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ABSTRACT: We describe an efficient method for the simultaneous solution
of all free energies within a relative binding free-energy (RBFE) network with
cycle closure and experimental/reference constraint conditions using Bennett
Acceptance Ratio (BAR) and Multistate BAR (MBAR) analysis. Rather than
solving the BAR or MBAR equations for each transformation independently,
the simultaneous solution of all transformations are obtained by performing a
constrained minimization of a global objective function. The nonlinear
optimization of the objective function is subjected to affine linear constraints
that couple the free energies between the network edges. The constraints are
used to enforce the closure of thermodynamic cycles within the RBFE network,
and to enforce an additional set of linear constraint conditions demonstrated
here to be subsets of (1 or 2) experimental values. We describe details of the
practical implementation of the network BAR/MBAR procedure, including use of generalized coordinates in the minimization of the
free-energy objective function, propagation of bootstrap errors from those coordinates, and performance and memory optimization.
In some cases it is found that use of restraints in the optimization is more practical than use of generalized coordinates for enforcing
constraint conditions. The fast BARnet and MBARnet methods are used to analyze the RBFEs of six prototypical protein−ligand
systems, and it is shown that enforcement of cycle closure conditions reduces the error in the predictions only modestly, and further
reduction in errors can be achieved when one or two experimental RBFEs are included in the optimization procedure. These
methods have been implemented into FE-ToolKit, a new free-energy analysis toolkit. The BARnet/MBARnet framework presented
here opens the door to new, more efficient and robust free-energy analysis with enhanced predictive capability for drug discovery
applications.

1. INTRODUCTION

Alchemical free-energy methods play a key role in lead
optimization by enabling the prediction and ranking of the
relative binding affinities of ligands to their protein targets in
order to prioritize them for further synthesis and testing.1,1−11

Often these calculations take the form of computing the
relative binding free energy (RBFE) between ligands by
alchemically mutating one ligand into another, both in solution
and bound to the protein.12−17 The ease at which such
transformations can be computed robustly to high precision
depends in part on the similarity of the ligands.18−20 To take
advantage of this in practice, a topological thermodynamic
network can be constructed to connect ligands in such a way
that their RBFEs can be optimally computed.21−25 This
network can be thought of as a “directed graph” in which each
edge corresponds to an alchemical transformation between
ligands. When solving for the RBFE values between ligands,
one can independently analyze the corresponding edge using
an established free-energy method such as Bennett’s Accept-
ance Ratio (BAR) method,26 the multistate-BAR (MBAR)

method,27 unbinned weighted histogram analysis method
(UWHAM),28 or thermodynamic integration (TI) method29

However, these original approaches will not guarantee that
certain theoretical cycle closure constraints are obeyed, nor do
they allow integration of experimental values as constraints
into the analysis.
Herein we present a robust, efficient method for the

network-wide BAR and MBAR analysis of RBFEs of entire sets
of ligands with arbitrary linear constraints, including both
theoretical cycle closure conditions and experimental (or
generally derived) reference value constraints or restraints. The
former leads to more precise computed values that obey the
cycle closure conditions in the limit of infinite precision
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(complete sampling), whereas the latter leads to improved
prediction for unknown ligands by constraining RBFE values
of ligands with known binding affinities. These methods have
been implemented into the graphmbar program distributed
within the FE-ToolKit, a new free-energy analysis toolkit that is
available from the authors.30

A few methods have been introduced that enable the
enforcement of theoretical cycle closure constraints.31,32 Here,
we build upon the MBAR/UWHAM equations27,28,33−35

which can be solved efficiently by nonlinear optimization of
a convex function.28 Rather than solving these equations for
each transformation independently, the simultaneous solution
of all edges of the thermodynamic network are obtained by
performing a constrained minimization of a global objective
function. The nonlinear optimization of the global objective
function is subjected to affine linear constraints that couple the
free energies between the network edges. This is a general
approach that is not restricted to simple cycle closure
constraints, but could include select experimental or high-
precision reference values, or any linear combination thereof.
We formulate global objective functions that correspond to
both BAR and MBAR solutions for the thermodynamic
network, referred to as BARnet and MBARnet, respectively.
Practical considerations in terms of computational efficiency
and memory requirements for the network data are discussed.
The methods are demonstrated in the calculation of RBFEs of
six prototypical protein−ligand systems, and it is shown that
enforcement of cycle closure conditions can lead to a modest
reduction of the error in the predictions, and further error
reduction can be achieved when one or two experimental
RBFEs are included in the network analysis.
To establish context and motivation for the present

methods, we outline a typical use case for alchemical free-
energy calculations in the lead optimization stage of drug
discovery.5,11 At the lead optimization phase, initial lead
compounds have been identified through high throughput
screening and lead generation. The goal of lead optimization is
to develop and synthesize new compounds with improved
potency, selectivity, and pharmacokinetics. This optimization is
achieved by creating trial modifications of initial lead
compounds that are informed by structure−activity relation-
ships, and in many cases structural data of the target−lead
(protein−ligand) complex. Computational free-energy simu-
lations are used at this point to make predictions about the
relative binding affinities (and in some cases selectivity) in
order to prioritize the most promising compounds for
synthesis and further characterization. The goal is often to
rank a series of trial compounds that involve chemical
modifications of a common molecular scaffold in terms of
their binding affinity to the target protein. To achieve this, a
thermodynamic network21−24 is constructed such that the
RBFEs of the series can be optimally computed, as discussed
above. This network will contain the unknown compounds for
which predictions are desired, but also contains some known
reference compounds for which crystallographic and binding
affinity data has been measured. As the free energy is a state
function, the number of linearly independent RBFEs is Nlig −
1, where Nlig is the number of ligands. However, the number of
alchemical transformation edges in the thermodynamic
network, Nedges, is typically considerably larger than the
theoretical degrees of freedom (Nedges > Nlig − 1). This
overdetermined set of computational variables (the free-energy
values for each edge transformation) gives rise to a number of

theoretical “cycle closure” conditions that need to be satisfied
(this set of conditions is not unique, but has fixed rank).
Further, as some of the compounds have been measured, the
RBFEs between these compounds are also known. Nonethe-
less, by including these known compounds in the calculations
along with the unknown compounds, the data can, in principle,
be leveraged to improve the predictions for the RBFEs of the
unknown compounds. More generally, if for some reason, it is
known that values for certain sets of edges (or linear
combinations thereof) are more reliable, then it might be
advantageous to either constrain or restrain these values in the
global optimization. It should be acknowledged that in some
cases in which data may be systematically biased, imposition of
constraints or restraints could lead to worse predictions. In the
present work, we create a tool to explore the use of
experimental or other reference constraints (or restraints), in
addition to the theoretical cycle closure constraints, in the
global optimization of the networkwide free-energy function
with the goal to improve predictive capability.

2. METHODS
Fast Solution for Large Scale MBAR/UWHAM Equa-

tions. We begin by reviewing the MBAR/UWHAM
equations,27,28,33−35 first derived in ref 28, using a notation
based on the description found within ref 34. In the context of
their work, they considered an alchemical transformation, e,
that mutates state A to state B using Me intermediate
alchemical states (λ-states). In the present work, we use the
subscript “e” to identify this transformation as particular edge
within the RBFE graph. The goal is to calculate Me free-energy
values, Gie*, where i indexes the value of the λ-state within
transformation e. Simulations are performed for the Me states,
each generating Nie frames of coordinates rie

k , where k indexes
the frame within the trajectory. Furthermore, the reduced
potential energy uie (scaled by (kBT)

−1, where kB and T are the
Boltmann constant and absolute temperature, respectively) of
each state must be evaluated for each of the Ne = ∑i = 1

Me Nie
frames. The MBAR/UWHAM objective function is shown in
eq 1.
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The bie values (eq 2) are used for notational compactness.
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The expression does not contain β = (kBT)
−1 terms within it

because it is presumed throughout this manuscript that the
potential and free energies are in reduced energy units; that is,
they have been premultiplied by β. The gradient of the
objective function (eq 1), which may or may not be necessary
depending on the chosen nonlinear optimization algorithm, is
given in eq 3.
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Network Optimization using the Multistate Bennet’s
Acceptance Ratio Method. We extend the MBAR/
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UWHAM equations, first derived in ref 28, by minimizing a
global objective function that weights and sums eq 1 for each
edge, and subjects the minimization to linear constraints that
couple their simultaneous solution.
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c ie ie ccon,( , ) con,

eedges

(5)

The we values weight each edge in the sum. In the current
work, we set all weights to unity. Ncon is the number of
constraints and ΔGcon, c* is the target value of constraint c. The
constraint is a linear combination of free-energy values, where
Ccon, (c, ie) is the contribution from λ-state i within edge e to
contraint c. The grouping of the subscripts in Ccon, (c, ie) is
meant to view this quantity as a matrix with Ncon rows and M =
∑e

NedgesMe columns.
The constraint coefficients are typically nonzero only for the

λ = 0 and λ = 1 states of an alchemical transformation because
the free energy of the process is the difference between those
two states, ΔG = G(λ = 1) − G(λ = 0). As an example, if a ΔG
value is constrained, then the elements of Ccon, (c, ie)
corresponding to the G(λ = 1) and G(λ = 0) states would
be 1 and −1, respectively. As a more complicated example,
consider a case for which Ntrial independent simulations of an
alchemical transformation are included in the analysis. Each
trial will produce a slightly different ΔG value. A constraint on
ΔG could be applied to each of the Ntrial trials (one constraint
for each independent trial); however, we prefer to apply a
single constraint to the average ⟨ΔG⟩ value. In this case, the
nonzero Ccon, (c, ie) values are −Ntrial

−1 and +Ntrial
−1 for each trial’s λ

= 1 and λ = 0 states, respectively. The application of
constraints to trial averages easily extends to more elaborate
constraints. For example, an “edge free energy”the free-
energy difference between two physical statescould be
divided into a series of stages, such as “decharge”, “softcore
Lennard-Jones”, and “recharge” stages. A constraint on the
edge free-energy average involves all λ = 0 and λ = 1 states
from each trial of each stage. Furthermore, a constraint on a
cycle closure average involves all λ = 0 and λ = 1 states from
each trial of each stage for each edge tracing the closed path.
There are many numerical methods for performing the

constrained optimization in eq 4. The constrained problem has
only equality constraints, and the method of Lagrange
multipliers could be used to convert it into an unconstrained
problem involving Ncon + M parameters by constructing a
Lagrange function (eq 6) and searching for its saddle
point(s):

λ *
max min

G
.

∑λ λ* = * + *F hG G G( , ) ( ) ( )
c

c c
(6)

This approach is not ideal only because many of the widely
available numerical optimization software libraries are designed
to find local minima (or maxima) rather than saddle points.
Fortunately, many unconstrained optimization algorithms can
be adapted to constrained problems via “the penalty method”
or the closely related “augmented Lagrangian method”.36,37 In
the special case that the equality constraints are linear, one can

use a “substitution method”,38 whereby the explicit presence of
constraint conditions are removed by replacing the full set of
parameters by a smaller set of generalized parameters that only
(but fully) span the space of feasible solutions.
The penalty method is a well-known approach for finding

approximate solutions to constrained problems.36,37 The
method augments the primary objective function with penalty
functions that deter the optimization algorithm from exploring
the unfeasible solutions. The objective function using a
quadratic penalty function to enforce equality constraints is
O(G*) = F(G*) + ∑ckchc(G*)

2. The procedure is to set kc = 0
and optimize O to obtain a guess at the parameters. To enforce
the constraints, kc is increased by 10 (or some chosen amount)
and O is reoptimized starting from the previous solution. The
process of increasing kc and reoptimizing the objective is
repeated until the constraints are satisfied to within a desired
tolerance. The constraints are strictly enforced as the kc values
approach infinity; however, if strict enforcement of the
constraints is required, use of the augmented Lagrangian
method should be preferred. If it is satisfactory to enforce the
constraints to only several digits of accuracy, then the penalty
method is quite efficient and widely applicable. One might
consider the kc values to be additional parameters introduced
by the penalty method; however, it is better to view the penalty
method as introducing a tolerance on the acceptable
enforcement of the constraintsin much the same way that
one places tolerances on the numerical algorithm to terminate
the search for an optimal set of parameters.
The substition method can enforce linear equality

constraints by performing the optimization in a reduced set
of generalized parameters of which the freedom is limited to
the feasible regions of the constrained optimization.38 The goal
is to find a set of Mfree = M − Ncon generalized parameters q
that will always satisfy the constraints. A relationship must be
found to express the full set of parameters as a function of the
generalized parameters Gie*(q) to rewrite the constrained
optimization problem as an unconstrained optimization of the
generalized parameters.

* = ∈ [ ] → *
*

F h c N FG G qmin ( ) subject to 0, 1, min ( ( ))c
G q

con

(7)

To begin, consider a solution for the parameters from the
linear equality constraints (eq 8).

Δ· * = *C G Gcon con (8)

If there are fewer linearly independent constraints than
parameters, then a strictly enforced, nonunique solution can
be found from a generalized inverse; this solution will be
denoted by Gie*

, ◦.

Δ

Δ

* = · *

= ·Σ · · *

◦ +

+

G C G

V U G

con con

con

,

T
(9)

As we shall see below, eq 9 is only one of many possible
solutions that satisfy the constraints, and we seek to find a
formula that generalizes eq 9 to include all feasible solutions
satisfying the constraints. The generalized inverse of Ccon
(denoted Ccon

+ ) can be computed from a singular value
decomposition (SVD, see eq 10), where U is a Ncon × Ncon
matrix of left-singular vectors, V is a M × M matrix of right-
singular vectors, and Σ is a Ncon × M matrix of singular values
along its diagonal.
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= ·Σ·C U Vcon.
T

(10)

Given Ncon linearly independent constraints, the diagonal of Σ
will contain Ncon nonzero elements. The remaining Mfree
columns of Σ are the null space of Ccon, and the corresponding
Mfree rows of V

T span the space of feasible solutions satisfying
the constraints. Let us define a Mfree × M transformation
matrix, T, of which Mfree rows are the row vectors of VT

spanning the null space Ccon. Perturbing eq 9 by qT · T for any
vector q will continue to satisfy the constraints; therefore, the
general expression for the parameters that satisfy the
constraints is given by eq 11.

∑* = * +◦

=

G G q Tie ie
j

M

j j ie
,

1
,( )

free

(11)

By rearranging eq 11, one can derive the reverse trans-
formation for the generalized parameters.

∑ ∑= *
= =

q T Gi
e

N

j

M

i je je
1 1

,( )

eedges

(12)

There are three types of constraints that we will consider: (1)
We constrain the free energy of each λ = 0 alchemical state to
be zero. This constraint does not have a practical effect on the
results other than improving the readability of the output. (2)
If a partial list of reference RBFEs are known, then we
constrain the calculated RBFEs to match the reference values.
The motivation behind this is for situations when a few
reference RBFEs (either experimental RBFE values or highly
converged simulation results) are known and one attempts to
use that partial knowledge to aid the prediction of RBFEs that
remain experimentally unknown. (3) We enforce thermody-
namic cycle closure conditions. The free energy is a
thermodynamic state function; therefore, the sum of free
energies along a closed path should be zero. The reader is free
to implement the constraints using whatever method is readily
available to them. In the present work, we choose to use the
substitution method described above for linear equality
conditions for enforcing the first two types of constraints
described above.
We use the penalty method for enforcing the cycle closure

constraints, because of the potential of encountering linear
dependencies between the cycle closure conditions. In
principle, the presence of linear dependencies is not an
insurmountable obstacle; however, in practice the singular
vectors defining the free parameters can become highly
oscillatory as a linear dependency is approached, thereby
limiting the effective precision due to round off error. Our
experience is that cycle closure constraints are often satisfied to
within 0.001 kcal/mol using restraint force constants of
10(kBT)

2, which is much smaller than the uncertainty in the
free-energy values. This degree of constraint enforcement is
sufficient for our purposes, so the penalty method can be
terminated after the first use of nonzero kc values. The penalty
method, in our application, can thus be viewed as a “restraint”
applied to the primary objective function. In this view, the
cycle closure constraint penalties can be explicitly written into
the objective function and referred to as restraints, denoted by
the subscript “res”.
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The algorithm for finding and choosing the closed paths, given
a list of edges (a list of molecule pairs), follows:

• Assign each molecule a unique (but otherwise arbitrary)
index.

• For each molecule, generate a list of directly connected
neighbors from the set of edges.

• For each connected neighbor, use a Depth First
Traversal algorithm to find the shortest path(s) that
connects the molecule to the neighbor, excluding the
direct connection. The resulting path is a list of
molecules starting with the entry molecule and ending
with the connected neighbor.

• To avoid redundant duplication of the same path with
others that may differ only from the starting molecule or
traversal direction, shift the entries in the path list such
that the first element has the lowest molecule index and
the second element has a lower molecule index than the
last element. This second condition controls the
“clockwise-ness” of the cycle.

• Append the end of the path list with the first element to
close the cycle.

• If the path has not yet been restrained, then include it as
an additional restraint.

The algorithm does not include all possible closures; instead,
it includes all smallest closed paths such that the selected paths
do not encircle two or more smaller closed paths. Although
this was our chosen algorithm, other choices for selecting the
cycle closure conditions are certainly possible.
As a technical note, the constrained objective function F is

convex if we ≥ 0 for all edges, because each f is convex and the
sum of convex functions is also convex. Furthermore, one can
show that the Hessian in generalized parameters, ∂2F/∂qi∂qj, is
positive semidefinite because the Hessian in the full set of
paramters, ∂2F/∂Gie*∂Gjf*, is positive semidefinite,28 and there is
a linear relationship between the generalized set and full set of
parameters (eq 11).
In summary, the MBARnet procedure consists of the

following steps:

• Read the potential energies from file and convert to
reduced energy units.

• Make an initial guess for the reduced free energies Gje*.
• Generate the generalized coordinate transformation

matrix Ti,(je) and vector Gje*
,◦ from singular value

decomposition of the constraint matrix (eqs 9 and 10).
• Use eq 12 to obtain an initial guess for the free

parameters.
• Initiate the nonlinear optimizer, providing it the

objective function and Mfree generalized coordinates.
• For each objective function evaluation, convert the

generalized coordinates to Gje* values and evaluate eq 11.
• If the optimization method requires parameter gradients,

then evaluate eqs 14 and 15.
• When a minimum is found, convert the generalized

coordinates to reduced free energies and divide them by
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the appropriate value β to express them with the desired
energy units.
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Network Optimization Using the Bennett Acceptance
Ratio Method. We extend the MBARnet method by defining
an objective function for BAR analysis such that the free-
energy network can be similarly constrained and restrained
during the optimization. The BARnet optimization is similar to
eq 13.
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The f BAR objective function is a sum of BAR objective
functions corresponding to each adjacent pair of alchemical
states:
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For example, the expression for f(Gue*, Gu+1,e* ) is shown in eq 18.
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Bootstrap Error Analysis. To estimate the BARnet and
MBARnet errors in the calculated values of Gie*, we perform
many optimizations of F to obtain many optimal sets of
generalized coordinate parameters. The optimizations differ by
having constructed new ensembles for each state by random
sampling with replacement. To account for correlation within
the data, we calculate the statistical inefficiency of each
trajectory’s reduced potential energy timeseries and group the
trajectory into blocks, the size of which is chosen to be twice
the statistical inefficiency. The bootstrap is performed
blockwise by sampling from the available blocks. The resulting
distributions for each generalized coordinate has a mean value
q̅i and unbiased sample variance sqi

2 . Given sufficient resampling
effort, the transformation of the average values will match the
optimized parameters from the initial ensembles; that is,

∑* = * + ̅
◦G G q Tie ie

j

M

j j ie
,

,( )

free

(19)

The standard errors of Gie* are propagated from the generalized
coordinate variances:

∑σ =* s TG
j

M

q j ie
2

,( )
2

ie j

free

(20)

In the present work, we estimate the errors from 300 bootstrap
calculations.

Network Anaylsis using Multiple, Independent
Simulations. The bootstrap BARnet and MBARnet error
analysis provides a measure of the uncertainty caused by
fluctuations within the observed ensembles. Because the
simulations are performed for a finite length of time, the
observed ensembles are only an approximation of the
theoretically converged ensembles generated from infinite
sampling. One can estimate the error caused by finite time
length simulations by performing multiple, independent trial
simulations that differ only by their initial conditions. This is
sometimes called the “Ensemble Average Approach”.39,40 Each
simulation’s trial is included in the global optimization, and
they are each optimized with their own free-energy parameters.
The constraints and restraints involving the multiple trials are
chosen such that the average value across all trials satisfy the
condition, rather than having each trial satisfy the condition.41

When performing the error analysis, we combine the standard
deviation among the trials with the bootstrap errors from each
trial.42 For notational purposes, let Gite* be the free energy of

trial t of state i within edge e, and σGite* is the corresponding
standard error from bootstrap analysis. We compute the
average-across-trials for state i in edge e, Gie̅*, and combined
standard error, σGie̅*, from eqs 21 and 22, respectively.
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Adjustment of Edge Weights. The we weights appearing
in eqs 4 and 16 are unity in the present work. If constraints are
not applied to the objective functions, then the unequal
weighting would not effect the result because each edge is
decoupled from all other edges. When a constrained
optimization is performed, the parameters (free energies)
within each edge become coupled throughout the thermody-
namic network and the optimization solution then depends on
the relative weight applied to each edge. Undoubtedly,
approaches can be adopted such that these weights can be
adjusted to improve robustness and predictive capability. This
is an area of ongoing active research, but not one that we are
able to address in the present work. We note that one of the
major challenges to developing any such approach is the lack of
very high-precision benchmark quality simulation results for
nontrivial protein−ligand systems that can serve as target
reference data. Nonetheless, an important direction for future
research is to test different approaches for adjustment of the
weights in order to reduce statistical errors and improve
predictions.

Computational Details. The tables and figures summarize
the RBFE analysis of CDK2 (PDBID: 1H1Q),43 MCL1
(PDBID: 4HW3),44 p38 (PDBID: 3FLY), Tyk2 (PDBID:
4GIH),45 PTP1B (PDBID: 2QBS),46 and thrombin (PDBID:
2ZFF) protein targets previously studied in ref 8. The CDK2
system has 16 ligands the RBFEs of which are connected by 25
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edges. The MCL1, p38, Tyk2, PTP1B, and thrombin systems
have 42, 33, 16, 23, 10 ligands, respectively, connected by 71,
54, 24, 48, 10 edges, respectively. Each ligand transformation is
performed in three stages (decharge, softcore, and recharge)
and two environments (protein-bound and in solution), and
the RBFE is the free-energy difference between the protein-
bound and aqueous-phase transformation free energies. The
decharge stage removes the charges of the atoms that are being
deleted; the recharge stage adds the charges of the atoms that
being inserted. The softcore stage linearly mutates the
remaining potential energy terms between the initial and
final states except for the Lennard-Jones (LJ) interactions,
which are modeled using the (nonlinear) softcore LJ potential
described in ref 47. For completeness, the general form of the
alchemical potential energy function is given by eqs 23−27.

λ λ λ λ
λ λ

= − + + −
+ +

U U U U
U U

( ) (1 ) (1 )
( )

elec
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elec
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bonded
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The decharge and recharge stages linearly scale the electro-
static interactions Uelec. The superscript (0) within eq 25, for
example, indicates that the parameter values describe the λ = 0
state. Similar equations can be written for the λ = 1 state. The
bonded energy (eq 24) contains terms that model bond, angle,
and dihedral components. The kb and kθ values are spring force
constants. The r0 and θ0 values are spring equilibrium
positions. The Vin values control the mangitude of the periodic
torsion potential, and γi is a phase offset. The qi values are
electric charges, and ϵij and σij are the LJ well-depth and the
point where the LJ crosses zero, respectively. The α = 0.5 is a
control parameter of the softcore LJ potential. The softcore
stage linearly transforms the bonded energy and nonlinearly
modifies the nonbonded Lennard-Jones interactions using eqs
26 and 27. The decharge and recharge stages were performed
using five evenly spaced λ states. The softcore stages were
performed using 12 states: λ = 0.0, 0.0479, 0.1151, 0.2063,
0.3161, 0.4374, 0.5626, 0.6839, 0.7937, 0.885, 0.9521, and 1.0.
Each simulation was performed with Amber’s graphics
processing unit (GPU) accelerated version of PMEMD for 2
ns using a 4 fs time step and hydrogen mass repartition-
ing.42,48,49 The ligand was modeled using the GAFF2 force
field,50 and the condensed phase environment was explicitly
modeled with TIP3P51 waters. MBAR potential energies were
output every 100 steps (0.4 ps). Each simulation was
performed 10 times with differing initial random number
seeds.

The simulations were run in the isothermal−isobaric
ensemble (NPT). Pressure was regulated with Berendsen
barostat to maintain a pressure of 1 atm using a 5 ps collision
frequency.52 The Langevin thermostat was used to maintain a
temperature of 298.15 K.53 The Lennard-Jones potential was
truncated at 8 Å, and a long-range tail correction is used to
model the interactions beyond the cutoff. The long-range
electrostatics were evaluated with the particle mesh Ewald
method using a 1 Å3 grid spacing.54,55 The simulation data was
taken from ref 56 and further details can be found therein.
To perform the nonlinear optimizations of the BARnet and

MBARnet global objective functions, we used the low-storage
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm57 im-
plemented in the NLopt software library.58 When constraints
and restraints are unused, the initial guess for each free energy
is zero. When constraints and/or restraints are used, we first
perform an optimization without constraints nor restraints and
then reoptimize the free energies with the constraints and/or
restraints activated.
The simulations were performed on NVidia GeForce GTX

1080 Ti GPUs. The protein-bound and solution-phase
simulations require approximately 0.3 and 0.06 GPU hours
to complete, respectively. Each edge requires approximately 80
GPU hours to complete 10 trials of each simulation in both
environments. The six protein systems consist of a total of 232
edges, corresponding to an aggregate of 2 GPU years of
simulation.
After the simulations are performed, the MBAR energies are

extracted from the output files. We store the energies in energy
timeseries files. A timeseries file is a text file containing two
columns of numbers. The first column is the simulation time
and the second column is a potential energy. MBAR requires
each λ state trajectory be evaluated with all λ state potentials
within the stage. For example, a single trial of a decharge stage
produces 25 timeseries files because the stage is performed
with 5 λ states. All three stages of a single trial produce 194
files. Considering that the transformations need to be
performed in two environments and repeated 10 times, each
edge produces 3880 files. Each timeseries file contains 5000
rows and uses 140 KB of disk storage. The storage of each
edge’s timeseries files thus requires 530.5 MB of disk space.
The calculated RBFEs will be compared to experimental

values. The experimental ligand binding free energies for the
protein systems examined in this work were compiled in ref 8.
The CDK259 and P3860 binding free energies were computed
from the reported IC50 values using eq 28.

Δ =G RT ICln 50expt (28)

The Tyk2,61,62 MCL1,63 and PTP1B64 binding free energies
were computed from the reported Ki dissociation constants
using eq 29

Δ =G RT Kln iexpt (29)

The Thrombin8,65 binding free energies were obtained from
isothermal titration calorimetry.

3. RESULTS AND DISCUSSION
Figure 1 illustrates the correspondence of the BARnet/
MBARnet results with and without cycle closure constraints
for the set of 71 MCL1 RBFEs. The RBFEs computed with
BARnet and MBARnet are in good agreement and yield similar
error estimates. When the MBARnet analysis is treated as the
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target values, the MCL1 MUE of BARnet is only 0.024 to
0.040 kcal/mol, depending on the use of cycle closure
restraints, which is an order of magnitude smaller than the
uncertainties in both the BARnet and MBARnet values.
Analogous comparisons for the other protein RBFEs yield
similar results. The BARnet method requires far fewer reduced
potential energies to be stored, which is its primary advantage
when performing network-wide analysis. For the specific case
of the MCL1 RBFEs, MBARnet analysis requires 37 gigabytes
(GB) of potential energy timeseries files, whereas BARnet
analysis requires storage of only 12 GB of raw data. Only
MBARnet results will be presented and discussed henceforth
because of the similarity between the BARnet and MBARnet
results.
Table 1 summarizes the number of restrained thermody-

namic cycles in the RBFE network and the associated error in
the free energy closure conditions. The cycles included in the
summary only include those thermodynamic paths that cannot
be decomposed into two or more smaller cycles. The number
of closed paths included in the summary is shown in the
column labeled Nres.. The free energy is a state function, so the
sum of free energies along a closed path should theoretically be
zero. In practice, limited sampling often causes the free-energy
sum to erroneously be nonzero. We compute the free-energy

sum for each of the Nres cycles and report the average and
standard deviation of the Nres error values in the ∑ΔG* and σ
columns, respectively. The cycle closure errors are less than 1
kcal/mol on average when restraints are not applied.
Application of restraints within the optimization procedure
lower the cycle closure errors to 0.001 kcal/mol.
Table 2 summarizes the edge RBFE mean unsigned errors

(MUEs) with and without cycle closure restraints for each
protein target, and it further examines how the edge RBFE
MUEs are affected when 0, 1, or 2 edges in the graph are
constrained to match the experimental RBFE. The MUEs
measure the agreement between the calculated RBFEs and
corresponding differences between experimental binding free-
energy values. For a protein target graph consisting of Nedge
edges, there are Nedge possible ways of constraining 1 edge. The
RBFEs are reoptimized using each of the possible constraint
conditions, and the values reported in the table are the mean
and standard deviation from the distribution of MUEs. There
is only one MUE to consider when there are no experimental
constraints, so no standard deviation is reported in this case.
When two edges are constrained, there are formally Nedge(Nedge
− 1)/2 possible constraint conditions; however, to generate
the statistics, we randomly selected 100 constraint conditions
to generate the MUE distribution. The use of cycle restraints
appears to lower the MUEs in most cases, but the average
change (less than 0.1 kcal/mol) is less than the uncertainty of
the calculations. The Tyk2 RBFE MUE relative to experiment
increased by 0.01 kcal/mol upon enforcement of the cycle
closure conditions. This observation emphasizes that there is
no guarantee that closure conditions enforcement alone will
cause better agreement with experiment. The magnitude of this
change is much smaller than the calculation’s uncertainty and a
rigorous exploration of systematic bias in the comparison
requires a set of highly converged simulation results, which
may necessitate further development of enhanced sampling
techniques to sufficiently explore the ensemble of bound ligand
conformations. As expected, including experimental RBFE
constraints decreases the MUEs. When cycle closure restraints
are also included, the reduction is amplified because the
constraint(s) then effect the solution for the other RBFEs via
their coupling through the restraints. The improvements
continue to be modest, however, with MUE reductions on
the order of 0.1 kcal/mol when two experimental constraints
are applied.

Figure 1. Comparison between BARnet and MBARnet RBFEs for
MCL1 both (a) without and (b) with cycle closure restraints. The red
line is a linear fit to the data. The error bars are the standard error of
the calculated values.

Table 1. Cycle Closure Information for Each Systema

no CCR CCR

system Nlig. Nedge Nres. ∑ΔG* σ ∑ΔG* σ

CDK2 16 25 22 0.88 1.65 0.00 0.00
P38 33 54 42 0.83 1.42 0.00 0.00
MCL1 42 71 70 0.91 1.20 0.00 0.00
Tyk2 16 24 18 0.24 0.35 0.00 0.00
PTP1B 23 48 50 0.47 0.68 0.00 0.00
thrombin 10 10 2 0.13 0.17 0.00 0.00

aThe Nlig and Nedge columns list the number of ligands and connected
edges in the transformation graph, respectively. The Nres values are
the number of thermodynamic cycles included in the summary. The
columns labeled “CCR” and “no CCR” indicate whether cycle closure
restraints are applied to the optimization. The ∑ΔG* and σ columns
report the average and standard deviation of the cycle closure errors,
respectively.
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Figure 2 compares the convergence of the MBARnet-
analyzed RBFEs with and without cycle restraints. In the
context of this figure, our interest is comparing how much data
each method requires to approach the force field’s expected
result; therefore, the reference RBFEs are computed from
MBARnet using all available production data and optimized
with cycle restraints. The abscissa of the plots shown in Figure
2 are percentages of the production data used in the analysis.
For example, the values shown at 10% are the RBFE MUEs
when only the first 1/10th of the production data is analyzed.
In addition to illustrating the convergence of the RBFEs with
and without cycle restraints, we also make comparison to the
maximum likelihood estimator (MLE) method described in ref
32 for enforcing cycle closure conditions. Unlike the
optimization method described in this work, the MLE method
does not enforce cycle closures from the analysis of the raw
data. Instead, the MLE method maximizes the following
objective function to obtain cycle-corrected estimates of the

RBFEs, ΔGa → b
MLE , provided one’s best estimate of the RBFEs

ΔGa→b and their standard errors σΔGa→b
.
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The product operator appearing in eq 30 multiplies the normal
distributions of each edge, e, in the cycle c.
Figure 2 shows that inclusion of cycle closure restraints in

the optimization of partial sets of data produces results that
match the analysis of the complete set of data more closely
than other approaches. The MBARnet optimizations without
cycle closure restraints yield the largest MUEs. Application of

Table 2. MBARnet-Calculated RBFE Average Mean Unsigned Errors Relative to Experiment when 0, 1, or 2 Graph Edges Are
Constrained to Match Experiment

number of reference (expt) constraints

0 1 2

system no CCR CCR no CCR CCR no CCR CCR

CDK2 0.95 0.93 0.91 ± 0.03 0.88 ± 0.05 0.87 ± 0.04 0.82 ± 0.07
P38 0.70 0.66 0.69 ± 0.01 0.64 ± 0.02 0.68 ± 0.01 0.63 ± 0.02
MCL1 1.31 1.28 1.29 ± 0.02 1.25 ± 0.04 1.27 ± 0.02 1.21 ± 0.08
Tyk2 0.96 0.97 0.92 ± 0.03 0.91 ± 0.05 0.89 ± 0.04 0.86 ± 0.06
PTP1B 0.90 0.89 0.88 ± 0.02 0.85 ± 0.06 0.86 ± 0.02 0.81 ± 0.07
thrombin 0.41 0.41 0.37 ± 0.04 0.37 ± 0.03 0.33 ± 0.05 0.32 ± 0.05

Figure 2. Convergence of the MBARnet mean unsigned errors relative to the MBARnet analysis of all production data with cycle restraints. Filled
black circles: MBARnet optimization with cycle restraints. Open red circles: MBARnet optimization with cycle restraints and postoptimization
MLE correction. Filled green squares: MBARnet optimization without cycle restraints. Open blue squares: MBARnet optimization without cycle
restraints and postoptimization MLE correction.
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the MLE method to our cycle-restrained optimized RBFEs has
no effect because, in this case, our RBFEs already enforce the
cycle closure conditions. For this reason, the red and black
circles appearing in Figure 2 always coincide. When the MLE
method is applied to the unrestrained MBARnet results, the
RBFE MUEs are reduced, and they appear to approach our
cycle-restrained MBARnet results. The extent to which the
MLE method succeeds in approaching our cycle-restrained
results varies. The MLE method does well for Tyk2 and
thrombin likely because the unrestrained MBAR results on
which they are based are already similar to the cycle-restrained
values.

4. CONCLUSIONS
We develop BARnet and MBARnet methods for use in
network-wide free-energy analysis with restraints and affine
linear constraints. The BARnet and MBARnet results are
nearly identical (within 0.04 kcal/mol), however the BARnet
objective function requires only a fraction of the amount of
disk storage relative to the MBARnet approach. Restraints
were used in the nonlinear optimization to enforce the closure
of thermodynamic cycles within the free-energy network, and
the constraints were chosen to enforce the reproduction of
known RBFEs. The utility of the constraints is demonstrated in
situations in which a partial list of experimental free energies
are known, in which case the solution for the other RBFEs are
affected by coupling their solutions through the cycle closure
restraints. We analyzed the RBFEs of six protein targets and
showed that the use of cycle closure restraints yields a modest
improvement relative to the experimental RBFEs, and the
estimates were improved more substantially when one or two
constraints to experimental values were included. The
BARnet/MBARnet framework enables efficient and robust
free-energy analysis with enhanced predictive capability for
drug discovery applications.

■ AUTHOR INFORMATION
Corresponding Author
Darrin M. York − Laboratory for Biomolecular Simulation
Research, Center for Integrative Proteomics Research and
Department of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854-8087, United
States; orcid.org/0000-0002-9193-7055;
Email: Darrin.York@rutgers.edu

Author
Timothy J. Giese − Laboratory for Biomolecular Simulation
Research, Center for Integrative Proteomics Research and
Department of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854-8087, United
States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c01219

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Woody Sherman and co-workers for
providing us with the energies from their protein−ligand RBFE
simulations used to perform the analysis shown in this work.
The authors are grateful for financial support provided by the

National Institutes of Health (No. GM107485). Computa-
tional resources were provided by the National Institutes of
Health under Grant No. S10OD012346, the Office of
Advanced Research Computing (OARC) at Rutgers, the
State University of New Jersey, Rutgers Discovery Information
Institute (RDI2), the State University of New Jersey, and by
the Extreme Science and Engineering Discovery Environment
(XSEDE),66 specifically resources COMET and COMET
GPU, which is supported by National Science Foundation
Grant No. ACI-1548562 (allocation number TG-
CHE190067). The authors also acknowledge the Texas
Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources, specifically the
Frontera Supercomputer, that have contributed to the research
results reported within this paper. URL: http://www.tacc.utex-
as.edu.

■ REFERENCES
(1) Gallicchio, E.; Levy, R. M. Recent theoretical and computational
advances for modeling protein-ligand binding affinities. Adv. Protein
Chem. Struct. Biol. 2011, 85, 27−80.
(2) Gallicchio, E. Role of Ligand Reorganization and Conforma-
tional Restraints on the Binding Free Energies of DAPY Non-
Nucleoside Inhibitors to HIV Reverse Transcriptase. Comput. Mol.
Biosci. 2012, 2, 7−22.
(3) Gallicchio, E.; Levy, R. M. Advances in all atom sampling
methods for modeling protein-ligand binding affinities. Curr. Opin.
Struct. Biol. 2011, 21, 161−166.
(4) Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M. Absolute
binding free energies: a quantitative approach for their calculation. J.
Phys. Chem. B 2003, 107, 9535−9551.
(5) Lee, T.-S.; Allen, B. K.; Giese, T. J.; Guo, Z.; Li, P.; Lin, C.;
McGee, T. D.; Pearlman, D. A.; Radak, B. K.; Tao, Y.; Tsai, H.-C.; Xu,
H.; Sherman, W.; York, D. M. Alchemical Binding Free Energy
Calculations in AMBER20: Advances and Best Practices for Drug
Discovery. J. Chem. Inf. Model. 2020, 60, 5595−5623.
(6) Cournia, Z.; Allen, B.; Sherman, W. Relative Binding Free
Energy Calculations in Drug Discovery: Recent Advances and
Practical Considerations. J. Chem. Inf. Model. 2017, 57, 2911−2937.
(7) Steinbrecher, T. B.; Dahlgren, M.; Cappel, D.; Lin, T.; Wang, L.;
Krilov, G.; Abel, R.; Friesner, R.; Sherman, W. Accurate Binding Free
Energy Predictions in Fragment Optimization. J. Chem. Inf. Model.
2015, 55, 2411−2420.
(8) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.;
Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; Romero,
D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; Damm,
W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.;
Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.; Berne, B.
J.; Friesner, R. A.; Abel, R. Accurate and reliable prediction of relative
ligand binding potency in prospective drug discovery by way of a
modern free-energy calculation protocol and force field. J. Am. Chem.
Soc. 2015, 137, 2695−2703.
(9) Rizzi, A.; Jensen, T.; Slochower, D. R.; Aldeghi, M.; Gapsys, V.;
Ntekoumes, D.; Bosisio, S.; Papadourakis, M.; Henriksen, N. M.; de
Groot, B. L.; Cournia, Z.; Dickson, A.; Michel, J.; Gilson, M. K.;
Shirts, M. R.; Mobley, D. L.; Chodera, J. D. The SAMPL6 SAMPLing
challenge: assessing the reliability and efficiency of binding free energy
calculations. J. Comput.-Aided Mol. Des. 2020, 34, 601−633.
(10) Gapsys, V.; Pérez-Benito, L.; Aldeghi, M.; Seeliger, D.; van
Vlijmen, H.; Tresadern, G.; de Groot, B. L. Large scale relative
protein ligand binding affinities using non-equilibrium alchemy. Chem.
Sci. 2020, 11, 1140−1152.
(11) Mortier, J.; Rakers, C.; Bermudez, M.; Murgueitio, M. S.;
Riniker, S.; Wolber, G. The impact of molecular dynamics on drug
design: applications for the characterization of ligand-macromolecule
complexes. Drug Discovery Today 2015, 20, 686−702.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01219
J. Chem. Theory Comput. 2021, 17, 1326−1336

1334

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Darrin+M.+York"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-9193-7055
mailto:Darrin.York@rutgers.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+J.+Giese"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01219?ref=pdf
https://dx.doi.org/10.1016/B978-0-12-386485-7.00002-8
https://dx.doi.org/10.1016/B978-0-12-386485-7.00002-8
https://dx.doi.org/10.4236/cmb.2012.21002
https://dx.doi.org/10.4236/cmb.2012.21002
https://dx.doi.org/10.4236/cmb.2012.21002
https://dx.doi.org/10.1016/j.sbi.2011.01.010
https://dx.doi.org/10.1016/j.sbi.2011.01.010
https://dx.doi.org/10.1021/jp0217839
https://dx.doi.org/10.1021/jp0217839
https://dx.doi.org/10.1021/acs.jcim.0c00613
https://dx.doi.org/10.1021/acs.jcim.0c00613
https://dx.doi.org/10.1021/acs.jcim.0c00613
https://dx.doi.org/10.1021/acs.jcim.7b00564
https://dx.doi.org/10.1021/acs.jcim.7b00564
https://dx.doi.org/10.1021/acs.jcim.7b00564
https://dx.doi.org/10.1021/acs.jcim.5b00538
https://dx.doi.org/10.1021/acs.jcim.5b00538
https://dx.doi.org/10.1021/ja512751q
https://dx.doi.org/10.1021/ja512751q
https://dx.doi.org/10.1021/ja512751q
https://dx.doi.org/10.1007/s10822-020-00290-5
https://dx.doi.org/10.1007/s10822-020-00290-5
https://dx.doi.org/10.1007/s10822-020-00290-5
https://dx.doi.org/10.1039/C9SC03754C
https://dx.doi.org/10.1039/C9SC03754C
https://dx.doi.org/10.1016/j.drudis.2015.01.003
https://dx.doi.org/10.1016/j.drudis.2015.01.003
https://dx.doi.org/10.1016/j.drudis.2015.01.003
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01219?ref=pdf


(12) Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.;
Sherman, W. Prediction of Absolute Solvation Free Energies using
Molecular Dynamics Free Energy Perturbation and the OPLS Force
Field. J. Chem. Theory Comput. 2010, 6, 1509−1519.
(13) Jiang, W.; Chipot, C.; Roux, B. Computing Relative Binding
Affinity of Ligands to Receptor: An Effective Hybrid Single-Dual-
Topology Free-Energy Perturbation Approach in NAMD. J. Chem. Inf.
Model. 2019, 59, 3794−3802.
(14) Wang, M.; Mei, Y.; Ryde, U. Host-Guest Relative Binding
Affinities at Density-Functional Theory Level from Semiempirical
Molecular Dynamics Simulations. J. Chem. Theory Comput. 2019, 15,
2659−2671.
(15) Abel, R.; Wang, L.; Mobley, D. L.; Friesner, R. A. A Critical
Review of Validation, Blind Testing, and Real- World Use of
Alchemical Protein-Ligand Binding Free Energy Calculations. Curr.
Top. Med. Chem. 2017, 17, 2577−2585.
(16) de Ruiter, A.; Boresch, S.; Oostenbrink, C. Comparison of
thermodynamic integration and Bennett acceptance ratio for
calculating relative protein-ligand binding free energies. J. Comput.
Chem. 2013, 34, 1024−1034.
(17) Pickard, F. C.; König, G.; Simmonett, A. C.; Shao, Y.; Brooks,
B. R. An efficient protocol for obtaining accurate hydration free
energies using quantum chemistry and reweighting from molecular
dynamics simulations. Bioorg. Med. Chem. 2016, 24, 4988−4997.
(18) Yang, Q.; Burchett, W.; Steeno, G. S.; Liu, S.; Yang, M.;
Mobley, D. L.; Hou, X. Optimal designs for pairwise calculation: An
application to free energy perturbation in minimizing prediction
variability. J. Comput. Chem. 2020, 41, 247−257.
(19) König, G.; Brooks, B. R.; Thiel, W.; York, D. M. On the
convergence of multi-scale free energy simulations. Mol. Simul. 2018,
44, 1062−1081.
(20) Li, Y.; Nam, K. Repulsive Soft-Core Potentials for Efficient
Alchemical Free Energy Calculations. J. Chem. Theory Comput. 2020,
16, 4776−4789.
(21) Liu, S.; Wu, Y.; Lin, T.; Abel, R.; Redmann, J. P.; Summa, C.
M.; Jaber, V. R.; Lim, N. M.; Mobley, D. L. Lead optimization
mapper: automating free energy calculations for lead optimization. J.
Comput.-Aided Mol. Des. 2013, 27, 755−770.
(22) Loeffler, H. H.; Michel, J.; Woods, C. FESetup Automating
Setup for Alchemical Free Energy Simulations. J. Chem. Inf. Model.
2015, 55, 2485−2490.
(23) Klimovich, P. V.; Mobley, D. L. A Python tool to set up relative
free energy calculations in GROMACS. J. Comput.-Aided Mol. Des.
2015, 29, 1007−1014.
(24) Bruckner, S.; Boresch, S. Efficiency of alchemical free energy
simulations. I. A practical comparison of the exponential formula,
thermodynamic integration, and Bennett’s acceptance ratio method. J.
Comput. Chem. 2011, 32, 1303−1319.
(25) Gapsys, V.; Michielssens, S.; Seeliger, D.; de Groot, B. L. pmx:
Automated protein structure and topology generation for alchemical
perturbations. J. Comput. Chem. 2015, 36, 348−354.
(26) Bennett, C. H. Efficient estimation of free energy differences
from Monte Carlo data. J. Comput. Phys. 1976, 22, 245−268.
(27) Shirts, M. R.; Chodera, J. D. Statistically optimal analysis of
samples from multiple equilibrium states. J. Chem. Phys. 2008, 129,
124105.
(28) Tan, Z.; Gallicchio, E.; Lapelosa, M.; Levy, R. M. Theory of
binless multi-state free energy estimation with applications to protein-
ligand binding. J. Chem. Phys. 2012, 136, 144102.
(29) Kirkwood, J. G. Statistical mechanics of fluid mixtures. J. Chem.
Phys. 1935, 3, 300−313.
(30) Giese, T. J.; York, D. M. FE-ToolKit: The free energy analysis
toolkit. Software Freedom Conservancy, https://gitlab.com/
RutgersLBSR/fe-toolkit.
(31) Cui, D.; Zhang, B. W.; Tan, Z.; Levy, R. M. Ligand Binding
Thermodynamic Cycles: Hysteresis, the Locally Weighted Histogram
Analysis Method, and the Overlapping States Matrix. J. Chem. Theory
Comput. 2020, 16, 67−79.

(32) Wang, L.; Deng, Y.; Knight, J. L.; Wu, Y.; Kim, B.; Sherman,
W.; Shelley, J. C.; Lin, T.; Abel, R. Modeling Local Structural
Rearrangements Using FEP/REST: Application to Relative Binding
Affinity Predictions of CDK2 Inhibitors. J. Chem. Theory Comput.
2013, 9, 1282−1293.
(33) Ding, X.; Vilseck, J. Z.; Hayes, R. L.; Brooks, C. L. Gibbs
Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for
Alchemical Free Energy Calculation. J. Chem. Theory Comput. 2017,
13, 2501−2510.
(34) Ding, X.; Vilseck, J. Z.; Brooks, C. L., III Fast Solver for Large
Scale Multistate Bennett Acceptance Ratio Equations. J. Chem. Theory
Comput. 2019, 15, 799−802.
(35) Zhang, B. W.; Xia, J.; Tan, Z.; Levy, R. M. A Stochastic Solution
to the Unbinned WHAM Equations. J. Phys. Chem. Lett. 2015, 6,
3834−3840.
(36) Powell, M. J. D. Algorithms for nonlinear constraints that use
Lagrangian functions. Math. Program. 1978, 14, 224−248.
(37) Hestenes, M. R. Multiplier and Gradient Methods. J. Optimiz.
Theory Appl. 1969, 4, 303−320.
(38) Raju, N. V. S. Optimization Method for Engineers; PHI Learning
Private Limited: Delhi, India, 2014.
(39) Bhati, A. P.; Wan, S.; Hu, Y.; Sherborne, B.; Coveney, P. V.
Uncertainty Quantification in Alchemical Free Energy Methods. J.
Chem. Theory Comput. 2018, 14, 2867−2880.
(40) Bhati, A. P.; Wan, S.; Wright, D. W.; Coveney, P. V. Rapid,
accurate, precise and reliable relative free energy prediction using
ensemble based thermodynamic integration. J. Chem. Theory Comput.
2017, 13, 210−222.
(41) White, A. D.; Dama, J. F.; Voth, G. A. Designing Free Energy
Surfaces That Match Experimental Data with Metadynamics. J. Chem.
Theory Comput. 2015, 11, 2451−2460.
(42) Giese, T. J.; York, D. M. A GPU-Accelerated Parameter
Interpolation Thermodynamic Integration Free Energy Method. J.
Chem. Theory Comput. 2018, 14, 1564−1582.
(43) Davies, T. G.; Bentley, J.; Arris, C. E.; Boyle, F. T.; Curtin, N.
J.; Endicott, J. A.; Gibson, A. E.; Golding, B. T.; Griffin, R. J.;
Hardcastle, I. R.; Jewsbury, P.; Johnson, L. N.; Mesguiche, V.; Newell,
D. R.; Noble, M. E. M.; Tucker, J. A.; Wang, L.; Whitfield, H. J.
Structure of human Thr160-phospho CDK2/cyclin A complexed with
the inhibitor. Nat. Struct. Biol. 2002, 9, 745−749.
(44) Friberg, A.; Vigil, D.; Zhao, B.; Daniels, R. N.; Burke, J. P.;
Garcia-Barrantes, P. M.; Camper, D.; Chauder, B. A.; Lee, T.;
Olejniczak, E. T.; Fesik, S. W. Discovery of Potent Myeloid Cell
Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods and
Structure-Based Design. J. Med. Chem. 2013, 56, 15−30.
(45) Liang, J.; Tsui, V.; Van Abbema, A.; Bao, L.; Barrett, K.;
Beresini, M.; Berezhkovskiy, L.; Blair, W. S.; Chang, C.; Driscoll, J.;
Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Halladay, J.; Johnson, A.;
Kohli, P. B.; Lai, Y.; Liimatta, M.; Mantik, P.; Menghrajani, K.;
Murray, J.; Sambrone, A.; Xiao, Y.; Shia, S.; Shin, Y.; Smith, J.; Sohn,
S.; Stanley, M.; Ultsch, M.; Zhang, B.; Wu, L. C.; Magnuson, S. Lead
identification of novel and selective TYK2 inhibitors. Eur. J. Med.
Chem. 2013, 67, 175−187.
(46) Wilson, D. P.; Wan, Z.-K.; Xu, W.-X.; Kirincich, S. J.; Follows,
B. C.; Joseph-McCarthy, D.; Foreman, K.; Moretto, A.; Wu, J.; Zhu,
M.; Binnun, E.; Zhang, Y.-L.; Tam, M.; Erbe, D. V.; Tobin, J.; Xu, X.;
Leung, L.; Shilling, A.; Tam, S. Y.; Mansour, T. S.; Lee, J. Structure-
Based Optimization of Protein Tyrosine Phosphatase 1B Inhibitors:
From the Active Site to the Second Phophotyrosine Binding Site. J.
Med. Chem. 2007, 50, 4681−4698.
(47) Steinbrecher, T.; Joung, I.; Case, D. A. Soft-Core Potentials in
Thermodynamic Integration: Comparing One- and Two-Step Trans-
formations. J. Comput. Chem. 2011, 32, 3253−3263.
(48) Lee, T.-S.; Hu, Y.; Sherborne, B.; Guo, Z.; York, D. M. Toward
Fast and Accurate Binding Affinity Prediction with pmemdGTI: An
Efficient Implementation of GPU-Accelerated Thermodynamic
Integration. J. Chem. Theory Comput. 2017, 13, 3077−3084.
(49) Lee, T.-S.; Cerutti, D. S.; Mermelstein, D.; Lin, C.; LeGrand, S.;
Giese, T. J.; Roitberg, A.; Case, D. A.; Walker, R. C.; York, D. M.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01219
J. Chem. Theory Comput. 2021, 17, 1326−1336

1335

https://dx.doi.org/10.1021/ct900587b
https://dx.doi.org/10.1021/ct900587b
https://dx.doi.org/10.1021/ct900587b
https://dx.doi.org/10.1021/acs.jcim.9b00362
https://dx.doi.org/10.1021/acs.jcim.9b00362
https://dx.doi.org/10.1021/acs.jcim.9b00362
https://dx.doi.org/10.1021/acs.jctc.8b01280
https://dx.doi.org/10.1021/acs.jctc.8b01280
https://dx.doi.org/10.1021/acs.jctc.8b01280
https://dx.doi.org/10.2174/1568026617666170414142131
https://dx.doi.org/10.2174/1568026617666170414142131
https://dx.doi.org/10.2174/1568026617666170414142131
https://dx.doi.org/10.1002/jcc.23229
https://dx.doi.org/10.1002/jcc.23229
https://dx.doi.org/10.1002/jcc.23229
https://dx.doi.org/10.1016/j.bmc.2016.08.031
https://dx.doi.org/10.1016/j.bmc.2016.08.031
https://dx.doi.org/10.1016/j.bmc.2016.08.031
https://dx.doi.org/10.1002/jcc.26095
https://dx.doi.org/10.1002/jcc.26095
https://dx.doi.org/10.1002/jcc.26095
https://dx.doi.org/10.1080/08927022.2018.1475741
https://dx.doi.org/10.1080/08927022.2018.1475741
https://dx.doi.org/10.1021/acs.jctc.0c00163
https://dx.doi.org/10.1021/acs.jctc.0c00163
https://dx.doi.org/10.1007/s10822-013-9678-y
https://dx.doi.org/10.1007/s10822-013-9678-y
https://dx.doi.org/10.1021/acs.jcim.5b00368
https://dx.doi.org/10.1021/acs.jcim.5b00368
https://dx.doi.org/10.1007/s10822-015-9873-0
https://dx.doi.org/10.1007/s10822-015-9873-0
https://dx.doi.org/10.1002/jcc.21713
https://dx.doi.org/10.1002/jcc.21713
https://dx.doi.org/10.1002/jcc.21713
https://dx.doi.org/10.1002/jcc.23804
https://dx.doi.org/10.1002/jcc.23804
https://dx.doi.org/10.1002/jcc.23804
https://dx.doi.org/10.1016/0021-9991(76)90078-4
https://dx.doi.org/10.1016/0021-9991(76)90078-4
https://dx.doi.org/10.1063/1.2978177
https://dx.doi.org/10.1063/1.2978177
https://dx.doi.org/10.1063/1.3701175
https://dx.doi.org/10.1063/1.3701175
https://dx.doi.org/10.1063/1.3701175
https://dx.doi.org/10.1063/1.1749657
https://gitlab.com/RutgersLBSR/fe-toolkit
https://gitlab.com/RutgersLBSR/fe-toolkit
https://dx.doi.org/10.1021/acs.jctc.9b00740
https://dx.doi.org/10.1021/acs.jctc.9b00740
https://dx.doi.org/10.1021/acs.jctc.9b00740
https://dx.doi.org/10.1021/ct300911a
https://dx.doi.org/10.1021/ct300911a
https://dx.doi.org/10.1021/ct300911a
https://dx.doi.org/10.1021/acs.jctc.7b00204
https://dx.doi.org/10.1021/acs.jctc.7b00204
https://dx.doi.org/10.1021/acs.jctc.7b00204
https://dx.doi.org/10.1021/acs.jctc.8b01010
https://dx.doi.org/10.1021/acs.jctc.8b01010
https://dx.doi.org/10.1021/acs.jpclett.5b01771
https://dx.doi.org/10.1021/acs.jpclett.5b01771
https://dx.doi.org/10.1007/BF01588967
https://dx.doi.org/10.1007/BF01588967
https://dx.doi.org/10.1007/BF00927673
https://dx.doi.org/10.1021/acs.jctc.7b01143
https://dx.doi.org/10.1021/acs.jctc.6b00979
https://dx.doi.org/10.1021/acs.jctc.6b00979
https://dx.doi.org/10.1021/acs.jctc.6b00979
https://dx.doi.org/10.1021/acs.jctc.5b00178
https://dx.doi.org/10.1021/acs.jctc.5b00178
https://dx.doi.org/10.1021/acs.jctc.7b01175
https://dx.doi.org/10.1021/acs.jctc.7b01175
https://dx.doi.org/10.1038/nsb842
https://dx.doi.org/10.1038/nsb842
https://dx.doi.org/10.1021/jm301448p
https://dx.doi.org/10.1021/jm301448p
https://dx.doi.org/10.1021/jm301448p
https://dx.doi.org/10.1016/j.ejmech.2013.03.070
https://dx.doi.org/10.1016/j.ejmech.2013.03.070
https://dx.doi.org/10.1021/jm0702478
https://dx.doi.org/10.1021/jm0702478
https://dx.doi.org/10.1021/jm0702478
https://dx.doi.org/10.1002/jcc.21909
https://dx.doi.org/10.1002/jcc.21909
https://dx.doi.org/10.1002/jcc.21909
https://dx.doi.org/10.1021/acs.jctc.7b00102
https://dx.doi.org/10.1021/acs.jctc.7b00102
https://dx.doi.org/10.1021/acs.jctc.7b00102
https://dx.doi.org/10.1021/acs.jctc.7b00102
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01219?ref=pdf


GPU-Accelerated Molecular Dynamics and Free Energy Methods in
Amber18: Performance Enhancements and New Features. J. Chem.
Inf. Model. 2018, 58, 2043−2050.
(50) He, X.; Man, V. H.; Yang, W.; Lee, T.-S.; Wang, J. A fast and
high-quality charge model for the next generation general AMBER
force field. J. Chem. Phys. 2020, 153, 114502.
(51) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys. 1983, 79, 926−935.
(52) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
Dinola, A.; Haak, J. R. Molecular dynamics with coupling to an
external bath. J. Chem. Phys. 1984, 81, 3684−3690.
(53) Loncharich, R. J.; Brooks, B. R.; Pastor, R. W. Langevin
dynamics of peptides: the frictional dependence of isomerization rates
of N-acetylalanyl-N’-methylamide. Biopolymers 1992, 32, 523−535.
(54) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N
log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993,
98, 10089−10092.
(55) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Hsing,
L.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem.
Phys. 1995, 103, 8577−8593.
(56) Lee, T.-S.; Lin, Z.; Allen, B. K.; Lin, C.; Radak, B. K.; Tao, Y.;
Tsai, H.-C.; Sherman, W.; York, D. M. Improved Alchemical Free
Energy Calculations with Optimized Smoothstep Softcore Potentials.
J. Chem. Theory Comput. 2020, 16, 5512−5525.
(57) Nocedal, J. Updating quasi-Newton matrices with limited
storage. Math. Comput. 1980, 35, 773−782.
(58) Johnson, S. G. The NLopt nonlinear-optimization package.
http://github.com/stevengj/nlopt; release 23, version NLopt 2.7.0,
Nov 18, 2020.
(59) Hardcastle, I. R.; Arris, C. E.; Bentley, J.; Boyle, F. T.; Chen, Y.;
Curtin, N. J.; Endicott, J. A.; Gibson, A. E.; Golding, B. T.; Griffin, R.
J.; Jewsbury, P.; Menyerol, J.; Mesguiche, V.; Newell, D. R.; Noble, M.
E. M.; Pratt, D. J.; Wang, L.-Z.; Whitfield, H. J. N2-Substituted O6-
Cyclohexylmethylguanine Derivatives: Potent Inhibitors of Cyclin-
Dependent Kinases 1 and 2. J. Med. Chem. 2004, 47, 3710−3722.
(60) Goldstein, D. M.; Soth, M.; Gabriel, T.; Dewdney, N.;
Kuglstatter, A.; Arzeno, H.; Chen, J.; Bingenheimer, W.; Dalrymple, S.
A.; Dunn, J.; Farrell, R.; Frauchiger, S.; La Fargue, J.; Ghate, M.;
Graves, B.; Hill, R. J.; Li, F.; Litman, R.; Loe, B.; McIntosh, J.;
McWeeney, D.; Papp, E.; Park, J.; Reese, H. F.; Roberts, R. T.;
Rotstein, D.; San Pablo, B.; Sarma, K.; Stahl, M.; Sung, M.-L.;
Suttman, R. T.; Sjogren, E. B.; Tan, Y.; Trejo, A.; Welch, M.; Weller,
P.; Wong, B. R.; Zecic, H. Discovery of 6-(2,4-Difluorophenoxy)-2-
[3-hydroxy-1-(2-hydroxyethyl)propylamino]-8-methyl-8H-pyrido-
[2,3-d]pyrimidin-7-one (Pamapimod) and 6-(2,4-Difluorophenoxy)-
8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-
7(8H)-one (R1487) as Orally Bioavailable and Highly Selective
Inhibitors of p38α Mitogen-Activated Protein Kinase. J. Med. Chem.
2011, 54, 2255−2265.
(61) Liang, J.; Tsui, V.; Van Abbema, A.; Bao, L.; Barrett, K.;
Beresini, M.; Berezhkovskiy, L.; Blair, W. S.; Chang, C.; Driscoll, J.;
Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Halladay, J.; Johnson, A.;
Kohli, P. B.; Lai, Y.; Liimatta, M.; Mantik, P.; Menghrajani, K.;
Murray, J.; Sambrone, A.; Xiao, Y.; Shia, S.; Shin, Y.; Smith, J.; Sohn,
S.; Stanley, M.; Ultsch, M.; Zhang, B.; Wu, L. C.; Magnuson, S. Lead
identification of novel and selective TYK2 inhibitors. Eur. J. Med.
Chem. 2013, 67, 175−187.
(62) Liang, J.; van Abbema, A.; Balazs, M.; Barrett, K.;
Berezhkovsky, L.; Blair, W.; Chang, C.; Delarosa, D.; DeVoss, J.;
Driscoll, J.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Halladay, J.;
Johnson, A.; Kohli, P. B.; Lai, Y.; Liu, Y.; Lyssikatos, J.; Mantik, P.;
Menghrajani, K.; Murray, J.; Peng, I.; Sambrone, A.; Shia, S.; Shin, Y.;
Smith, J.; Sohn, S.; Tsui, V.; Ultsch, M.; Wu, L. C.; Xiao, Y.; Yang, W.;
Young, J.; Zhang, B.; Zhu, B.-y.; Magnuson, S. Lead Optimization of a
4-Aminopyridine Benzamide Scaffold To Identify Potent, Selective,
and Orally Bioavailable TYK2 Inhibitors. J. Med. Chem. 2013, 56,
4521−4536.

(63) Friberg, A.; Vigil, D.; Zhao, B.; Daniels, R. N.; Burke, J. P.;
Garcia-Barrantes, P. M.; Camper, D.; Chauder, B. A.; Lee, T.;
Olejniczak, E. T.; Fesik, S. W. Discovery of Potent Myeloid Cell
Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods and
Structure-Based Design. J. Med. Chem. 2013, 56, 15−30.
(64) Wilson, D. P.; Wan, Z.-K.; Xu, W.-X.; Kirincich, S. J.; Follows,
B. C.; Joseph-McCarthy, D.; Foreman, K.; Moretto, A.; Wu, J.; Zhu,
M.; Binnun, E.; Zhang, Y.-L.; Tam, M.; Erbe, D. V.; Tobin, J.; Xu, X.;
Leung, L.; Shilling, A.; Tam, S. Y.; Mansour, T. S.; Lee, J. Structure-
Based Optimization of Protein Tyrosine Phosphatase 1B Inhibitors:
From the Active Site to the Second Phophotyrosine Binding Site. J.
Med. Chem. 2007, 50, 4681−4698.
(65) Baum, B.; Mohamed, M.; Zayed, M.; Gerlach, C.; Heine, A.;
Hangauer, D.; Klebe, G. More than a Simple Lipophilic Contact: A
Detailed Thermodynamic Analysis of Nonbasic Residues in the S1
Pocket of Thrombin. J. Mol. Biol. 2009, 390, 56−69.
(66) Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.;
Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.;
Roskies, R.; Scott, J. R.; Wilkins-Diehr, N. XSEDE Accelerating
Scientific Discovery. Comput. Sci. Eng. 2014, 16, 62−74.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01219
J. Chem. Theory Comput. 2021, 17, 1326−1336

1336

https://dx.doi.org/10.1021/acs.jcim.8b00462
https://dx.doi.org/10.1021/acs.jcim.8b00462
https://dx.doi.org/10.1063/5.0019056
https://dx.doi.org/10.1063/5.0019056
https://dx.doi.org/10.1063/5.0019056
https://dx.doi.org/10.1063/1.445869
https://dx.doi.org/10.1063/1.445869
https://dx.doi.org/10.1063/1.448118
https://dx.doi.org/10.1063/1.448118
https://dx.doi.org/10.1002/bip.360320508
https://dx.doi.org/10.1002/bip.360320508
https://dx.doi.org/10.1002/bip.360320508
https://dx.doi.org/10.1063/1.464397
https://dx.doi.org/10.1063/1.464397
https://dx.doi.org/10.1063/1.470117
https://dx.doi.org/10.1021/acs.jctc.0c00237
https://dx.doi.org/10.1021/acs.jctc.0c00237
https://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
https://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://github.com/stevengj/nlopt
https://dx.doi.org/10.1021/jm0311442
https://dx.doi.org/10.1021/jm0311442
https://dx.doi.org/10.1021/jm0311442
https://dx.doi.org/10.1021/jm101423y
https://dx.doi.org/10.1021/jm101423y
https://dx.doi.org/10.1021/jm101423y
https://dx.doi.org/10.1021/jm101423y
https://dx.doi.org/10.1021/jm101423y
https://dx.doi.org/10.1021/jm101423y
https://dx.doi.org/10.1016/j.ejmech.2013.03.070
https://dx.doi.org/10.1016/j.ejmech.2013.03.070
https://dx.doi.org/10.1021/jm400266t
https://dx.doi.org/10.1021/jm400266t
https://dx.doi.org/10.1021/jm400266t
https://dx.doi.org/10.1021/jm301448p
https://dx.doi.org/10.1021/jm301448p
https://dx.doi.org/10.1021/jm301448p
https://dx.doi.org/10.1021/jm0702478
https://dx.doi.org/10.1021/jm0702478
https://dx.doi.org/10.1021/jm0702478
https://dx.doi.org/10.1016/j.jmb.2009.04.051
https://dx.doi.org/10.1016/j.jmb.2009.04.051
https://dx.doi.org/10.1016/j.jmb.2009.04.051
https://dx.doi.org/10.1109/MCSE.2014.80
https://dx.doi.org/10.1109/MCSE.2014.80
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01219?ref=pdf

