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ABSTRACT: We report progress in graphics processing unit (GPU)-accelerated
molecular dynamics and free energy methods in Amber18. Of particular interest is the
development of alchemical free energy algorithms, including free energy perturbation and
thermodynamic integration methods with support for nonlinear soft-core potential and
parameter interpolation transformation pathways. These methods can be used in
conjunction with enhanced sampling techniques such as replica exchange, constant-pH
molecular dynamics, and new 12−6−4 potentials for metal ions. Additional performance
enhancements have been made that enable appreciable speed-up on GPUs relative to the
previous software release.

■ INTRODUCTION

Molecular simulation provides an extremely powerful tool for
the interpretation of experimental data, the understanding of
biomolecular systems, and the prediction of properties
important for molecular design. As the scope and scale of
applications increase, so must the computing capability of
molecular simulation software. The past decade has seen rapid
advances motivated by the performance enhancements offered
by the latest molecular dynamics software packages written for
specialized hardware. Perhaps the most affordable and
impactful of these are platforms using graphics processing
units (GPUs).1−7

The present application note reports on advances made in
the latest release of the AMBER molecular simulation software
suite (Amber18),8 in particular enhancements of the primary
GPU-accelerated simulation engine (PMEMD). These ad-
vancements significantly improve the program’s execution of
molecular simulations and offer new, integrated features for
calculating alchemical free energies,9,10 including thermody-
namic integration (TI),11−15 free energy perturbation
(FEP),15−19 and Bennett’s acceptance ratio and its variants
(BAR/MBAR),20−25 as well as enhanced sampling, constant-
pH simulation,26,27 and the use of new 12−6−4 poten-
tials.28−30 Amber18 offers a broad solution for a wide range of
free energy simulations, with expanded capability to compute
forces in a hybrid environment of CPUs and GPUs, and
establishes an add-on system for applying additional potential

functions computed on the graphics processor without
affecting optimizations of the main kernels. When run
exclusively on GPU hardware, Amber18 shows consistent
performance increases of 10% to 20% compared with Amber16
across Pascal (GTX-1080TI, Titan-XP, P100) and Volta
architectures when running standard MD simulations, with
more dependence on the system size than the architecture.
Below we provide an overview of the software design, a
description of new features, and performance benchmarks.

■ SOFTWARE DESIGN
Encapsulated Free Energy Modules. The development

of molecular simulation software designed for optimal
performance on specialized hardware requires customization
and careful redesign of the underlying algorithmic implemen-
tation. In the case of the current GPU consumer market,
single-precision floating-point (SPFP) performance outstrips
that of double-precision performance by a significant amount.
In order to address this issue in AMBER, new precision
models6,31 have been developed that leverage fixed-point
integer arithmetic to replace slow double-precision arithmetic
in certain key steps when higher precision is required, such as
the accumulation of components of the force. Free energy
simulations, because of the mixing/interpolation of hybrid
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Hamiltonians and the averaging of TI and FEP quantities,
present new challenges with respect to precision compared
with conventional MD simulation. The GPU-enhanced
features in Amber18 were designed to address these different
precision requirements in order to ensure that statistical and
thermodynamically derived properties are indistinguishable
from those obtained using the CPU version of the code32 while
maintaining or improving the level of performance of previous
versions of AMBER for conventional MD simulations. To
fulfill these goals, we utilized two architectural concepts of
object-oriented programming: encapsulation and inheritan-
ce.33The original AMBER GPU data structures are encapsu-
lated into base C++ classes containing all coordinates, forces,
energy terms, all simulation parameters, and settings. New free
energy classes are derived from the base classes that contain
the original GPU functionality and data structures for MD
simulations. New derived free energy classes inherit all of the
properties and methods of existing MD classes. Through
encapsulation and inheritance, free energy capability can be
implemented so that (1) there is little or no need to modify the
original MD GPU codes except they are wrapped into base
classes now, since new add-ons can be implemented in the
derived free energy classes; (2) the new specific free energy
algorithms and associated data structures are transparent to the
base classes, such that modifying or optimizing the base classes
will have minimal effects on the derived classes; and (3)
derived free energy classes can utilize different algorithms,
different precision models, and even different force fields.
Such an encapsulation and inheritance approach, on the

other hand, could introduce additional computational over-
head compared with direct modification of MD GPU kernels
so that similar computational tasks are executed within the
same kernels. Consequently the approach reported here will be
ideal for new modules where only small portions of
calculations need to be altered, such as TI, while direct
modification of MD GPU kernels will be suitable for situations
where algorithm changes are global, such as incorporation of
polarizable force fields.
Extensions of New Modules. The present software

design can be easily extended to accommodate implementation
of new methods or algorithms. For example, the 12−6−4
potential modules have been implemented using this frame-
work by treating the extra r−4 terms through add-on modules
with minimal, if any, modification of MD CPU codes and GPU
kernels.
For most developers, the CPU code remains the most

accessible means for prototyping new methods. In selected
cases where complex potentials are applied to only a small
number of atoms, the CPU may afford performance advantages
for development code that have to be fully optimized. To serve
these needs, AMBER18 has a new “atom shuttling” system that
extracts information on a predefined list of selected atoms and
transfers it between the host CPU memory and GPU device. In
previous versions, all coordinates, forces, charges, and other
data can be downloaded and uploaded between the host and
device at costs approaching 30% of the typical time step. When
the majority of the system’s atoms will not influence the CPU
computations, this is wasteful. The shuttle system accepts a
predefined list of atoms and collects them into a buffer for a
lighter communication requirement between the host and
device. The cost of organizing the atoms into the list is minor,
but the extra kernel calls to manage the list and the latency of
initiating the transfer are considerations. In the limit of

transferring very small numbers of atoms, the cost of the
shuttle can be less than 1% of the total simulation time, but
methods that require transferring the majority of the atom data
may be more efficient porting entire arrays with the methods in
Amber16.

■ FEATURES
The current Amber18 has a host of features available that work
together to perform MD and free energy simulations (Table
1). Brief descriptions of the most relevant features are provided
below.

Direct Implementation of Alchemical Free Energy
Methods. Alchemical free energy simulations9,10 provide
accurate and robust estimates of relative free energies from
molecular dynamics simulations10,15,34−38 but are computa-
tionally intensive and are often limited by the availability of
computing resources and/or required turnaround time. The
limitations can render these methods impractical, particularly
for industrial applications.39 GPU-accelerated alchemical free
energy methods change this landscape but have only recently
emerged in a few simulation codes. The free energy methods
implemented in the Amber18 GPU code build on the efficient
AMBER GPU MD code base (pmemd.cuda) and include both
TI and FEP classes.
In TI,11−15 the free energy change from state 0 to state 1,

ΔA0→1, is approximately calculated by numerical integration of
the derivative of the system potential energy U with respect to
the target parameter λ:

λ
λ

λΔ =
λ

→ ŸA
U qd ( , )

d
d0 1

0

1

(1)

In FEP,15−19 the free energy change between state 0 and 1,
ΔA0→1 is calculated by averaging the exponential of the

Table 1. Comparison of Free Energy (FEP/TI)-Compatible
Features in Amber16 and Amber18 on CPUs and GPUsa

aList of features that have compatibility with free energy (FEP/TI)
methods in Amber16 and Amber18 on CPUs and GPUs. Red color
indicates a feature not compatible with free energy methods (although
it may be compatible with conventional MD). Green color indicates
new free-energy-compatible feature in Amber18.
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potential energy differences sampled on the potential surface of
state 0 (the Zwanzig equation16):

β βΔ = ⟨ ⟩ = ⟨ ⟩β β
→

− − − − − ΔA ln e ln eU U Uq q q
0 1

1 ( ( ) ( ))
0

1 ( )
0

1 0

(2)

The quantities calculated from FEP can be output for
postanalysis through Bennett’s acceptance ratio and its variants
(BAR/MBAR).20−25

Both TI and FEP methods can be used for linear alchemical
transformations, nonlinear “parameter-interpolated” path-
ways40 and so-called “soft core”41−43 schemes for both van
der Waals and electrostatic interactions. All of the above are
available in the current Amber18 GPU release by utilizing the
same input formats as the CPU version.
The GPU free energy implementation has been demon-

strated to deliver speed increases of generally significantly
more than 1 order of magnitude when a single GPU is
compared with a comparably priced single (multicore)
microprocessor (see Performance for detailed benchmarks).
The GPU free energy implementation code performs TI with
linear alchemical transformations roughly at the speed of 70%
of running an MD simulation with the fast SPFP precision
mode,31 similar to the ratios seen in the CPU counterpart.32

Overall, the free energy simulation speed-up relative to the
CPU code is very similar to that for conventional MD
simulation. As will be discussed in the next section, in certain
instances the overhead (relative to conventional MD) for the
linear alchemical free energy simulations can be greatly
reduced by the use of nonlinear parameter-interpolated TI.40

Parameter-Interpolated Thermodynamic Integration.
Amber18 is also able to exploit the properties of a parameter-
interpolated thermodynamic integration (PI-TI) method,40

which has recently been extended to support particle mesh
Ewald (PME) electrostatics, to connect states by their
molecular mechanical parameter values. This method has the
practical advantage that no modification to the MD code is
required to propagate the dynamics, and unlike with linear
alchemical mixing, only one electrostatic evaluation is needed
(e.g., a single call to PME). In the case of Amber18, this
enables all of the performance benefits of GPU acceleration to
be realized in addition to unlocking the full spectrum of
features available within the MD software. The TI evaluation
can be accomplished in a postprocessing step by reanalyzing
the statistically independent trajectory frames in parallel for
high throughput. Additional tools to streamline the computa-
tional pipeline for free energy postprocessing and analysis are
forthcoming.
Replica-Exchange Molecular Dynamics. During the

past two decades, the replica-exchange molecular dynamics
(REMD) methods44,45 have become popular in overcoming
the multiple-minima problem by exchanging noninteracting
replicas of the system under different conditions. The original
replica-exchange methods were applied to systems at several
temperatures44 and have been extended to various conditions,
such as Hamiltonian,46 pH,47 and redox potentials. Amber18 is
capable of performing temperature, Hamiltonian, and pH
replica-exchange simulations using the GPU. Hamiltonian
replica exchange can be configured in a flexible way as long as
the “force field” (or, equivalently, the prmtop file) is properly
defined for each replica. Hence, the newly implemented free
energy methods in Amber18 can be performed as Hamiltonian
replica exchange so that different λ windows can exchange their
conformations. Other types of Hamiltonian replica-exchange

simulations, such as Hamiltonian tempering or umbrella
sampling, can be easily set up as well.
Multiple-dimension replica-exchange simulations,48−53 in

which two or more conditions are simulated at the same
time, are supported as well. By the use of the multidimensional
replica-exchange capability, many practical combinations are
possible, such as TI simulation combined with temperature or
pH replica exchange.
The configuration of GPUs in Amber18 replica-exchange

simulations is very flexible in order to fit various types of
computational resources. Ideally for load balancing, the
number of replicas should be an integer multiple (typically
1−6) of the number of available GPUs. One GPU can run one
or multiple replicas if sufficient GPU memory is available,
although one can expect some slowdown in cases where
multiple tasks are running concurrently on a single GPU. Our
experience has shown that an 11 GB GTX 1080TI GPU can
handle six instances of typical kinase systems (around 30 000
to 50 000 atoms) without losing efficiency. One scenario is that
to run free energy simulations with replica exchange on one
multiple GPU node, e.g., executing 12 λ windows on a four- or
six-GPU node with each GPU handling three or two λ
windows, respectively. Such scenarios take advantage of
extremely fast intranode communication and enable efficient
performance optimization on modern large-scale GPU
clusters/supercomputers such Summit at Oak Ridge National
Laboratory. In principle, a single replica can also be run in
parallel on multiple GPUs, but this is strongly discouraged
because Amber18 is not optimized for it.

Constant-pH Molecular Dynamics. Conventional all-
atom molecular simulations consider ensembles constrained to
have predetermined fixed protonation states that are not
necessarily consistent with any pH value. Constant-pH
molecular dynamics (CpHMD) is a technique that enables
sampling of different accessible protonation states (including
different relevant tautomers) consistent with a bulk pH
value.26,27 These methods have been applied to a wide array
of biological problems, including prediction of pKa shifts in
proteins and nucleic acids and pH-dependent conformational
changes, assembly, and protein−ligand, protein−protein, and
protein−nucleic acid binding events.54 These methods provide
detailed information about the conditional probability of
observing correlated protonation events that have biological
implications. Very recently, a discrete-protonation-state
CpHMD method has been implemented on GPUs, integrated
with REMD methods (including along a pH dimension), and
tested in AMBER.55 The method was applied for the first time
to the interpretation of activity−pH profiles in a mechanistic
computational enzymology study of the archetype enzyme
RNase A.56 The CpHMD method in Amber18 is compatible
with enhanced sampling methods such as REMD and is
compatible with the new GPU-accelerated free energy
framework.
The workflow of explicit-solvent CpHMD simulation has

been described in detail elsewhere.55 Briefly, the method
follows the general approach of Baptista and co-workers26,27

that involves sampling of discrete protonation states using a
Monte Carlo sampling procedure. Simulations are performed
in explicit solvent under periodic boundary conditions using
PME to generate ensembles. The CpHMD method utilizes an
extended force field that contains parameters (typically charge
vectors) associated with changes in protonation state and
reference chemical potentials for each titratable site calibrated
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for a selected generalized Born (GB) model to obtain correct
pKa values in solution. In the Monte Carlo decision to accept
or reject a trial protonation state, explicit solvent (including
any nonstructural ions) is stripped and replaced using the
selected GB model under nonperiodic boundary conditions.
Additional considerations are made for multisite titration
involving titratable residues that are considered to be
“neighbors”.55 If any protonation state change attempts are
accepted, the explicit solvent is replaced, the solute is frozen,
and MD is used to relax the solvent degrees of freedom for a
short period of time. After relaxation is complete, the velocities
of the solute atoms are restored to their prior values and
standard dynamics resumes. Full details can be found in ref 55.
12−6−4 Potentials for Metal Ions. The GPU version of

Amber18 (pmemd.cuda) is capable of utilizing 12−6−4
potentials, which were developed by Li et al.28 for metal ions
in aqueous solution and recently extended for Mg2+, Mn2+,
Zn2+, and Cd2+ ions so as to have balanced interactions with
nucleic acids.30 The 12−6−4 potentials are derived from
regular Lennard-Jones (LJ) 12−6 potentials by adding r−4

terms, as proposed by Roux and Karplus.57,58

The 12−6 potential59 for nonbonded interactions is
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Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
U r

R

r

R

r
( ) 2ij ij ij

ij

ij

ij

ij

12 6

(3)

where the parameters Rij and ϵij are the combined radius and
well depth for the pairwise interaction, respectively, and rij is
the distance between the particles. Equation 3 can be expressed
equivalently as
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where Aij = ϵijRij
12 and Bij = 2ϵijRij

6. The expanded 12−6−4
potential60 is then
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where Cij = Bijκ and κ is a scaling parameter with units of Å−2.
The additional attractive term, −Cij/rij

4, implicitly accounts for
polarization effects by mimicking the charge-induced dipole
interaction. The 12−6−4 potentials have showed a marked
improvement over the LJ 12−6 nonbonded model.28,30

Future Plan. The Amber18 development roadmap will
extend sampling capabilites for free energy simulations to
facilitate advancement of drug discovery,61 including imple-
mentation of the Gibbs sampling scheme62 to improve the
exchange rates in replica-exchange simulations, self-adjusted
mixture sampling (SAMS)63 to optimize the simulation lengths
for different λ windows, and replica exchange with solute
scaling (REST2),64 a scheme to more stably and efficiently
perform “effective” solute-tempering65 replica-exchange simu-
lations.

■ PERFORMANCE
Amber18 runs efficiently on GPU platforms for both MD and
free energy simulations. Performance benchmarks for equili-

brium MD are shown in Figure 1 and listed for selected GPUs
in Table 2, including comparisons with Amber16. The figure

works in a particle-normalized metric, trillions of atom-time
steps per day, which puts most systems on equal footing and
shows performance improvements of up to 24% without
implying improper comparisons to other codes (the cutoffs
used in these benchmarks are smaller than those in some other
benchmarks, and other settings may not be comparable).
Longer time steps, if safe, tend to improve the overall
throughput with a marginal increase in the cost of computing
each step (requiring more frequent pair list updates). Small
systems tend to perform less efficiently (small FFTs and pair
list building kernels do not fully occupy the GPU). Virial
computations are also costly, as seen for the Satellite Tobacco
Mosaic Virus (STMV) system, the only one of this abbreviated
list of benchmarks to include pressure regulation with a
Berendsen barostat.
On a GTX-1080Ti, still the most cost-effective GPU at the

time of publication, the 23 558 atom dihydrofolate reductase
(DHFR) benchmark (4 fs time step, constant energy) runs at
657 ns/day in Amber18 and 588 ns/day in Amber16. The
same codes run the 90 906 atom blood-clotting factor IX
system at 100 and 89 ns/day, respectively, with a 2 fs time step.
The performance in thermodynamic integration free energy
simulations for mutating ligands of the clotting factor Xa
system is shown in Figure 2. TI with linear alchemical mixing
generally exacts a toll of one-third of the speed that could be
achieved in a conventional MD simulation. Additional pairwise
computations between particles are present, but the secondary
reciprocal-space calculation is about 85% of the additional cost
(this cost is eliminated in the PI-TI method40). The main

Figure 1. Performance of Amber18 relative to Amber16 seen on
multiple GPU architectures. Performance is given in a particle-
normalized metric that emphasizes the number of interactions that
each card is able to compute in a given time. Performances in
Amber16 are shown as solid color bars and improvements with
Amber18 as black-outlined extensions. In a few cases, the performance
in Amber18 is lower than in Amber16, as indicated by placement of
the extensions to the left of the y axis. (Beta tests of an upcoming
patch make Amber18 even faster and consistently superior to
Amber16.) The systems, ensembles, and time steps are displayed at
the right, while the system sizes (in thousands of atoms) are given at
the left. All of the systems were run with an 8 Å cutoff for real-space
interactions and other default Amber parameters.
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performance improvements derive from (1) innovative spline
tabulation lookup and particle mapping kernels for faster PME
direct and reciprocal-space calculations and (2) more efficient
memory access for bonded and nonbonded terms.
Faster PME Direct and Reciprocal-Space Calculations.

Most CPU codes use a quadratic or cubic spline for the
derivative of the complementary error function used in the
PME direct-space energy term. Rather than costly conversion
of floating-point values into integer indexes for table lookups,
we take the IEEE-754 representation of the 32-bit floating
point number for the squared distance and use its high 14 bits,
isolated by interpreting it as an unsigned integer and shifting
right 18 bits, as an integer index into a logarithmically
coarsening lookup table. This approach uses a minimum of the
precious streaming multiprocessor (SMP) cache, collects a
huge number of arithmetic operations into a single cubic spline
evaluation, and typically leads to a 6−8% speedup. The
workflow of the nonbonded kernel was further improved by
eliminating _shared_ memory storage and dealing with all
particle comparisons within the same warp via _shfl

instructions. This permitted us to engage not just 768 but
1280 threads on each SMP.

PME Reciprocal Space. We have made improvements to
the kernel that maps particles onto the 3DFFT mesh by
parallel computation of B-spline coefficients for all three
dimensions (utilizing 90 out of 96 threads in the block rather
than less than one-third of them) and retuning the stencil for
writing data onto the mesh to make better-coalesced atomic
transactions. This improves the throughput of the mapping
kernel by more than 40% and typically leads to a few percent
speedup overall.

More Efficient Memory Access for Bonded and
Nonbonded Terms. Rather than reach into global memory
for the coordinates of each individual atom needed by any
bonded term, we draw groups of topologically connected
atoms at the start of the simulation and assign bond and angle
terms to operate on the atoms of these groups. At each step of
the simulation, the coordinates of each group are cached on
the SMP, and forces due to their bonded interactions are
accumulated in _shared_ memory. Last, the results are
dumped back to global via atomic transactions, reducing the
global reads and writes due to bonded interactions more than
10-fold. The approach generalizes one described 10 years ago
for the Folding@Home client,66 where bond and angle
computations were computed by the threads that had already
downloaded the atoms for a dihedral computation. Our
approach makes much larger groups of atoms (up to 128) and
does not compute redundant interactions. However, the block-
wide synchronization after reading coordinates and prior to
writing results may leave threads idle. The modular
programming that creates our networks of interactions
facilitates combining or partitioning the GPU kernels to
optimize register usage and thread occupancy.
We have also gained a considerable amount of improvement

by trimming the precision model where low significant bits are
wasted. Rather than convert every nonbonded force to 64-bit
integers immediately, we accumulate forces from 512
interactions (evaluated sequentially in sets of 16 by each of
32 threads in a warp) before converting the sums to integer
and ultimately committing the result back to global memory.
Because the tile scheme in our nonbonded kernel remains

Table 2. Comparison of MD Simulation Rates in Amber16 and Amber18 on CPUs and GPUsa

simulation rate, ns/day

GTX-980 Ti GTX-1080 Ti Titan-X

system atom count Amber16 Amber18 Amber16 Amber18 Amber16 Amber18

DHFR, NVE, 4 fs 24k 347 382 588 657 643 710
DHFR, NVE, 2 fs 24k 181 209 306 345 338 374
factor IX, NVE, 2 fs 91k 52 64 85 100 93 113
cellulose, NVE, 2 fs 409k 12 14 19 21 21 23
STMV, NVE, 4 fs 1067k 8 9 12 13 13 14

Simulation Rate, ns/day

GP100 V100 (Volta) Titan-V

system atom count Amber16 Amber18 Amber16 Amber18 Amber16 Amber18

DHFR, NVE, 4 fs 24k 677 768 1020 1091 954 904
DHFR, NVE, 2 fs 24k 353 404 532 577 497 477
factor IX, NVE, 2 fs 91k 114 137 217 238 189 194
cellulose, NVE, 2 fs 409k 25 29 50 49 43 41
STMV, NVE, 4 fs 1067k 16 19 30 30 25 25

aTimings for selected systems in Amber18 versus Amber16 are shown. The ensemble and time step are given in the first column. Other Amber
default parameters included an 8 Å cutoff and a ≤1 Å PME (3D-FFT) grid spacing.

Figure 2. Performance of Amber18 thermodynamic integration with
linear alchemical mixing on multiple GPU architectures relative to
conventional MD. The color scheme for each GPU type is consistent
with Figure 1, but the performance of TI is given by an open bar while
the performance of the equivalent “plain” MD system is given by a
black-bordered solid extension. The test system is the factor Xa
protein with the ligand mutation from L51a (62 atoms) to L51b (62
atoms). The system has a total of 41 563 atoms, and the whole ligand
is defined as the TI region.
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warp-synchronous, the sequence of floating-point operations
that evaluates the force on each atom is identical regardless of
the order the tile was called. In other words, each tile
evaluation is immune from race conditions. Conversions to
integer arithmetic always occur, as in Amber16, before the
results of separate warps are combined, as the coordination of
different warps is not guaranteed. These optimizations
therefore maintain the numerical determinism of the code: a
given GPU will produce identical answers for a given system
and input parameters.
Minimal Computational Load on CPU and GPU/CPU

Intercommunication. As it does for MD, Amber18 performs
free energy computations almost entirely on the GPU and
requires very little communication between the CPU and the
GPU. This results in a tremendous practical advantage over
other implementations in that independent or loosely coupled
simulations (e.g., different λ windows of a TI or FEP, possibly
with REMD) can be run efficiently in parallel on cost-effective
nodes that contain multiple GPUs with a single (possibly low-
end) CPU managing them all without loss of performance.
This is a critical design feature that distinguishes Amber18 free
energy simulations from other packages that may require
multiple high-end CPU cores to support each GPU for
standard dynamics and free energy calculations. The result is
an implementation of TI/FEP that is not only one of the
fastest available but also the most cost-effective when hardware
costs are factored in.

■ CONCLUSION

In this application note, we have reported new features and
performance benchmarks for the Amber18 software official
release. The code is able to perform GPU-accelerated
alchemical free energy perturbation and thermodynamic
integration highly efficiently on a wide range of GPU hardware.
The free energy perturbation simulations output metadata that
can be analyzed using conventional or multistate Bennett’s
acceptance ratio methods. Additionally, thermodynamic
integration capability is enabled for linear alchemical trans-
formations and nonlinear transformations including soft-core
potentials and parameter-interpolated TI methods recently
extended for efficient use with particle mesh Ewald electro-
statics. These free energy methods can be used in conjunction
with a wide range of enhanced sampling methods, constant-pH
molecular dynamics, and new 12−6−4 potentials for metal
ions. The Amber18 software package provides a rich set of
high-performance GPU-accelerated features that enable a wide
range of molecular simulation applications from computational
molecular biophysics to drug discovery.
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