM/MM, is expected to
be proportional to (Roff,QM/MM)

3 (i.e., proportional to the
volume, assuming a uniform density of MM particles around
the QM solute). In the present example, the timings for both
CPU and CPU/GPUs can be fit to a scaling model as
illustrated in Figure 6 (see Supporting Information for further
details). Examination of the pre-factors suggests that the
evaluation of the range correction term is roughly 100 times
faster using an NVIDIA V100 GPU coprocessor than using a
single CPU core alone.

3.5. Discussion of the DPRc Model and Training
Procedure in the Context of Similar-Spirited Ap-
proaches and Future Applications. As discussed above,
the ultimate goal of this work is to develop a DPRc training
procedure that can be applied to correct a fast semiempirical
QM/MM model to the accuracy level of an ab initio QM/MM
model. We fully acknowledge that the training procedures
developed here might require more data sampling or further
adaptation to be transferable to ab initio training data.
Nonetheless, this underscores the need to develop as robust
and reliable a procedure as possible. In the present work, we
develop a training procedure using fast, approximate base and
target QM models. Our specific choice of MNDO/d13 and
DFTB214 was made for two reasons. First, both methods are
sufficiently fast that we can extensively sample both 1D and 2D
free-energy profiles for the reactions of interest. This allows us
to explore different training procedures and rigorously evaluate
them by assessing errors of the final profiles since it is possible
to also compute the profiles to high precision at the target QM
level. This would not be possible with an ab initio QM model.
Second, MNDO/d and DFTB2 were not chosen because
either method is particularly accurate. Rather, they were
chosen because they differ quite substantially in their energetic
behavior for both internal QM energies and QM/MM
electrostatic interaction energies and as a result give quite
different profiles for the reactions being considered. For
example, the MNDO approximation is known to under-
estimate torsion energy barriers due to the lack of an overlap
matrix in the generalized eigenvalue problem, which is
corrected with DFTB2. This is especially problematic for
MNDO/d to obtain the correct puckering of five-membered
rings87−89 as is needed for the present reactions that contain a
five-membered ring in the reactant state and form an additional
five-membered ring in the course of the reaction. A specialized
AM1/d-PhoT model has been developed,84 along with sugar
pucker correction terms89 to improve this behavior. On the
other hand, DFTB2 uses a crude atom-centered monopolar
representation for electrostatic QM/MM interactions, whereas
MNDO/d uses a full multipolar representation. In this way,
MNDO/d and DFTB2 provide models that have considerably
different internal QM energies and generate different
ensembles as conformational ensembles as well as substantially
different mid-range QM/MM interaction energies. Thus, the
choice of MNDO/d and DFTB2 represents a considerable
stress test for any training procedure. While one cannot
conclusively assert that any successful procedure developed
here will be completely transferable to training against ab initio
QM/MM target data, it is the hope that our choice of
contrasting base and target QM models will lead to a robust
training procedure that is at least largely transferable. It should
be noted as well that our strategy moving forward is to depart

Table 5. Wall Clock Time per Simulation Step (ms/step)
Observed in the DFTB2 QM/MM Simulations of the Native
Reaction with and without the Use of DPRc Correctionsa

QM/MM RC (Å)

··· 0 3 6 9

CPU 140 374 442 748 1416
GPU ··· 152 152 156 164

aThe timings were performed using a 2.10 GHz Intel Xeon Gold
6230 CPU with 28 MB of cache. The “CPU” times performed the
QM/MM and DPRc corrections on one CPU core. The “GPU” times
performed the QM/MM calculation on one CPU core and the DPRc
correction on an NVIDIA V100 GPU. The “QM/MM” column does
not include a DPRc correction. The remaining columns include the
DPRc model to correct the interaction between QM atoms and the
interactions between QM and MM atoms separated by a distance not
greater than RC, where RC ≡ Roff,QM/MM is the cutoff for the smooth
range correction for the QM/MM interactions (a value of 0 indicates
no range correction). The timings with DPRc correction correspond
to models 1b−4b in Table 2.

Figure 6. Illustration of scaling of the wall clock time per simulation
step (ms/step) observed in the DFTB2 QM/MM simulations of the
native reaction with and without the use of DPRc corrections. Times
are shown as a function of RC ≡ Roff,QM/MM, the cutoff for the smooth
range correction for the QM/MM interactions (a value of 0 indicates
no range correction). These values are listed in Table 5 and described
in more detail in the caption. The DPRc timings could be fit to a
nonlinear model t0 + a·(RC)

b, where t0 is the timing in ms/step for the
DPRc model with RC = 0 Å, a is a pre-factor parameter in units of
(ms/step)/(Åb), and b is an empirical unitless scaling exponent. The
simulations were performed using a 2.10 GHz Intel Xeon Gold 6230
CPU with 28MB of cache and an NVIDIA V100 GPU.
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from the most accurate fast, approximate QM models and
using a quantum mechanical force field (QMFF) strat-
egy11,16,91 where even with DFTB-like models, multipolar
mapping parameters can be developed to improve the quality
of the electrostatic potential for QM/MM interactions to be
very close to that of ab initio DFT methods.8,16

It is worth mentioning that there are similar procedures
being actively pursued in the literature with promising
success.28−31,33,34,47−51,55,92 These technologies are still in
very early stages, so it is premature to attempt to evaluate their
relative merits, but nonetheless should be pointed out and
acknowledged. Recent works have used ML training to match
semiempirical model forces to ab initio reference data to
examine the free-energy surface of glycine condensation.17,54

Specifically, Kroonblawd et al.17 used approximately 450
reference configurations obtained from condensed phase
simulations to adjust the short-range “repulsive” potentials
within the DFTB2 semiempirical QM model. The initial set of
reference data used in the present work (1000 configurations
per temperature) is approximately twice as large. It is likely
that our use of an AL procedure could allow us to initiate the
training with a smaller set of data. Another distinction between
refs 17 and 54 and the present work is our use of ML
corrections to the QM/MM interaction in addition to the
QM/QM interactions. Other very recent approaches have used
force matching on collective variables in QM/MM simulations
using semiempirical models to calculate free-energy surfaces55,
and machine-learning assisted models for enzyme reactions in
solution.50 All these procedures have promise and a great deal
of complementarity, and thus, we anticipate the landscape for
practical QM/MM simulations to undergo exciting trans-
formations that open doors to new applications.

4. CONCLUSIONS
In this work, we develop a new DPRc ML potential, along with
an AL procedure for neural network training. We test the
DPRc model and training procedure against a series of six
nonenzymatic phosphoryl transfer reactions in solution that are
important in mechanistic studies of RNA-cleaving enzymes.
We used DPRc model corrections to a base QM model in
order to reproduce reference data from a QM target model.
For this purpose, we chose the MNDO/d and DFTB2
approximate quantum models that differ from one another
substantially in order to provide a rigorous stress test for the
DPRc model and training procedure. Examination of different
range corrections and training data for the native reaction
suggest that range corrections for QM/MM interactions out to
6 Å are required for high accuracy and further that there is a
benefit from including data from enhanced sampling with
temperature replica exchange, including some data at elevated
temperatures to train models to avoid high-energy regions of
conformational space. The DPRc model was demonstrated to
be highly robust in its ability to accurately model four different
reactions simultaneously (i.e., with the same universal model).
Further, the DPRc model and training procedure were
demonstrated to be highly transferable to model 2D free-
energy surfaces for the native reaction, along with a 1D free-
energy profile for the reaction of the S1P variant, both of which
were not explicitly considered in the training. Transferability to
the reaction of the S3′ variant was not as successful, producing
a free-energy profile that was overall correct in shape, but this
underestimated the forward barrier by 5.5 kcal/mol. Here, it
was shown that AL had a profound effect on improving the

DPRc model in terms of agreement with training data as well
as transferability outside the scope of the training data. It
should be noted that the DP-GEN scheme used to develop the
DPRc models considers the atomic forces as target parameters
to train the neural networks. Our assessment and validation of
the models, however, consider the analyzed free-energy
surfaces that result from umbrella sampling simulations along
the reaction coordinate(s) which were not explicitly consid-
ered in the training per se. Hence, the success of the models
reported here has important implications for quantitative free-
energy simulations that use range-corrected ML potentials to
enhance the accuracy of fast, approximate QM/MM methods.
It is the hope that the new range-corrected ML potential, along
with the robust training procedure, will enable the creation of
next-generation QM/MM and QMFF potentials for a wide
spectrum of free-energy applications, ranging from drug
discovery to enzyme design.
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per simulation step (ms/step) observed in the DFTB2
QM/MM simulations of the native reaction with and
without the use of DPRc corrections CPU and GPU
timings plotted separately(PDF)
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Penazzi, G.; Persson, M. P.; Řezác,̌ J.; Sánchez, C. G.; Sternberg, M.;
Stöhr, M.; Stuckenberg, F.; Tkatchenko, A.; Yu, V. W.-z.; Frauenheim,
T. DFTB+, a software package for efficient approximate density
functional theory based atomistic simulations. J. Chem. Phys. 2020,
152, 124101.
(16) Giese, T. J.; Huang, M.; Chen, H.; York, D. M. Recent
Advances toward a General Purpose Linear-Scaling Quantum Force
Field. Acc. Chem. Res. 2014, 47, 2812−2820.
(17) Kroonblawd, M. P.; Pietrucci, F.; Saitta, A. M.; Goldman, N.
Generating Converged Accurate Free Energy Surfaces for Chemical
Reactions with a Force-Matched Semiempirical Model. J. Chem.
Theory Comput. 2018, 14, 2207−2218.
(18) Mueller, T.; Hernandez, A.; Wang, C. Machine learning for
interatomic potential models. J. Chem. Phys. 2020, 152, 050902.
(19) Behler, J.; Parrinello, M. Generalized Neural-Network
Representation of High-Dimensional Potential-Energy Surfaces.
Phys. Rev. Lett. 2007, 98, 146401−146404.
(20) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible
neural network potential with DFT accuracy at force field computa-
tional cost. Chem. Sci. 2017, 8, 3192−3203.
(21) Smith, J. S.; Roitberg, A. E.; Isayev, O. Transforming
Computational Drug Discovery with Machine Learning and AI.
ACS Med. Chem. Lett. 2018, 9, 1065−1069.
(22) Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.;
Devereux, C.; Barros, K.; Tretiak, S.; Isayev, O.; Roitberg, A. E.
Approaching Coupled Cluster Accuracy with a General-purpose
Neural Network Potential Through Transfer Learning. Nat. Commun.
2019, 10, 2903.
(23) Nebgen, B.; Lubbers, N.; Smith, J. S.; Sifain, A. E.; Lokhov, A.;
Isayev, O.; Roitberg, A. E.; Barros, K.; Tretiak, S. Transferable
Dynamic Molecular Charge Assignment Using Deep Neural Net-
works. J. Chem. Theory Comput. 2018, 14, 4687−4698.
(24) Unke, O. T.; Meuwly, M. A reactive, scalable, and transferable
model for molecular energies from a neural network approach based
on local information. J. Chem. Phys. 2018, 148, 241708.
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