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ABSTRACT: Predicting protein−ligand binding affinities and the associated
thermodynamics of biomolecular recognition is a primary objective of structure-
based drug design. Alchemical free energy simulations offer a highly accurate and
computationally efficient route to achieving this goal. While the AMBER
molecular dynamics package has successfully been used for alchemical free energy
simulations in academic research groups for decades, widespread impact in
industrial drug discovery settings has been minimal because of the previous
limitations within the AMBER alchemical code, coupled with challenges in system
setup and postprocessing workflows. Through a close academia-industry
collaboration we have addressed many of the previous limitations with an aim
to improve accuracy, efficiency, and robustness of alchemical binding free energy
simulations in industrial drug discovery applications. Here, we highlight some of
the recent advances in AMBER20 with a focus on alchemical binding free energy
(BFE) calculations, which are less computationally intensive than alternative binding free energy methods where full binding/
unbinding paths are explored. In addition to scientific and technical advances in AMBER20, we also describe the essential practical
aspects associated with running relative alchemical BFE calculations, along with recommendations for best practices, highlighting the
importance not only of the alchemical simulation code but also the auxiliary functionalities and expertise required to obtain accurate
and reliable results. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues
associated with running relative BFE simulations in AMBER20, with a focus on real-world drug discovery applications.

1. INTRODUCTION

Accurate, robust prediction of the relative binding free energy
(BFE) of ligands to a target protein is of tremendous value in
drug discovery, serving as an in silico assay and a way to gain
deeper insights into the origin of biomolecular recognition.1−4

Rigorous free energy simulations of ligand-protein binding
yield both thermodynamic and kinetic information but can be
extremely computationally intensive to converge to high
precision due to the need to explore and sufficiently sample
the minimum free energy pathway that connect bound and
unbound states (including often starkly different entropic
differences). Alchemical BFE simulations, on the other hand,
can be engineered to be much more tractable owing to the
property that the free energy is a state function from which
thermodynamic end states (bound and unbound) can be
connected by any pathway. In practice, thermodynamic cycles
can be constructed that utilize “alchemical” pathways between
end states that can be optimally computed. Whereas alchemical
BFE simulations do not provide a complete mechanistic and
kinetic characterization of the binding process, they provide a
highly efficient and practical approach to predict the binding
affinities of lead compounds important in drug discovery.

While alchemical free energy simulation capability has been
in AMBER since the 1980s, a number of technical and
scientific challenges have impeded progress toward the broader
adoption and higher impact of AMBER in drug discovery
projects. This work provides a modern update of advances in
BFE simulations in AMBER20 and a description of current
guidelines and best practices in the context of real-world drug
discovery applications. The manuscript is organized as follows:
The remainder of this section describes the history and origin
of free energy simulations in AMBER leading up to the latest
developments in AMBER20 that enable large-scale application
in drug discovery projects. Section 2 provides an overview of
the background formalism for alchemical free energy
simulations, with extended discussion of transformation
pathways and protocols using so-called “softcore potentials”.
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Sections 3 and 4 discuss performance and feature advances,
respectively, in AMBER20 for drug discovery. Section 5
reviews practical considerations and provides guidance to
achieving robust and reliable BFE results, including system
preparation, docking, atom mapping and λ scheduling, use of
restraints and estimation of confidence and errors. Section 6
presents our perspective about important forthcoming and
future work to advance the state-of-the-art. The final section
provides brief concluding remarks that emphasize the purpose
and main points of the manuscript.
1.1. Historical Overview of Alchemical Binding Free

Energy Simulations. Alchemical binding free energy
simulations on computers have been performed since the
1980s, although the theoretical foundation began decades
earlier with studies of nonpolar gases by Zwanzig, where he
derived the master equation for free energy perturbation
(FEP) to compute thermodynamic differences between two
states A and B.5 In complementary (and earlier) work,
Kirkwood described a coupling parameter, typically called
lambda (λ), that has since been used to improve the accuracy
of FEP calculations for meaningful chemical transformations
by making neighboring states much closer (and therefore
having a smoother thermodynamic path) as one moves from
state A to B.6 Later, Bennett introduced an alternative
approach based on minimizing the expected squared error
(known as Bennett Acceptance Ratio, BAR),7 which was
further improved based on a statistically optimal analysis of
samples (multistate BAR or MBAR).8−11 Thermodynamic
integration (TI), an alternative approach to FEP/BAR based
on Kirkwood’s work on the theory of liquids, requires the
calculation of the Boltzmann averaged potential energy
derivative at each intermediate state λ.12 AMBER20 now has
functionality for these multiple approaches of FEP (BAR,
MBAR, and TI), which can be used in tandem with minimal
computational overhead to gain confidence in free energy
estimations.
The first published free energy methods applied to chemical

systems came from Postma, Berendsen, and Haak in 1982,
where the authors reported the free energy cost associated with
the formation of a cavity in water13 followed by Jorgensen’s
seminal work in 1985 computing the hydration free energy
difference of ethane to methanol, demarking the first true
alchemical transformation.14 Alchemical free energy simula-
tions were made more efficient by Tembe and McCammon,
who noted the concept of the thermodynamic cycle and
designed a model system to compute the ΔΔG between
atoms.15 This approach was applied to compute the free
energies for model systems, such as ligand binding in a host−
guest system16,17 and hydration of noble gases.17 While these
early works showed the promise of alchemical free energy
simulations in drug discovery, it took years for the first
prospective applications to appear in the literature18 and over a
decade for the first published industry application to appear,19

yet these studies involved only single heavy atom changes.
Eventually, larger and more pharmaceutically relevant chemical
transformations were shown to be tractable with alchemical
free energy simulations.20 Details about the history, theory,
methods, and applications of alchemical simulations can be
found in a number of excellent reviews.3,4,21−27

1.2. The Origin of Free Energy Simulations in AMBER.
The first implementation of free energy calculations within the
AMBER suite came in 1986. Singh implemented and tested the
software, which he built upon the previously developed

AMBER molecular dynamics (MD) code base that had been
published a year earlier as AMBER 2.0.28 The newly christened
“Gibbs” module of AMBER was subsequently applied to
several systems in a collaboration between Singh and Kollman
with Bash of the Langridge Laboratory at UCSF. Together,
they published the first papers describing the application of
AMBER for free energy calculations, and the first computa-
tional free energy paper to appear in Science Magazine.29−31

While this was not the first application of such free energy
calculations to be published (see section 1.1), in many ways it
exploded interest in the field, owing to the broad journal
readership, the pharmaceutically relevant test systems (nucleic
acid bases, amino acid side chains, organic small molecules,
and protein−ligand interactions), and the asserted high quality
of the results.
Upon release, this first implementation of free energy

calculations within AMBER supported three free energy
protocols: Free Energy Perturbation (FEP), Thermodynamic
Integration (TI), and “Slow Growth,” which represented the
limiting case of TI where (it was asserted) if you used a very
large number of λ windows, you could evaluate each window
with exactly one sample point. It was later demonstrated that
the slow growth approximation was unreliable in practice due
to a “Hamiltonian lag”,32 and therefore, this approach was not
pursued for long (although there has been a recent resurgence
due to foundational work by Jarzynski,33 as demonstrated by
Gapsys et al.34 and others). Free energy-specific options in this
first release were limited to setting the number of λ windows,
the durations of equilibration, the amount of data collection at
each window, and the ability to “decouple” the vdW and
electrostatic contributions. At this time, calculations were
limited to the single topology approach (wherein only a single
geometry for the molecule exists at any time, and changes with
lambda are reflected by modifications to the target values of
the internal coordinates and modifications of atom types)35

and the integration required for TI was performed using the
trapezoidal rule.
At this early stage in the development and application of free

energy methods, Gibbs in AMBER was one of only a few
software packages broadly available. The primary molecular
simulation packages at this time were research software
packages from the academic groups of Kollman (AMBER),36

Jorgensen (MCPRO),14 Karplus (CHARMM),37 and van
Gunsteren (GROMOS).38 Shortly after their initial publica-
tions, both Singh and Bash left UCSF for other positions. A
second generation of development of the Gibbs free energy
module was carried out primarily by Pearlman and Kollman,
where they focused on (1) addressing shortfalls in the first
implementation (e.g., the contribution from bond con-
straints),39,40 (2) dynamically changing the λ schedule to
reflect the evolution of the system as it progressed,41 (3)
validating/improving the intermediate mixing rules for non-
physical λ states,42 (4) developing, characterizing, and
implementing best practices,35 and (5) integrating error
propagation.43 During this period, the Gibbs module was
also updated to reflect improvements to the base molecular
dynamics methods, including the development of the particle
mesh Ewald (PME) method44,45 for efficient treatment of
long-range electrostatic interactions in simulations of pro-
teins46 and nucleic acids,47,48 and their parallel implementation
to accommodate the supercomputing platforms of the era. In
the early 2000s, reflecting a desire to lower the maintenance
overhead in light of a rapidly increasing number of
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modifications to the base AMBER molecular dynamics
platform, the fundamental Gibbs functionality was reimple-
mented into the Sander module of AMBER, which also serves
as the (nonfree energy) molecular dynamics platform, and the
Gibbs module was retired. More recently, the free energy
methods have been implemented in the AMBER PMEMD
program, which generally replicates the functionality of Sander
but provides appreciably better efficiency for highly parallel
CPU platforms.
Free energy-specific improvements since integration into

Sander (and then PMEMD) have included methods that can
improve the efficiency of sampling (e.g., Replica exchange),
more control over the λ scheduling, improved methods for
integrating the TI curve, and tools to support absolute binding
free energy calculations. Broadly, changes to free energy
methodologies in AMBER since the first implementations have
been evolutionary. The fundamental advancement that has had
the greatest effect on the ability to obtain reliable results from
free energy calculations has been an increase by more than 6
orders of magnitude in compute power since the first AMBER
free energy simulations, coupled with better force fields and
auxiliary tools for facilitating control over advanced simulation
options.
A major performance enhancement introduced in

AMBER11 was the ability to use graphical processing units
(GPUs) to massively accelerate PMEMD for both explicit
solvent PME and implicit solvent/Generalized Born (GB)
simulations.49,50 The performance envelope was pushed even
further with AMBER14 and AMBER16. Those releases
represented leaps in both performance and functionality
through the full utilization of the single-precision floating-
point format (SPFP), which significantly boosted performance
on GPUs without sacrificing numerical accuracy.51 Although,
the GPU accelerated version of PMEMD, namely PMEMD.-
cuda, has been designed to support as many of the standard
PMEMD features as possible, there were some limitations,
such as the inability to perform alchemical free energy
simulations on GPUs. Giese and York52 recognized that
certain types of alchemical transformations that involved only
the interpolation of force field parameters representing the two
end states (rather than mixing of their Hamiltonians) could be
achieved without modification of the PMEMD.cuda engine. By
bringing the Gibbs functionality in Sander out of retirement
and making minor extensions to work with PME, some
alchemical transformations could be achieved with a
postprocessing tool. Around the same time, the GPU-
accelerated alchemical free energy module was first imple-
mented as a patch of AMBER1653 and later incorporated into
the official AMBER18 release.54 Since then, the free energy
methods in AMBER have been carefully validated55 and
applied,56,57 and many advances for alchemical free energy
calculations have been actively developed, such as a novel
softcore potential,58 various types of restraints,59 and robust
analysis methods.52,60

1.3. AMBER20 for Drug Discovery Applications.
Despite the advances and applications described above, the
impact of alchemical binding free energy simulations has been
limited in drug discovery for a number of reasons, most
commonly noted as inaccurate force fields, insufficient
sampling, and ease of use. However, with the many force
field advances in the past decades (discussed below in sections
5.1, 5.9, and 6.5) and increased computational throughput via
GPUs (discussed in section 3, many of the remaining issues

involve the balance between more advanced controls for
optimal performance and simplified interfaces to improve
usability. Much work has been done to expose BFE
calculations to a broader audience through graphical user
interfaces,61,62 workflow tools,63,64 and integration with
powerful molecular operating environments.65−68 While ease
of use has expanded the user base for BFE methods, it has also
reduced the degree of expertise that can be inserted by the user
to optimize performance and reliability. Indeed, performing
BFE simulations is still an expert process where experience
plays an important role, especially for challenging targets where
the time scales of important degrees of freedom and
conformational flexibility might be unknown. As such, in this
work we also highlight the practical considerations for reliable
predictions in real-world applications. In some cases robust
automated programs are available, but as will be described,
there are many subtle details that require close attention by
expert users to obtain optimal results.
Through an academia-industry collaboration, we have

addressed some of the primary issues that have in the past
limited AMBER utilization in drug discovery efforts. Most
recently, we have improved the softcore potential to ensure
more reliable simulations across a broad set of diverse
alchemical transformations. We have also implemented
restraints for absolute binding free energy (ABFE) simulations
and finer control of the bonded terms in relative binding free
energy (RBFE) simulations. These advances, coupled with the
high performance of AMBER on GPUs and the practical
considerations outlined herein, should facilitate the broader
adoption of alchemical free energy simulations in drug
discovery. We hope that these advances, coupled with the
great work by others in the field, will aid researchers in drug
discovery to more efficiently design medicines to treat diseases
with unmet medical needs.

2. BACKGROUND FORMALISM FOR ALCHEMICAL
FREE ENERGY SIMULATIONS

The change in free energy between two thermodynamic states
can be computed from equilibrium simulations using a free
energy perturbation (FEP)5 (sometimes referred to as
“thermodynamic perturbation”) or thermodynamic integration
(TI)6,69 formulations, or through nonequilibrium ensemble
simulations using the Jarzynski equality and its equation
variations.33,70−74 For the purposes of the current work, we will
focus on the calculation of relative binding free energies from
equilibrium simulations using TI and FEP formulations with
Bennett Acceptance Ratio7,75 (BAR) and its multistate
generalization (MBAR).9,76 For additional discussion of factors
that influence accuracy and robustness of free energy
simulations, we refer the reader to several excellent
examples.2,3,71,77−85

Consider the transformation of a system of N particles in an
initial state “0” characterized by potential energy function
U0(r

N), where rN = r1, r2, ..., rN represents the Cartesian
positions of each particle, to a final state “1” characterized by
potential energy function U1(r

N) having the same degrees of
freedom. The potential energy functions can, for example,
represent different molecular species or environments. In
general we will refer to this type of transformation as an
“alchemical transformation” from which differences in
thermodynamic end states can be determined, to distinguish
it from a physical or chemical transformation that involves a
real mechanistic pathway that contains both thermodynamic
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and kinetic information. The change in free energy of the
alchemical transformation between states 0 and 1 can be
computed from the ratio of configurational integrals Z0 and Z1
as

A A A Z Zln( / )0 1 1 0
1

1 0βΔ = − = −→
−

(1)

where β−1 = kBT, kB is the Boltzmann constant, and T is the
absolute temperature, and

Z e drs
V

U Nr( )s
N∫= β−

(2)

where s is the state of the system (0 or 1) and V is the volume
of the configurational space. Here, we use the Helmholtz free
energy, ΔA, in the N, V, T ensemble to motivate discussion,
whereas extension to the Gibbs free energy and the N, P, T
ensemble is straightforward.
In the FEP formulation, substitution of eq 2 into eq 1 leads

to the so-called Zwanzig, or “exponential average” relationship:

A eln U
0 1

1
0βΔ = − ⟨ ⟩β

→
− − Δ

(3)

where ΔU = U1 − U0 and the average ... 0⟨ ⟩ involves integration
over the configurational space of the Boltzmann probability for

state 0, P e Zr( ) /N U r
0

( )
0

N
0= β− , or equivalently, Boltzmann

sampling from this ensemble from a molecular simulation
using the forces derived from the potential energy U0(r

N). This
expression allows the free energy of the transformation to be
computed while requiring sampling only at one thermody-
namic end state. The above relation has many useful variants
that consider the other or both end states:

Ä
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+

β

β

→
− − Δ

− Δ −

−

(4)

where f(x) = 1/[1 + exp(x)] is the Fermi function and C is a
constant with units of energy. If C is set to zero, one can
recover the original formula of eq 3, or if one solves for C such
that the numerator and denominator of the logarithmic term
are equal (making this term vanish), then one obtains an
optimal statistical estimate using the BAR method.7,75 One can
further generalize this expression to consider non-Boltzmann
sampling.86

In principle, the above FEP equations only require sampling
at the thermodynamic end states. However, the statistical
precision requires that there is sufficient phase space
overlap,60,87,88 which typically necessitates stratifying the
transformation into smaller steps along a pathway. In theory,
the free energy is a state function, and thus the free energy
difference between states is independent of the path that
connects them. In practice, the choice of this pathway is of
immense importance, as it can be extremely challenging to
converge sampling along the pathway itself. Let us then define
a thermodynamic parameter λ that smoothly connects states 0
and 1 through a λ-dependent potential U(rN; λ), such that
U(rN; 0) = U0(r

N) and U(rN; 1) = U1(r
N). Within the FEP

formulation, the transformation can be broken down into a
series ofM steps corresponding to a set of λ values λ1, λ2, ..., λM
ranging from 0 to 1, such that there is sufficient phase space
overlap between neighboring intermediate λ states. This

requires a separate simulation for each “λ window” that
corresponds to a specific value of λ and using forces derived
from the potential energy U(rN; λ). These simulations can then
be analyzed using the BAR7,75 or MBAR9,76 methods.
Alternatively, with the introduction of a defined pathway

between states, the change in free energy can be equated to the
reversible work of conducting the transformation between
states, and this gives rise to the TI formulation,6,69 which is
characterized by the formula and numerical quadrature
estimate

A d
U

w
U

r

r

( ; )

( ; )

N

k

M

k

N
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0 1
0
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1

∫

∑

λ λ
λ
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λ

λ

Δ = ∂
∂

≈ ∂
∂

→

= (5)

where the second sum indicates numerical integration over M
quadrature points (λk, for k = 1, ..., M) with associated weights
wk.

2.1. Alchemical Transformation Pathways and Soft-
core Potentials. The simplest way in which the U(rN; λ) can
be constructed is to use a linear interpolation between states,
which we will designate as UL(rN; λ):

U U Ur r r( ; ) ( ) ( )L N N N
0λ λ= + Δ (6)

where the end point difference ΔU(rN) ≡ U1(r
N) − U0(r

N) is
also, by coincidence, the thermodynamic derivative with
respect to λ. Hence, the common energy components that
are identical between U1(r

N) and U0(r
N) need not be explicitly

considered as the corresponding difference is zero. As has been
well established, the linear alchemical transformation pathway
leads to practical problems that can be partially overcome by
the use of so-called “softcore” potentials for nonbonded
Lennard-Jones (LJ) and Coulombic electrostatic (Coul)
interactions.89,90 A commonly used softcore potential trans-
formation pathway90 originally implemented in AMBER is

U Ur r( ; ) ( ; )N N
0
SC SCλ λ λ+ Δ (7)

where ΔUSC(rN;λ) ≡ U1
SC(rN;1−λ) − U0

SC(rN;λ) as before.
There have been many different proposed softcore potential

forms that modify, or “soften”, these interactions. In the
following sections, to be more clear, we only show the softcore
potential corresponding to one end state and the system total
potential should be written as the properly weighted sum of
the two end states. The LJ and Coul interactions for a set of
interacting point particles i and j separated by a distance rij are
given by
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i j

ij
Coul

0π
=

ϵ (9)

where σij and ϵij are the pairwise LJ contact distance and well
depth, respectively, and qi and qj are the partial charges of
particles i and j. To “soften” these pairwise interactions with
particles contained within the selected softcore region, one can
modify the effective interaction distance by introducing a
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parametric form for separation-shifted scaling with an adjust-
able parameter. A commonly used form of these modifications
is89,90

r r( ; )ij ij
n

ij
n nLJ 1/λ α λασ= [ + ] (10)

and

r r( ; )ij ij
m mCoul 1/λ β λβ= [ + ] (11)

where n and m are positive integers and α and β are adjustable
positive semidefinite parameters for the LJ and Coul softcore
interactions, respectively, with values of zero corresponding to
no softcore modification for any λ value. In several molecular
simulation software suites, including the default in AMBER,
the values of n = 6 and m = 2 are used, although other values
have also been suggested,90 and as will be discussed below,
combined with new smoothstep softcore potentials, consid-
erable improvements can be made to stabilize sampling of the
transformations.
The LJ and Coul softcore potentials are defined from these

scaled effective interaction distances as

U r U r( ; ) ( ; )ij ijLJ
SC

LJ
LJλ λ α= [ ] (12)

and

U r U r( ; ) ( ; )ij ijCoul
SC

Coul
Coulλ λ β= [ ] (13)

The thermodynamic derivatives with respect to λ can be
obtained using the chain relation.
Recently, we developed a new smoothstep softcore potential

for nonbonded LJ and Coul interactions, implemented in
AMBER20 and demonstrated below, that further improves the
stability in practical calculations.58 We introduce a nonlinear λ
scaling function by replacing λ in eq 7 with a so-called second-
order smoothstep function, S2(λ), defined as

S ( ) 6 15 102
5 4 3λ λ λ λ= − + (14)

Note that S2(λ) varies smoothly from 0 to 1 and has vanishing
derivatives at λ = 0 and 1. Details of the implementation and
testing of the second-order smoothstep softcore potential in
AMBER20 can be found elsewhere.58 Similar in spirit, but
slightly different in details, is closely related work first
introduced by Hritz and Oostenbrink91 and described in
further detail by Riniker and co-workers92 where the use of
third-order polynomials enable different λ-dependency (re-
ferred to a “individual Lambdas”) for calculation of relative free
energies. This form of the softcore potential also has been
shown to have impact on the ability to predict λ derivatives at
nonsimulated points in extended TI methods.93

Further, as will be demonstrated below, a promising new
form of the effective interaction distance with separation-
shifted scaling is given as

r r W r S( ; ) ( ) ( )ij
X

ij
n X

ij ij
n nX

2
1/λ α α λ σ= [ + ] (15)

where X generically represents either LJ or Coul, αX is the
corresponding unitless parameter, and the weight function of
the softcore potential W(rij) is designed to smoothly return to
the normal rij value by the end of the cutoff

i

k
jjjjjj

y

{
zzzzzzW r S

r R

R R
( ) 1ij

ij i

f i
2

cut,

cut, cut,
≡ −

−
− (16)

where Rcut,i is the onset distance where the weight function
becomes effective and Rcut,f is the final distance of the weight
function where the softcore potential completely diminishes
and is set to the same as the nonbonded cutoff distance.

2.2. Common Problems with Softcore Potentials and
Their Solutions. We call specific attention to three problems
that commonly occur in simulations of alchemical trans-
formations, and in particular for “concerted transformations”
that involve simultaneous changes in both nonbonded LJ and
Coul terms. These are referred to as the “end point
catastrophe”, the “particle collapse problem”, and the “large
gradient-jump problem”.
The end point catastrophe is well-known, and arises from a

sharp divergence of the contribution to the free energy at the
thermodynamic end points (λ values near 0 and 1) due to poor
phase space overlap, and can be avoided by the use of softcore
potentials. The particle collapse problem involves the
introduction of new spurious minima at intermediate λ states,
frequently manifesting in the artificial superposition of particles
that can lead to large amplitude fluctuations or phase transition
behavior along the λ dimension.94 This problem results from
an imbalance of Coulomb attraction and exchange repulsion,
and can be overcome by ensuring that these terms are scaled in
such a way that preserves overall repulsive behavior at short
distances for all λ values (e.g., by ensuring that the repulsive
terms are sufficiently large to overcompensate for any attractive
Coulomb interactions). Finally, the large gradient-jump
problem involves sensitivity of the free energy to certain
softcore parameter values that adjust the exchange repulsion
and can lead to spurious jumps in the free energy near the
thermodynamic end points. This problem can be solved
through use of a smoothstep softcore potential that has scaling
weights with derivatives that vanish at the end points.

2.3. Stepwise versus Concerted and Absolute versus
Relative Protocols for Alchemical Transformations.
Here, we discuss strategies for alchemical free energy
simulation protocols and parameters that will yield the best
results for a given system of interest. One of the most pivotal
technical issues is the choice of the alchemical path connecting
the two real states (i.e., connecting the two thermodynamic
end points). While, the free energy difference between two
states is independent of the path that connects them in the
regime of complete conformational sampling, in practical
calculations of complex systems, the choice of the alchemical
transformation path is critical to obtain stable, converged
results with affordable sampling.
In the discussion that follows, we separate the atoms

involved in the alchemical transformation into two regions: the
softcore region, and the common core region. The common
core atoms are those that transform from a “real atom” in the
initial state to another real atom in the final state, and in
intermediate λ states, interact with other (nonsoftcore) atoms
via normal Lennard-Jones (LJ) and Coulombic electrostatic
(Coul) interactions. The softcore atoms, on the other hand,
are those selected to interact with other atoms (including the
common core atoms) via a softcore potential90 in intermediate
λ states. Often the atoms of the softcore region are transformed
from “real atoms” in the initial state to “dummy atoms” in the
final state. A discussion of the requirements that the dummy
atoms reproduce the ensemble and potential of mean force of
the real state has been discussed extensively by Boresch and
Karplus95,96 and Roux and co-workers.84,97
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The two most commonly applied procedures for alchemical
transformations are referred to as “stepwise” and “concerted”
protocols.83,98 For the stepwise protocol, also referred to as
”split”, “multi-step” or “decoupled” procedures,56 the trans-
formation is carried out by scaling Coulombic and Lennard-
Jones interactions separately, where the charges of the dummy
atoms are scaled linearly and LJ interactions are scaled via the
softcore potentials. In these procedures, all or parts of the
Coulomb and LJ transformations are decoupled, and
performed as separate steps. An example of a 3-step
“decharge-LJ-recharge” protocol would be as follows: First,
the atoms in the softcore region (those atoms that will
transform into dummy atoms) are fully decharged. Next, these
decharged atoms undergo a LJ transformation using softcore
potentials, while at the same time the charges of the
nonsoftcore atoms are also transformed. Last, the atoms in
the softcore region are recharged to the final state. This
protocol is generally quite robust, since the softcore LJ
transformations occur after the partial charges of the softcore
atoms have been eliminated. One caveat of the conventional
stepwise procedure is that, depending on the selection of
atoms in the softcore region, a noninteger charge change can
be introduced at intermediate λ states even for alchemical
transformations between molecules having the same net
charge. Care should be taken to include net charge corrections
and appropriate sampling in these cases (see below).
Alternatively, one can use a concerted protocol (also

referred to as “unified,” “single step” transformation). In this
procedure, the softcore LJ and Coulomb terms are in some
way performed in concert. This procedure might have some
advantages in terms of throughput performance and ease of use
with advanced λ-schedule optimization and enhanced sampling
schemes, such as λ dynamics,99−102 Hamiltonian replica
exchange methods,103−107 adaptive biasing100,108,109 or self-
adjusted mixture sampling110,111 methods. Concerted alchem-
ical transformations, however, are more sensitive to the
treatment of softcore atoms, and are more susceptible to the
end point, particle collapse and large-gradient jump problems
discussed earlier. Consequently, it is of tremendous practical
interest to work toward more robust and efficient methods to
enable stable concerted alchemical transformations.
Related to these issues is the choice of the atoms in the

softcore region. There are a number of strategies, methods, and
software tools that have been developed to assist in defining
the optimal sets of transformations for a library of compounds.
This is sometimes referred to as a “perturbation map”.3 One
method of common core/softcore atom selection is based on
maximizing the common substructure (i.e., minimizing the
number of softcore atoms that are to be transformed).112

Alternatively, selection can be based on grouping softcore
atoms into chemical functional groups.84,113,114 Additional
details can be found in section 5.5.
Alchemical transformations are most reliable when the

transformations involve a short thermodynamic path (i.e.,
minimal perturbation to the free energy landscape). This often
translates into perturbing the smallest number of atoms,
although the nature of the perturbation (size, polarity,
conformational preferences, etc.) can have a significant impact
on reliability. Consequently, most drug discovery applications
focus on computation of relative binding free energies
(RBFEs), where a common core is unperturbed. Still, even
with a small number of perturbed atoms, the thermodynamic
path between the states may be long due to the nature of the

perturbation (e.g., a small ligand change that induces a large
protein conformational change or alters the ligand conforma-
tional preference). While there are no procedures to our
knowledge that can a priori determine when a given
perturbation is too large, there are many reviews of free
energy methods that provide guidance and best practices for
dealing with such situations.20,22,25,115 In some cases, where
large perturbations lead to an exceedingly long thermodynamic
path, it is recommended to insert intermediate molecules that
bridge the two molecules of interest, as described in a recent
application to BACE.116 Additionally, it is possible to compute
absolute binding free energies (ABFEs), whereby an entire
ligand is transformed to a dummy-state that is noninteracting
with its environment. While this process typically involves a
much larger “perturbation” and, consequently, more sampling
to achieve a fixed level of precision, in some cases, it may be
complementary or even preferable to the calculation of RBFEs
alone. ABFE is particularly useful when exploring diverse
ligands, such as in virtual screening, as described recently by
Cournia et al.4

3. PERFORMANCE
A critical aspect of BFE simulations is the amount of
conformational sampling, which directly relates to the
convergence and accuracy of the simulations. While longer
simulations can be achieved with more wallclock time, there
quickly comes a point where impact in drug discovery will be
limited due to real-time throughput of guiding predictions in
time-critical projects. Historically, compute power has been
dominated by the speed of individual cores. As single core
performance stagnated in the past decade, parallel computing
emerged to allow performance scaling to remain. Molecular
dynamics (MD) is a problem that is inherently parallelizable,
although challenging, as each atom has to compute its energy
and forces relative to the current state of the system (i.e., all
other atoms). This makes MD an ideal candidate for graphical
processing units (GPUs),117 and since 2012,49,50 MD has been
largely performed on GPUs. Current single GPU performance
offers orders of magnitude increased performance relative to a
conventional central processing unit (CPU) hardware for most
common protein systems. While more sampling is generally
preferred in free energy simulations, it is not always the case
that more sampling affords better results. The disconnect
between sampling and accuracy can broadly be attributed to
(1) poor force field (sampling cannot help), (2) local minima,
where sampling in the local minimum of interest is sufficient to
attain converged free energy results but additional sampling
opens new regions of phase space, thereby resulting in poorer
apparent convergence, and (3) poor system setup, where a
longer simulation may result in propagation of errors that
increasingly degrade the results over time, such as protein
unfolding events.
With the AMBER18 release, a GPU-accelerated thermody-

namic integration (GTI) method was implemented.53,54,118

The key technical challenge overcome in AMBER18 GTI
involved cleverly enabling TI-based calculations without
compromising the optimized AMBER energy kernels. This
was accomplished by using a streaming kernel to filter and
separately process alchemical atoms and their interactions.
Thus, the GTI code has a slight performance dip in
comparison to standard MD simulations in AMBER but still
a tremendous speedup relative to CPU implementations and
other GPU codes. For example, a TI calculation on cyclin-
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dependent kinase 2 (CDK2) with approximately 54 000 atoms
takes approximately 4.5 GPU-hours using a GTX 1080Ti GPU
with 24 λ windows split between a complex stage and a
solvated stage (contains 4500 atoms) using 2 ns simulation
time per λ, with a 4 fs time step facilitated with hydrogen mass
repartitioning (HMR).119 These simulations can also be run at
a 2 fs time step without HMR with shake, and 1 fs time steps
without shake. This same simulation takes 2.5 GPU-hours on
the more recent RTX 2080Ti GPUs. As each λ window is
independent, these calculations can be run in parallel across
multiple GPUs with no hit to performance and can be done in
less than 20 min on a GTX 1080Ti across 24 GPUs, or 12 min
across 24 RTX 2080Ti GPUs. Figure 1 summarizes the results
of AMBER20 on three targets of different size with GeForce
1080Ti and 2080Ti graphics cards using standard MD and
GTI.

4. ADVANCES IN AMBER20

A number of important improvements were introduced in
AMBER20 to facilitate large-scale RBFE and ABFE simu-
lations. Specifically, the softcore potential was improved using
a smoothstep function,58 which significantly reduces a number
of known issues in previous versions of AMBER (namely the
end-point catastrophe, particle collapse, and large gradient
jumps in the dU/dλ curve). Additionally, Boresch restraints59

have been implemented, which can be used in an automated
fashion for ABFE simulations with many diverse ligands.
Boresch bonded terms95,96,120 were also implemented, which
can be used to control which energy terms are included in the
softcore region. Below is a more detailed description of the
advances in AMBER20.
4.1. Smoothstep Softcore Potentials. With the newly

developed class of smoothstep softcore potentials described in
section 2.1, we were able to demonstrate that, unlike the
conventional softcore potential in previous versions of
AMBER, there is a single set of α and β values that can be
utilized for reliable and accurate simulations across a wide
range of diverse molecular systems.58 The key characteristic of
the smoothstep softcore function is that the weights used in

the alchemical transformation have derivatives that vanish at
the transformation end points (λ = 0 and 1) and enable
smooth adjustment of the λ-dependent terms in the potential.
The second-order smoothstep softcore potential, SSC(2), with
α = 0.2 and β = 50 Å2 has been demonstrated to overcome all
three problems for a broad set of alchemical transformations
used in the calculation of hydration free energies and RBFEs.
Results are examined for edge cases where the original AMBER
softcore potential is observed to failthe SSC(2) smoothstep
softcore potential was demonstrated to remain accurate. The
SSC(2) potential has been further tested against a broad set of
hydration free energy and RBFEs for a commonly used FEP
validation data set containing 200 ligands and spanning 8
protein targets.121 The SSC(2) potential has the advantage
that it can be used in concerted transformations and is better
suited for enhanced sampling methods with more advanced,
adaptive λ scheduling requirements, which is part of our
ongoing research collaboration and intended to be in
upcoming AMBER releases (see section 6.3).
In AMBER20, the λ-dependence of individual interactions

(e.g., bonded, Coulombic and Lennard-Jones) now can be
controlled by the user, including both linear and smoothstep
functional forms, and advanced λ-scheduling within the λ
interval [0, 1]. This “λ-scheduling” can be applied to individual
interactions independently and gives the users a very flexible
way to control the mixing scheme of the softcore potentials.
For example, one can utilize a smoothstep function with
boundaries at [0.0, 0.5] for Coulombic (Coul) interaction and
a smoothstep function with boundaries at [0.5, 1.0] for
Lennard-Jones (LJ) potential, which will execute a stepwise
alchemical transformation with the Coulombic interactions
being transformed in the λ interval [0.0, 0.5] and the Lennard-
Jones being transformed in the λ interval [0.5, 1.0]. Similar λ-
scheduling features have been reported and implemented in
other simulation packages, such as GROMOS92 and
NAMD.84,122 Application of these λ scheduling features in
combination with the new smoothstep softcore potentials are
discussed in more detail in Future Work (section 6) below.

Figure 1. Performance of AMBER20 for standard MD and thermodynamic integration (TI) on GeForce 1080Ti and 2080Ti graphics cards
compiled on CUDA 9.1 using a Monte Carlo barostat, Langevin thermostat, and 4 fs time step.
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4.2. Pose Restraints for ABFE. Accurate predictions of
absolute binding free energies of small organic molecules from
MD simulations offer significant value in drug discovery and
design. In particular, ABFE (as opposed to RBFE) is not
restricted to perturbations on a common core and is thus
amenable for use in virtual screening,4 selectivity screening,123

and core hopping.124 However, this added flexibility also
introduces new challenges and uncertainties, which may
explain why ABFE has seen minimal use in actual drug
discovery projects (in addition to the additional sampling
requirements).
There are multiple ways to realize a valid thermodynamic

cycle that is compatible with the aims of ABFE, but most
schemes employ a set of restraints to restrict the ligand to
remain near the binding site.59,125−128 The necessary (or
allowable) extent of this restriction is rather dependent on the
system. For example, some strategies employ loose “flat-
bottom” restraints that only restrict the ligand center of mass
motion,128 while others accommodate more elaborate
restraints on the ligand conformation, translation, and
rotation,125 possibly in multiple unique poses.126,127

In our drug discovery efforts, we have worked under the
assumption that the unrestrained ligand is fairly strongly bound
and therefore can be assumed to occupy a single pose with
high occupancy. This assumption is generally safe because we
are primarily interested in the identification of tight binding
species and we can tolerate bias or inaccuracy in weakly bound
species−other use cases may have different needs, such as
identifying weakly bound fragments129 or molecules that
stabilize intrinsically disordered proteins.130 Working under
the assumption of a single well-defined binding mode permits
the rather simple restraint framework described by Boresch et
al.,59 which only places harmonic translational and rotational
restraints on the ligand in a local coordinate frame via one
distance, two angles, and three dihedrals (see section 5.7 for
further details). The implementation in AMBER20 also
permits these restraints to be included in the overall alchemical
transformation such that the component of the free energy
arising from the restraints in the bound state can be computed
in the same way as other force field terms. The absence of
restraints when simulating the unbound state can be accounted
for using a simple analytic formula in the limit that the
harmonic restraints are relatively stiff.59,131 The implementa-
tion in AMBER20 has been validated on virtual screens with
thousands of diverse compounds run through ABFE. The
results demonstrate the usefulness of the approach and confirm
that the calculated binding free energy is independent of the
details of the restraints, as determined by comparing results
from multiple runs with randomized restraint combinations.4

4.3. Handling Interactions Involving Softcore Atoms
for RBFE. In AMBER, the TI region is defined as the part of
the system to undergo alchemical transformation from one end
state to another one; hence there are two regions representing
two end states. There are two parts for each TI region: the
common region to both TI regions and the softcore region
unique to each TI region. The softcore potential is utilized to
treat the interactions between the softcore regions and other
parts of the system. Atoms which are growing or disappearing
during the alchemical transformation must be included in the
softcore region. An atom included in a softcore region is
defined as a softcore atom. Previous versions of AMBER have
not allowed for detailed control over the interactions between
the common and softcore regions. While most of the time

treatment of these terms will not cause significant deviations of
the calculated free energy differences, theoretically it should be
treated more rigorously when applicable.

4.3.1. Bonded Terms between the Common and Softcore
Regions. A key advantage of RBFE simulations is that the
ligand scaffold (common core) is always present and interacts
with the receptor binding site, thus obviating (or at least
greatly reducing) the need for orientational restraints as with
ABFE. However, a similar issue is encountered when chemical
groups extending off of the common core are created or
annihilated (transforming from or into “dummy atoms”)
similar to the ligand drift problem in ABFE, the chemical group
must be tethered to the common core. While this may seem
readily accomplished by retaining bonded terms between the
disappearing group (softcore region) and the common core,
care should be taken that these retained bonded terms obey
certain constraints and conditions. These conditions require
the ensembles generated in the state with “dummy atoms” in
the softcore region that have “disappeared” to reproduce the
same potential of mean force on the real atoms as the real
system without the dummy atoms. Extensive discussion of
these conditions, including “rules” of how to select retained
bonded terms between the softcore and common core regions,
are provided by Boresch95,96,120 and Roux and co-work-
ers.84,132

AMBER20 now includes a general facility for selectively
retaining bonded interactions with noninteracting softcore
atoms. The nonretained terms are then decoupled using the
usual scheduling strategies for nonbonded interactions.
Importantly, the simulation efficiency can be highly affected
by which terms are selected for retention and which are not
poorly chosen terms can lead to high variability or even
nonergodicity. Unfortunately, there does not appear to be a
general solution to this issue. Theoretically rigorous results can
only be obtained by retaining terms that involve not more than
three atoms in the common core. However, for efficiency, the
retained terms must also keep the softcore atoms in or near a
physically relevant geometry and not hinder rotameric
transitions.

4.3.2. Nonbonded Terms between the Common and
Softcore Regions. The nonbonded terms between the
common region and the softcore regions should be always
scaled with the alchemical variable λ. Nevertheless, the 1−4
nonbonded terms across the softcore boundary were not
treated properly in some previous versions of AMBER.98 A fix
has been implemented and verified in AMBER20, resulting in
much improved relative hydration free energies of 9 bench-
mark molecules using the concerted transformation protocol.55

4.3.3. Interactions within the Softcore Region. In
AMBER20, both bonded and nonbonded interaction terms
within the softcore regions can be either scaled with λ or not.
Either implementation is theoretically correct, provided that
the conformational sampling of the softcore regions at the end
point states are sufficient. Users can control how the
interactions within the softcore regions are treated. For
recommended guidelines, refer to recent validation studies of
free energy methods in AMBER.55

4.4. RBFE Accuracy on Drug Targets. The GPU-
accelerated free energy simulation methods in AMBER have
been validated in an Application Note appearing in the current
special issue.55 Although the methods discussed here are quite
new, they have already seen a number of applications,56−58

particularly against a well-studied data set that includes ∼200
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ligand mutations spanning 8 protein targets (Bace, CDK2,
Jnk1, MCL1, p38, PTP1B, thrombin, and Tyk2).121 This data
set serves as a tractable benchmark set for RBFE calculations
because there are no known significant conformational changes
or other challenging scenarios such as ambiguities in tautomer/
ionization states or buried waters. Results using the protocols
described in this work with the GAFF2 force field133 and
TIP3P14 water model are on par with other recent RBFE
publications on the same data set, as seen in Table 1, and stand
to improve with the forthcoming release of new MM and QM
force fields for ligand-binding predictions.

5. PRACTICAL CONSIDERATIONS

The aforementioned topics (force field, sampling, and
alchemical parameters) are critical to achieving robust and
reliable BFE results, yet many publications under-emphasize
the importance of other considerations. Items such as system
preparation, docking, and confidence estimates can be just as
important as force field, sampling, and alchemical parameters
for obtaining robust BFE predictions. In some cases, it is
possible to define best practices and even automate the process
to some extent. However, other instances may require expert
decisions on a case by case basis. Below, we highlight practical
considerations found to be most important in prospective
applications of free energy simulations in AMBER. When
possible, we provide guidance for best practices, yet in other
cases we simply highlight the challenges and leave it to the
reader to further explore these areas. More details about
practical considerations in alchemical binding free energy
simulations can be found in a Perspective by Cournia et al.3

5.1. Force Field. A force field is used to model the
interactions between atoms in the molecular system of interest.
The force field allows determination of potential energy as a
function of configuration and is used along with the kinetic
energy to calculate the Hamiltonian for molecular dynamics
simulations and binding free energy calculations. The accuracy
of the force field may limit that of the binding free energy
predictions, but not all inaccuracies in the predictions should
be blamed on force field problems: poor quality in the initial
structure, erroneous protonation or tautomeric states, and
inadequate sampling should first be inspected. One lesson that
we learned from the past decade is that the force field accuracy
can be substantially improved by simply avoiding the obvious
mistakes in the parametrization of ligand molecules.
Generalized force field models, such as GAFF,133,134

CGenFF,135,136 and OPLS,137−140 represent efforts to provide
force field parameters for any molecule at a small computa-
tional cost, using look-up tables for parameters predetermined
for different bond, angle, and torsion types. Such models and
the associated software tools are good starting points for
parametrizing molecules for binding free energy calculations.
They provide reasonable parameters for molecules consisting

of chemical structures similar to those in the training set. Yet in
real-world applications, it is not uncommon to encounter
molecules that these generalized force fields have not been
tuned for and thus do not yield accurate results.
With advances in computational hardware and GPU-enabled

quantum chemistry software, such as TeraChem,141 it has
become feasible to parametrize hundreds of small molecules
as commonly required each week in drug discovery
programsindividually based on detailed quantum chemistry
calculations: a complete force field parametrization of a small
molecule may be performed in approximately 1 GPU-h. Such
bespoke molecular force fields help to avoid gross para-
metrization errors and often lead to improved free energy
results.
One common type of error in force field parametrization is

in the torsional parameters that determine the potential
energies at different torsional angles of a rotatable bond in the
molecule. For example, a biphenyl system with substitutions at
the ortho-, meta-, and para-positions can substantially perturb
the torsional energy profile around the bond connecting the
phenyl rings, and the perturbation depends strongly on the
position and the moiety of the substitution. As a demon-
stration of the benefit of refitting the torsional parameters to
the quantum chemistry calculations of the torsional energy
profile, Figure 2 shows the hydration free energies computed
for a set of alcohol molecules, comparing the generalized
GAFF2 and the bespoke force field in which the torsional
parameters are refit; the latter significantly improves the
agreement between the predicted hydration free energies and
the experimental measurements.
Generalized force fields sometimes fail to capture the

electrostatic potential around the molecule. A well-known
example is the σ-hole in aromatic halogens,143 in which a
“hole” of positive potential along the carbon−halogen bond
cannot be reproduced by the common atom-centered charges.
Inclusion of off-atom-center charges, or virtual sites, is an
effective approach to resolving such discrepancies. Such virtual
sites for select functional groups are now finding their way into
generalized force fields, but transferable parameters take
onerous efforts to derive. In contrast, they are straightforward
to parametrize for bespoke molecular force fields. Figure 3
shows how their inclusion in our bespoke force fields for
aromatic halogens and aromatic nitrogens improves the fit for
the electrostatic potential computed by DFT and for the
predicted hydration free energy.
Parametrizing bespoke molecular force field is associated

with a smaller computational cost than the binding free energy
calculations, yet they may significantly improve the predictive
accuracy. A number of automated tools for parametrizing small
molecules, including several in the public domain, have been
developed, such as CGenFF,135,136 GAAMP (https://gaamp.
lcrc.anl.gov/index.html), FFTK,144 and the tools developed by

Table 1. Mean Unsigned Error (MUE) in kcal/mol for 8 Protein Targetsa

method BACE CDK2 JNK1 MCL1 P38 PTP1B thrombin TYK2 mean

AMBER20 (this work) 0.88 0.93 0.73 1.30 0.79 0.79 0.39 0.93 0.84
FEP+ (Wang et al.121) 0.84 0.91 0.78 1.16 0.80 0.89 0.76 0.75 0.86
Cresset (Kuhn et al.116) 0.95 0.95 0.78 1.36 1.18 1.04 0.23 0.71 0.90
PMX (Gapsys et al.34) 0.84 0.68 0.80 1.23 0.77 0.90 0.77 1.01 0.88

aResults are presented for the work here and other recent relative binding free energy (RBFE) publications on the same data set.121 The AMBER20
results are an average of 10 independent runs using the smoothstep softcore SSC(2)58 and the GAFF2 force field. Results for each individual
perturbation, statistical errors across the 10 runs, correlation coefficients, and null model results can be found in Supporting Information.
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the OpenFF Initiative.145 We believe that automated programs
for bespoke parametrization will become the default option in
future applications of binding free energy calculations.
5.2. Protein Preparation. Protein structures must be

prepared prior to running MD free energy simulations. While
X-ray structures are the most common source of atomic-

resolution structures, the following guidelines also apply to
structures obtained by other means, such as NMR or Cryo-
EM. In general, structures must be prepared to add hydrogen
atoms, optimize hydrogen bond networks, remove atomic
clashes, in some cases insert regions missing from the
refinement, such as disordered loops, and perform other
operations that are not part of the experimental structure
refinement process. While the prerequisite for good system
preparation is generally accepted in the field, the specific steps
are not well-defined. Fortunately, many of the considerations
for BFE simulations are similar to those for other structure-
based approaches, like docking, and have been described in
detail in other works.146−148 Nonetheless, docking for BFE
simulations may entail additional considerations beyond
standard docking calculations for pose prediction or virtual
screening, as described in the Docking section below.
It should be noted that protein preparation can have a

significant impact on the quality of results and can introduce
artificial biases, especially in the case of retrospective validation
studies, as has been demonstrated for docking studies149 and
likely has similar issues in BFE calculations. After protein
preparation, including the following steps, it is recommended
to manually inspect the structure, run protein analysis
programs (e.g., PROCHECK,150 WHATCHECK,151 MolPro-
bity,152 and SurVol153), and perform MD simulations148,154 to
ensure stability of the system before running computationally
costly BFE simulations. For example, multiple short simu-
lations on different protein preparation states can reveal
problematic cases where there are large structural fluctuations,
degradation in secondary structural elements, or loss of key
binding site interactions.155 Additionally, such MD simulations
can be used to improve the overall protein structure.156−158

Details of the protein preparation capabilities and options for
AMBER20 can be found in the user manual (https://
ambermd.org/doc12/Amber20.pdf).

5.2.1. Hydrogen Bonds. Hydrogen atoms are not typically
present in experimentally determined structures (other than
those at resolution better than ∼1.0 Å) and, therefore, need to
be added computationally. The initial coordinates of hydrogen
atoms are inconsequential, as long as proper valences are
satisfied and subsequent sampling is performed. The
protonation state of titratable residues should be determined
for the pH of interest (typically this involves His, Asp, and Glu,
although this could be expanded to Lys and Cys). Additionally,
the two His tautomers should be sampled (proton on the Nδ,
Nϵ, or both). Programs, such as WHATIF,159 can be used for
this step, which can be augmented with pKa predictions
programs such as PROPKA.160

Once hydrogen atoms are added, the H-bond network
should be optimized by sampling 180° flips of the terminal chi
angle for Asn, Gln, and His, which significantly changes the
spatial H-bonding capabilities of the side chains, but does not
appreciably change the fit to the electron density. In addition,
hydrogens on hydroxyls and thiols should be sampled to
optimize the H-bond network. After the above steps are
completed, it is recommended to perform an analysis of the
structure to ensure a viable state has been generated.
Automated programs, such as WHATIF, PROCHECK, and
MolProbity,152 are useful for the analysis, although manually
inspecting changes in the atomic fit to electron density with
programs such as Coot161 is strongly recommended. If it is
unclear which states are correct, it is recommended to perform
modest MD simulations (on the order of 100 ns) and

Figure 2. Hydration free energies of molecules containing alcohol
functional groups. The bespoke force field uses the same parameters
for bond stretch, bond angle, and van der Waals interactions as
GAFF2. It derives the partial charges by fitting to the electrostatic
potential computed using restricted Hartree−Fock with the 6-31G*
basis set.142 The torsional parameters are then optimized to fit the
potential energy surface computed by B3LYP/6-31G** for
conformations generated at different torsional values of the rotatable
bonds. Refitting the torsional parameters improves the agreement
between the predicted and experimental hydration free energies.

Figure 3. Hydration free energies of molecules containing aromatic
halogens and aromatic nitrogens. Including virtual sites on the
halogen and nitrogen atoms improves fitting to the electrostatic
potential calculated by quantum chemistry and the agreement
between the predicted and experimental hydration free energies.
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structural analysis to determine the stability of the structures.
The aforementioned protocol for H-bond optimization is
necessary because sampling times required to overcome
sampling barriers needed to rectify an incorrect initial state
could be prohibitively long, and local denaturing of the protein
can occur in the process, which would take even more
sampling time to correct, if it could be corrected at all.
Nonetheless, if sufficient sampling time is achievable or
enhanced sampling approaches are available to solve this
problem, then simply adding hydrogen atoms as needed to
satisfy valencies for the pH of interest may be sufficient.
5.2.2. Waters. The treatment of explicit water molecules can

influence docking accuracy and enrichment results, as has been
extensively demonstrated by other works.162−167 Indeed, water
is the source of the hydrophobic effect168subtle changes in
waters can impact ligand binding energetics169 and even
reverse the thermodynamic signature of ligands binding to a
protein.170 The treatment of water molecules in BFE
calculations should be considered during the initial system
setup and during the alchemical simulations themselves. The
determination of which waters to retain during the setup of
BFE calculations is often unclear, primarily because not all
waters are present in crystal structures and even when there are
many waters, the free energy of a water molecule is not directly
related to the crystallographic occupancy. Furthermore, the
crystal structure being used might not correspond to the
specific ligand or ligand series being explored and therefore the
water pattern may be inaccurate.
In most cases, it is recommended that all crystallographic

waters are retained for the system setup, although the electron
density should be inspected to ensure that there is confidence
in the water presence. Even in cases where there are many
water molecules in the experimentally determined structure, it
is generally necessary to add additional water molecules before
MD simulations. Programs such as 3D-RISM,171 GCMC,172

JAWS,173 WaterMap,174 and other approaches175−178 can be
useful for this step, since it is generally a fast calculation relative
to the BFE simulations. Importantly, the method to place
water should be capable of solvating buried pockets that are
challenging to sample during the simulation time of a BFE run
due to large energetic barrier for entering/exiting the binding
pocket.
Once waters have been placed for the initial system setup, it

still might be necessary to explicitly sample waters (beyond
MD sampling) during the alchemical simulations. This is
especially important when dealing with regions of the binding
site that are occluded from exchange with bulk solvent, such as
fully buried binding sites or subpockets that are blocked from
bulk solvent exchange due to parts of the ligand that are not
being perturbed (in the case of RBFE). A combined MC/MD
method has recently been described and is available in
AMBER20,179,180 which allows water to equilibrate between
bulk and buried cavities. This method allows for partial water
densities during the BFE calculation by allowing the locations
and occupancy of buried sites to vary with λ in the course of
alchemical calculations. Other approaches, such as Grand
Canonical Monte Carlo (GCMC), have been proposed to
address buried water sampling in the context of alchemical free
energy calculations.181−183

5.3. Ligand Preparation. All-atom three-dimensional
(3D) ligands are required for RBFE and ABFE simulations.
As such, a critical issue to investigate before embarking on
computationally expensive free energy simulations is to

generate the correct ligand state (ionization, tautomers,
stereochemistry, etc.). Incorrect states could result in false
negatives (e.g., where a favorable H-bond cannot be made) or
false positives (e.g., where an incorrect H-bond is made). In
addition to calculating reasonable ligand states, it is ideal to
predict an energetic penalty associated with each state to
account for the energetic cost it takes to generate each state in
solution. This energetic penalty should then be added to a
computed free energy to get a final binding prediction.
Significantly, ionization and tautomerization energies are

absent from traditional molecular mechanics force fields, since
there are no terms for bond making/breaking. Some empirical
corrections are possible via methods like constant-pH MD, but
these may not be cost-effective for the large number of ligands
studied in a drug design setting. Although largely speculative at
this point, we suppose that advances rooted in quantum
mechanics or machine learning will be necessary for progress in
this area.

5.4. Docking. Docking is an essential part of binding free
energy simulations, while in theory the binding free energy
results should be independent of input pose, that assumes
sufficient sampling to explore all accessible poses with MD,
which would be prohibitively computationally expensive. As
such, it is critical to obtain a reasonable initial pose and in cases
where the bet pose is ambiguous, then multiple poses should
be pursued. The nature of the docking problem is different
between RBFE and ABFE (and different from docking as a
final calculation): For RBFE calculations a reference pose is
typically known and can be used to constrain the docking,
whereas with ABFE, there is typically no reference molecule
and therefore unconstrained docking is required.

5.4.1. Docking for ABFE. Docking for an ABFE calculation
can be quite challenging, especially if one does not have any
prior knowledge that can be employed when evaluating docked
poses. In addition to sampling the ligand conformation/
orientation, the receptor might undergo induced-fit.184 As
such, to generate a reasonable starting pose, it may be
necessary to induce the site.185 Numerous approaches have
been developed to address this issue ranging from employing a
softened nonbonded potential to alleviate the penalty of
protein−ligand clashes, followed by a robust protocol that
incorporates sampling different side-chain rotamers of the
receptor and redocking the compound to multiple receptors
(ensemble docking).186−188 Cases where large-scale backbone
motions are required to generate the correct binding pose still
remains a challenge for the field even when incorporating
enhanced sampling methods.
Fortunately, it has been shown that combining docking with

molecular dynamics (MD) to further refine the pose can be
beneficial.186,189 One attractive feature of coupling MD with
docking is that the receptor and ligand are sampled
simultaneously in the presence of explicit water, allowing for
the receptor to become induced in a physically meaningful
way. For example, one might generate N docked poses and run
a MD simulation in replicate varying the random seed to assess
pose stability. As an additional example, to prioritize poses for
more rigorous free energy simulations (e.g., ABFE), multiple
short MD simulations can be performed and the RMSD from
the docked pose can be utilized as a metric to assess pose
stability. Generally, low RMSDs are attributed to the ligand
making energetically favorable interactions within a targeted
site.190−192 It is important not only to consider the averaged
RMSD value but also evaluate the RMSD versus time as a
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ligand could have adopted a stable conformation that is
substantially different from (e.g., larger than 2.5 Å RMSD)
from its docked pose and remained there for the duration of
the simulation. Excluding atoms of the ligand that are very
solvent accessible from the RMSD calculation may also be
required. While MD refinement offers advantages over
traditional docking (protein flexibility, explicit water, etc.), it
does not contain a rigorous treatment of the binding
thermodynamics (e.g., no unbound ligand calculation) and,
therefore, should not be used as a final scoring estimator.
5.4.2. Docking for RBFE. Docking for a RBFE calculation is

theoretically simpler when compared to ABFE because of the
conserved binding mode of most congeneric molecules. The
technical challenges of constraining ligand atoms, especially
when done in a high-throughput automated fashion for drug
discovery, presents challenges. Core-constrained docking is
generally the most effective way to generate poses, which
requires a definition of the core atoms (either manually or
based on a maximum common substructure, MCS). As seen in
Figure 4, core constrained poses produce much cleaner

alignments, which facilitate the atom mapping and stability
of the perturbations in RBFE simulations. Open source
docking programs, such as rDOCK,193 support core con-
straints, although many commercial solutions are also available.
Common atoms shared between the lead and the candidate
ligand are constrained while the degrees of freedom of other
atoms are sampled during the docking calculation. It should be
noted that using an MCS is not always optimal, as the 2D
mapping does not ensure the correct 3D characteristics (see
section 5.5).
Steric clashes present another challenge when docking

ligands that do not fit into the rigid receptor and therefore
should be handled carefully. As a consequence of the core
constraints, significant protein−ligand clashes might be
unavoidable while still satisfying the core positional con-
straints. Generally, these types of issues can be resolved
through an energy minimization or short restrained MD
equilibration only allowing key atoms to move or redocking
the compound with a reduced number of constrained atoms.
Another important item to note is that if the protein residues
involved in the steric clash have to move significantly in order
to alleviate the clash during the minimization or MD
equilibration prior to running the RBFE calculation, then the
energy required to adopt this new protein conformation will
not be accounted for during the RBFE simulation, which could

possibly lead to erroneous results. Therefore, it may be
advantageous to make a series of smaller perturbations or
instead run ABFE.

5.5. Atom Mapping. For RBFE calculations, a critical step
is determining the relationship between atoms of the reference
and perturbed structure such that the common atoms
(“mapped” atoms) are linearly interpolated with λ and the
unmapped atoms are treated with a softcore functional form to
allow for their insertion or deletion. Theoretically, the best
atom mapping scheme is one that minimizes the thermody-
namic path between the two molecules, however there are
many factors to consider in practice such as atom type, bond
order, ring membership, chirality, and binding conformation.
Generally, topological similarity is assessed computationally

using a maximum common substructure (MCS) algorithm,
which aims to maximize the number of mapped atoms between
two molecules from a congeneric series.112 Many MCS
algorithms require specification of atom type, bond order,
and ring membership considerations to define the maximum
atomic overlap between molecules. Assuming perfect geo-
metric complementarity between molecules, mapping of atoms
that differ in type should maximize phase space overlap
between states by decoupling as few atoms as possible. In
practice, many times this is not the case due to conformational
differences between molecules that can lead to convergence
issues and large errors between neighboring λ values along a
thermodynamic path.
In some cases the mappings are clear, such as the

substitution of an aromatic para-fluorine for a para-methoxy,
where the fluorine and methoxy are the only unmapped atoms.
However, in other cases the mapping can be less clear (or even
ambiguous), such as bulky ortho/meta substitutions to a
similarly substituted phenyl ring. In addition, mapping of
atoms with different bond orders can be problematic as atomic
torsional preferences change between atomic environments
and such mappings should be avoided whenever possible.
The mapping of atoms within ring systems requires special

consideration and introduces a potential source of error
propagation if mapped inappropriately, such as allowing for
ring breaking/forming.3 As such, most atom mapping
protocols avoid ring breaking when possible. Previous
literature has demonstrated that bonded term contributions
from dummy atoms should cancel in RBFE simulations of the
bound and unbound states.194 Yet, if the conformational
ensemble of the molecule is significantly affected by the
remaining core atoms, as is the case for members of a ring, the
cancellation of error is no longer valid. It is for this reason that
large errors are often observed in RBFE calculations involving
ring breaking/forming, as the free energies are only collected
from a restricted and inaccurate conformational ensemble. To
address these conformational restrictions, recently a “soft
bond” potential has been added to the softcore functional form
and suggests that improvements to core hopping trans-
formations can be made. Still, more work is necessary to
demonstrate its utility across broad ring breaking/forming
scenarios.124

When performing manual RBFE calculations it is often
straightforward to determine the correct mapping between
ligands, especially if the binding poses are well determined.
However, manual mapping is tedious, time-consuming, and
error prone, especially when processing hundreds of molecules
on a weekly basis. As such, manual mapping is impractical in
drug discovery applications, where hundreds of molecules will

Figure 4. Example of ligand poses (purple carbons) docked (A) not
using core-restraints and (B) using core-restraints. Employing core-
constraints ensures that the binding mode is conserved between all of
ligands in a congeneric series.
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be explored on a weekly basis. There are programs that
perform automatic mapping, such as LOMAP,195 which
operates on 2D structures (typically using a 2D method such
as maximum common substructure). It should be noted that in
some cases the mapping is ambiguous based solely on the 2D
information, such as ortho substitutions to a similarly
substituted phenyl ring, as seen in Figure 5A. In this example,

the preferred conformation of the ortho methoxy substituted
molecule is forming an intermolecular hydrogen bond between
the amide nitrogen and the methoxy oxygen. However, the
bulky chloro substitution prefers an alternate conformation,
and using only 2D topological information the oxygen is
oriented toward the same substitution vector. Mapping issues
such as this will often lead to incorrect results due to the
unreasonably long thermodynamic path between the states (a
high-energy conformational transition would be required to
interconvert between the two states). Fortunately, mapping
based on 3D poses would yield the correct result, as seen in
Figure 5B. As such, it is highly recommended to perform atom
mapping using accurate 3D poses when possible.
To our knowledge, there is currently no widely adopted tool

for atom mapping based on 3D poses. A sensible approach is
to align the two moleculessay, A and Bin their binding
poses and preferentially map each atom in A to an atom in B
that is spatially close. This may be formulated as a discrete
optimization problem: one can define a quantitative measure
of spatial overlap between each pair of atoms, and then find the
graph-isomorphic mapping that maximizes the total overlap of
the mapped atom pairs. We anticipate that such 3D atom
mapping tools will eventually replace the current 2D atom
mapping tools.
5.6. λ Schedule. Alchemical BFE simulations are

performed by defining a transformation (e.g., between two
different bound ligands). The extent of the transformation is
defined in terms of a coupling parameter, usually denoted as a
value λ between zero and one. As such, the intermediate steps
involved in the perturbation are often referred to as “λ values”
or “λ windows”. We use the term “λ schedule” to refer to (1)
the number and placement of the specific values included in
the simulations and (2) the functional form of the coupling in
terms of λ (e.g., use of a softcore potential). One would like to
choose the λ schedule in an optimal way. The answer to this
problem is strongly dependent on the methodology being used
and decisions to be made by the practitioner. In what follows
we will assume that a conventional alchemical approach is
being used and that multiple λ values will be chosen with
simulations carried out at each value with λ held fixed. Other
simulation approaches may permit variation in λ either as a
discrete196 or continuous197 quantity, but these are currently

outside the scope of what constitutes a best practice in
AMBER.
In general, the aim is to have enough, but not too many, λ

windows in order to obtain sufficient accuracy at the lowest
possible cost. From the perspective of TI, this means sampling
the integrand more densely in regions where the curvature
changes rapidly and possibly spacing the values so as to abide
by a numerical quadrature rule. In the context of FEP-like
protocols (e.g., MBAR), this means choosing neighboring
sampling distributions to achieve minimum variance behavior
with respect to a set of Monte Carlo moves (see, for example,
the overlap metric introduced by Bennett7). Optimizing
according to either of these schemes requires a priori
information. Lacking this advantage, the most straightforward
approach is to use equally spaced values and a generic
quadrature scheme such as the trapezoidal rule. In this case, TI
essentially reduces to a piece-wise linear approximation of the
integrand and is roughly equivalent to approximating the
neighboring sampling distributions as Gaussians.198 Using this
approximation can still provide good results for calculations
where the lambda spacing is small enough to capture the
essence of the variations in the integrand with lambda
throughout the full λ = [0,1] trajectory.
Interestingly, for simple transformations that only add,

remove, or change a charge distribution in a limited volume
the TI integrand tends to be approximately linear or perhaps
cubic199 (Figure 6, top row). This follows from a Born-like

linear response model where a charge or point dipole is
introduced into a spherical cavity in a homogeneous dielectric
environment.198 In this case, the integrand may be extremely
linear and well-behaved and only a few λ values could be
required (only two points are needed to accurately integrate a
line). Any additional curvature tends to occur near the end
points, although the general prescription is to focus λ values

Figure 5. Potential mappings using (A) 2D or (B) 3D information
related to differing ortho substitutions on a terminal phenyl ring.

Figure 6. Representative TI integrands for different λ schedules used
in binding free energy calculations. The shape of the curve is highly
dependent on the use of a single step versus multistep protocol. For
simple charge changing transformations the curves may have a near
linear character (fit dashed lines). The number of atoms being
transformed (e.g., RBFE versus ABFE) also has a strong effect (left
and right columns, respectively). The specific transformations are the
Tyk2 ejm-47 (ABFE) and p382v→ 3fhm (RBFE) perturbations from
the Wang et al. data set.121 The specific coupling protocols are as
outlined in section 2.3. Note that discharge and recharge use opposite
conventions for direction (λ = 1 is fully coupled for discharge and λ =
0 is fully coupled for recharge).
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where the slope is largest (usually at intermediate values).198

Strong deviation from linearity could simply indicate that the
charge change is occurring over a large extent and the linear
response character could be breaking down. An approach that
still samples intermediate values is thus recommended in
general, rather than assuming linearity. We have found that as
few as five λ values can give reliable results for small
perturbations (assuming other sources of error are considered,
as discussed below). Indeed, it has been shown that in some
scenarios a one-step λ schedule can be sufficient to achieve
accurate binding free energy predictions,200−202 although such
cases of very small perturbations provide insufficient coverage
of chemical space to have high impact for most drug discovery
applications.
More complicated transformations, especially those that

introduce short-range repulsive interactions, are by far the
most difficult to handle (Figure 6, bottom row). The Lennard-
Jones potential is widely understood to introduce large
variance and/or singularities which were originally overcome
by introducing many finely spaced λ values near (but not at)
the end point. This approach was supplanted by the
introduction of softcore potentials which tend to redistribute,
but not entirely eliminate, the higher variance across the more
intermediate points. The variance of the result is generally
proportional to the size of the chemical group being
introduced. For example, one should expect higher uncertainty
from an ABFE calculation of a drug-like molecule compared to
removing/inserting a small chemical moiety onto a ligand
scaffold. Unfortunately, introducing many additional λ values
does not seem to mitigate this issue beyond a pointone only
needs enough values to capture the shape of the integrand.
This is because the insertion of uncharged, repulsive
interactions generally leads to configurations of low physical
relevance and so the variance is inherently a sampling issue.
When time and resources are available, then more λ values can
be added to enhance overlap between adjacent windows and
thereby improve reliability of results.83,202

5.7. ABFE Pose Restraints. The purpose of pose restraints
in ABFE is to hold the ligand in the binding pocket when the
interactions are scaled to extremely small values (or zero). At
the same time, the restraints can also be interpreted as def ining
the bound microscopic state.125,128 Therefore, a reasonable
criterion is to require that the restraints impose an orientation
that is similar to the fully interacting ligand. Put another way,
the restraints should approximate the potential of mean force
of the physical system. A similar perspective has been offered
in several theoretical frameworks125−128 and more elaborate
choices than the one described here could also be employed
using AMBER. In general, the assumptions here hold for
relatively strongly bound compounds and different restraint
protocols may work better in other regimes.
A procedure that we have found effective is to first perform a

relatively short (∼5 ns) nonalchemical simulation of the
ligand-protein complex. We then search for relatively sta-
tionary points on both the ligand and receptor that can be used
to define both their relative orientation as well as the internal
conformation of the ligand, as described by Kim et al.131 For
proteins, we look for low-mobility, buried residues by
searching for minimal solvent-exposed surface area over the
course of the trajectorythe α-carbons of these residues are
then considered good candidates, but other choices are
certainly possible (e.g., the backbone center of mass). For
ligands, we look for heavy atoms within rigid scaffold motifs

such as fused ring systems or the central core of the ligand.
One should be careful not to select multiple atoms within a
rotatable torsion, otherwise one might “lock-in” the config-
uration and induce nonergodicity. Candidate coordinates can
then be created from both groups and the six terms (one
distance, two angles, and three dihedrals) can be tracked over
the trajectory.
The ideal coordinates are unimodally (perhaps Gaussian)

distributed and have low variance. In AMBER it is also useful
to avoid overly long distances (<30 Å, say), noncolinear angles
(far from 0° or 180°), and dihedrals that are from the periodic
boundary (i.e., not near ±180°). Any combination of atom or
point selections that fit these criteria should constitute a
reasonable set of restraints.

5.8. Periodicity and Charge Corrections. The use of
periodic boundary conditions (PBCs) has long been known to
introduce subtle artifacts in MD simulations. However, the
alternative of no boundary conditions is generally not preferred
because it would induce artifacts of a different nature (and
larger magnitude). While some methodologies may avoid
different issues, the general philosophy in AMBER is that the
PME scheme for PBCs is the best compromise between
accuracy and efficiency.44,45 In current AMBER20 implemen-
tation, the thermodynamic derivative of the PME reciprocal
part is calculated in the linear way (eq: UL, i.e., the PME
reciprocal calculations are only done on the end states and the

Ud
dλ is the difference of the PME reciprocal energies of the

end states. This approach is simple but requires two PME
calculations per MD iteration.
Nonetheless, specific care must be taken in alchemical

simulations and the issues are unusually pronounced for
alchemical transformations that do not conserve the net
charge. Rocklin et al.203 recently catalogued these issues with
an eye toward alchemical ABFE calculations and proposed
specific approximation schemes for correcting them. A follow
up work by Chen et al.204 also examined the Rocklin
corrections in the case of RBFE, along with other possible
solutions. These issues are briefly described here.
The most significant artifacts due to PBCs arise from the

mean electrostatic potential definition imposed by PME. An
extensive review has been supplied by Lin et al.205 This term is
normally innocuous, as it amounts to a simple shift in the zero
of energy and does not affect forces. However, alchemical
simulations are extremely sensitive to arbitrary shifts in the
zero of energy as this effectively shifts the binding free energy
of a ligand based purely on the system charge. Following Lin et
al., the artifact can be considered as the work required to move
a charged species across the boundary between a solvent and
vacuumclearly no such boundary exists under PBCs and so
this contribution is missing. Rocklin et al. refer to this shift as
arising from a residual integrated potential (RIP), as it
corresponds to the energy “left over” when a charge species
is removed from a PBC box. The RIP energy is proportional to
the integral of the mean potential over the whole volume. Lin
et al. describe how a correction can be approximated a
posteriori from the spatial electrostatic potential averaged over
a trajectory and then integrated over the box. Fortuitously,
along with others,204 we find that the approximate Poisson−
Boltzmann scheme proposed by Rocklin et al. provides
reasonable corrections based on only a single structure. In
practice we see minimal statistical noise of ∼0.1−0.2 kcal/mol,
which is quite acceptable given the expected accuracy of ABFE.
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Other PBC-based corrections are possible but generally
much smaller in magnitude than the RIP correction.203 The
net charge interaction and solvation correction terms are
generally quite small and only depend on the magnitude of the
charge change and box size/shape. Another term unrelated to
PME but dependent on charge is the discrete solvation
correction, which is meant to compensate for the distortion in
solvent structure when, for example, water molecules interact
with their overly ordered image counterpart. Interestingly, this
term can be quite large for a given ligand−receptor complex
(∼10−20 kcal/mol), but it is generally much less sensitive to
the differences between the ligand bound and unbound states
and so tends to cancel extensively. Note, some care must be
taken because the correction depends on the specific nature of
the solvent model (namely, the charge distribution).
5.9. Confidence and Error Analysis. As has been amply

discussed above, there are numerous reasons that a BFE
prediction may be incorrect. False positive predictions
(compounds predicted to be good that are not) can be costly
in drug design projects, where synthesizing an inactive
compound can cost thousands of dollars and weeks of lab
work. Therefore, one should leverage the relatively low cost of
additional simulations to establish confidence (or lack thereof)
in a prediction. Here, we suggest several best practices for
appropriately assessing the quality of binding free-energy
predictions, as well for building more robust hypotheses
around the chemical matter surrounding a target. Other works
have discussed techniques for confidence assessment and error
analysis in binding free energy calculations,206 including ways
to improve free energy predictions by meaningful error
estimates.79 Sources of errors can also be attributed to
validation data sets and data set biases, as examined in detail
elsewhere.207 Below we discuss ways to assess some of the
most common sources of errors in BFE calculations, including
statistical analysis, structural analysis, binding pose uncertainty,
sampling, and force fields.
5.9.1. Statistical Errors. There are two main sources of

random error in free energy estimates in addition to the
systematic error related to the quality of the model potential
energy function. These contributions are

(1) The uncertainty in the ensemble average quantities due
to fluctuations in the observed sample distribution.

(2) The uncertainty caused by approximating the true
distribution via finite-length simulations.

The uncertainty of the ensemble averages within the
observed distribution can be estimated by considering only
the statistically significant samples to calculate the standard
error of the mean. The statistically significant samples are those
data points separated in time by at least the autocorrelation
time of the time series. Upon pruning the correlated data of
observable x, the sample standard deviation σx is calculated,

and the standard error of the mean is then N/x x x
2σ σ=⟨ ⟩ ,

where Nx is the number of statistically independent samples of
x. For TI calculations, the observables are the time series
values of ∂U/∂λ. The estimated error in the free energy due to
the uncertainty within the observed distribution requires the
calculation of the standard errors σ⟨∂U/∂λ⟩λ and propagation of
these errors through the quadrature formula, that is

wG
i

i U
2

/
2

i
∑σ σ= λΔ ⟨∂ ∂ ⟩λ

(17)

Shirts and Chodera developed an analytic expression for the
(large sample size) free energy errors calculated from the
MBAR method, which is more complicated due to MBARs use
of coupled equations.9

An alternative approach for calculating the standard errors is
bootstrapping. The bootstrap algorithm requires one to
generate many estimates of the free energy and then calculate
the standard deviation of those estimates, which is the standard
error of the mean. To generate many estimates of the free
energy, new time series values are artificially created by
resampling the observed distribution with replacement. That is,
if the observed distribution contains N data points, then a
bootstrap distribution containing N points is created by
randomly selecting samples from the observed distribution. In
the case that the observed distribution contains correlated data,
a block bootstrap algorithm can be used. The block bootstrap
algorithm differs only by grouping the observed data into
consecutive segments, such that the length of each segment is
at least as long as the autocorrelation time of the data. The
bootstrap distributions are then generated by randomly
selecting blocks from the observed distribution. In general a
block bootstrap error estimate will be greater than that from
the standard algorithm and the ratio of the two estimates can
be a used as a rough estimate of the autocorrelation time.10

The second source of error in free energy estimates arises
from insufficient sampling, such that the observed distribution
is not reflective of the true distribution.208 To estimate the
magnitude of this error, one can repeat the simulations with
different initial conditions and calculate the standard error
across independent trials. This strategy has been called the
“ensemble average approach”.209−212 It has been suggested that
the length of each simulation should be at least 50 times the
length of the autocorrelation time of the data. Unfortunately,
autocorrelation times are largely system-dependent and so this
is difficult to verify in practice. For example, it was found that
∂U/∂λ had an autocorrelation time of up to 3 ns in charge-
changing pKa simulations of base pairs,52 whereas autocorre-
lation times between 1 and 2 ps in solvation free energy
bookending simulations.60 Finally, it is worth noting that
Hamiltonian replica exchange between λ-simulations has been
shown to reduce autocorrelation times and improve the
reproducibility of free energy estimates between independent
trials.52

Perhaps the simplest (although not always sufficient) way to
create an ensemble of simulations is to repeat a calculation
with the same initial structure but different random seed. This
behavior has long been the default in AMBER when repeating
a simulation with a stochastic integration scheme. If one or
more simulations initiated from the same configuration but
using different seeds do not return similar answers, then it is
likely that the simulations are of insufficient length. As always,
one should be cautious of the false negative rate of this
approach and collect as many repeats of appropriate length as
can be afforded in order to obtain the necessary accuracy. For
example, in the limit of many infinitesimally short simulations
this approach would (very probably incorrectly) suggest that
no convergence problems exist.

5.9.2. Structural Analysis. BFE simulations are only
accurate if the calculations sample important states and
transitions. If one could sample infinitely, then it would be
relatively simple to calculate a binding coefficient by directly
counting transitions from a bound state to an unbound state.
The difficulty is that the transitions themselves are quite rare
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and therefore require exceedingly long simulations to observe
sufficient transitions to accurately calculate the binding
coefficient. Indeed, the real time scale of binding events is
generally of the order of microseconds or longer. This is
currently inaccessible on commodity computing architectures
and can only be accomplished with modest throughput on
purpose-built or leadership computing platforms.213,214 For-
tunately, the thermodynamics of binding can be recapitulated
by exclusively sampling the alchemical (as opposed to
conformational) transition between the states. The problem
then becomes a much more tractable issue of correctly
characterizing these two specific states.215

It is important to ensure, as a basic test, that the protein and
ligand are bound for the duration of the complex phase of
simulation. This can be done by computing the root-mean-
square deviation (RMSD) or center of mass (COM) motion of
a ligand in a pocket relative to that of the protein. That is, these
quantities should be computed once the translational and
rotational motion of the protein have been minimized via rigid
transformations of all coordinates. If the RMSD or COM
motion of the ligand deviates significantly then the ligand has
likely fallen out of the pocket.
Another test that can be done to ensure the consistency of a

binding calculation is to examine torsional profiles of the ligand
and perhaps even proximal protein side chains. As a general
rule, one expects more flexibility from a ligand in solution. As
such, comparisons between bound and unbound simulations
can easily expose obvious under-sampling when the torsional
populations appear to be completely uncorrelated. Of course,
even when sampling is sufficient the overlap need not be
exactly identical because the protein binding pocket will impact
the relevant configurations in the bound state relative to the
unbound state. If there is reasonable confidence in the
sampling, then differences between the torsional profiles can
also be used to identify specific interactions in the protein.
Additionally, it is important to check dihedral profiles

between independent runs, since rare transitions involving
hidden high energy barriers may need to be captured to get a
truly accurate binding free energy calculation. This can simply
be done by extending your simulation time or, in difficult cases,
applying enhanced sampling techniques. A number of
enhanced sampling methods are available in AMBER20, such
as Gaussian Accelerated MD (GaMD),216 the replica exchange
version of GaMD (rex-GaMD),217 and the recently introduced
Ligand Gaussian Accelerated Molecular Dynamics (LiG-
aMD).218 Other enhanced sampling methods, such as replica
exchange with solute tempering,219,220 will be available in
future versions of AMBER. Other methods for enhanced
sampling, such as umbrella sampling,221,222 metadynam-
ics,223,224 and adaptive biasing force,109,225 could be employed,
although such methods rely on the definition a collective
variable (CV) prior to simulating the system.
5.9.3. Multiple Poses. Similar to using multiple random

seeds, it is also possible to use variations of the input poses. In
cases where there is an unambiguous pose for each ligand,
small variations in the poses can still provide insights regarding
the local convergence of the BFE simulations. Multiple poses
can be generated many ways, such as saving multiple poses
from the docking program, using different docking programs,
subjecting a pose to different minimization routines, or
minimizing with different force fields. Such deviations act in
a similar way to random seeds, although due to the slight

variation in initial coordinates, simulations can sample
significantly different portions of phase space.
In cases where the poses are ambiguous, it is necessary to

run BFE simulations in each of the viable poses and combine
the results. Multiple possible ligand poses may be encountered
throughout a drug design project, especially during hit finding
or early lead optimization when detailed and trustworthy
structural data may not be available via experimental or hybrid
means (e.g., homology modeling). Since the docking scores are
often only weakly correlated with the true binding affinities,226

a subsequent binding free energy assessment can provide
valuable information. After an initial test that the binding poses
are in fact stable (see section 5.9), free energy simulations can
be launched from each of the viable poses.
A few scenarios are possible when running simulations from

multiple poses:

(1) the poses interconvert and yield the same free energy
(2) the poses interconvert and do not yield the same free

energy
(3) the poses do not interconvert and do not yield the same

free energy
(4) the poses do not interconvert but still yield the same free

energy

If interconversion does occur, then the presence of multiple
poses could imply complex dynamics that may offer a useful
guide for assessing sampling in other ligands. If one gets the
same free energies from different poses (scenario 1), then
sufficient sampling can generally be assumed. If different free
energy predictions are produced in the separate interconvert-
ing simulations (scenario 2), then likely a hysteresis issue has
been uncovered, suggesting insufficient sampling.
If interconversion does not occur then it is possible that a

particular pose is not physically relevant or that the energetic
barrier between poses is too large to overcome within the
simulation time scale. Poses like this can be identified based on
having significantly different binding affinity predictions
between them (scenario 3). In this case, the more favorable
free energy state is most probably the correct (or most
relevant) state (assuming that the pose for the reference ligand
is correct, in the case of RBFE simulations). Finally, if the
poses do not interconvert but the free energy estimate is the
same or similar (scenario 4), then a correction should be made
to account for the multiple states. For poses giving rise to
separated states one can use a simple discrete model (more
sophisticated alternatives have also been reported126,128). For
N different poses with binding free energies ΔGi (i = 1, ..., N),
the corrected binding free energy ΔGcorr across all states is

G p G p pln
i

N

i i
i

N

i icorr
1

1

1

∑ ∑βΔ = Δ +
=

−

= (18)

where β is 1/kT and the probabilities pi are the normalized
Boltzmann weights for the ith pose
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N G
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∑

β

β

− Δ

=
− Δ

(19)

The first term is just a weighted average of the binding free
energies for each state (pose) while the second term is the
entropic contribution. In the special case that all the ΔGi are
the same, one obtains pi = 1/N and the second term is simply
β−1 ln N. In the case that one pose is considerably more
favorable than the others, it will dominate the first term but not
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the second. A more detailed discussion, including expanded
variations to the expression for ΔGcorr, is provided else-
where.126,128

In the case, where interconversion between poses takes place
in a subset of the λ windows, special care should be taken to
understand the nature of the poses and the relationship
between them. While differential interconversion is expected in
different λ windows due to differences in the Hamiltonian, it
may also indicate insufficient sampling. In such cases,
employing a Hamiltonian replica exchange approach may
improve results (or indicate that the differential interconver-
sion is not an issue).104 Alternatively, methods can be
employed to directly sample the transition between the states
using an alchemical227 or Monte Carlo approach.228

5.9.4. Reversibility and Hysteresis. A related concept to
using multiple poses arises in RBFE calculations when a
reference compound (e.g., one observed in a crystallographic
structure) is used to dock a candidate compound but multiple
orientations are returned. In theory, a free energy simulation
should yield the same result no matter which compound is
alchemically morphed into whichany discrepancy likely
implies a sampling issue. The two may also differ if the
candidate is suitably different in character from the reference as
to take on a completely different pose and/or induce a
conformational change in (part of) the protein. These two
scenarios can be difficult to tell apart when the ligand
perturbation is spatially quite large.
5.9.5. Force Field Variations. Unfortunately, sampling

issues, whatever the cause, are not the only concerns when
assessing confidence and error estimationthe details of the
force field can preordain a calculation to yield an inaccurate
outcome, no matter how much care is placed on the other
steps (garbage in, garbage out). Ideally, one would be able to
probe specific characteristics of a model. What is the extent of
charge “prepolarization”? Which torsional populations are
dominant? How close are specific van der Waals contacts?
Unfortunately these are rarely clear-cut knobs that the user can
dial up and down, but it may be possible to correlate them
roughly with a family of force fields. While it may not be
possible in all cases, it can be informative to repeat a simulation
with a different force field model of the ligand and/or protein
(our experience is that solvent models display less sensitivity,
at least on short time scales). A useful practice is to reserve this
strategy for extreme predictions (e.g., ligand modifications >2
kcal/mol more or less favorable than the reference). If such
outcomes are reproducible, the result may be due to a
fundamental bias in the force field. For example, excessive
polarization may lead to overstabilized hydrogen or halide
bonds or an unusual torsional profile might favor an
implausible conformation. Rough consensus across multiple
force field models can be a source of higher confidence or else
an indication that a trend is qualitatively, but not quantitatively
correct.
There are a number of force fields available in AMBER for

proteins, nucleic acids, carbohydrates, lipids, solvents, and ions
(for details about recommended available force fields, see the
AMBER20 manual http://ambermd.org/doc12/Amber20.
pdf). Additionally, variants of the general AMBER force field
(GAFF133 and GAFF257) are available for nonstandard
residues including drug-like molecules and modified amino
acids. For protein systems, the Stony Brook (SB) family of
protein force fields (ff19SB,229 ff14SB,230 and ff99SB231) are
the most commonly used in AMBER. For organic drug-like

molecules, GAFF257 is the latest version of the generalized
AMBER force field. Additional details can be found in the
AMBER20 manual.
Here, we specifically suggest that lack of consensus in BFE

calculations among different force fields is a red flag and should
be investigated further. In some cases a particular force field
may be significantly better than another for the ligands of
interest, in which case differences in results would be expected
(and results from the better force field should be more
trusted). However, when results vary and it is not clear which
force field is better, it is not obvious to us that there is a general
course of action to take other than to increase scrutiny of the
results. Recently, Gapsys et al.34 proposed a consensus method
using multiple force fields that improved results in certain
situations. This may be a profitable avenue for future research.

6. FUTURE WORK
There are a number of areas that will be the focus of new free
energy developments for drug discovery in AMBER driven by
academic-industry partnership. These include the development
of new force fields (QM, MM, and machine learning),
enhanced sampling methods (both in the λ dimension as
well as conformational degrees of freedom), improved
alchemical transformation pathways, and optimization of
RBFE networks (including integration of experimental
constraints). These are briefly summarized below.

6.1. MM → QM Bookending Approaches. The robust
prediction afforded by alchemical free energy methods in drug
discovery presents considerable challenges for conventional
molecular mechanical (MM) force fields.232 This is due, in
part, to the need to test chemically diverse molecules for which
tested parameters may not exist.3 Modeling certain types of
electrostatic interactions, such as σ holes and cation−π
interactions are especially challenging for point charge and
multipole models. Further, the process of drug binding
involves a considerable change in the molecular electrostatic
environment that requires explicit consideration of electronic
response for high accuracy. Finally, the modeling of complex
interactions of metal ions and formation/cleavage of chemical
bonds for covalent inhibitors demands a more sophisticated
quantum electronic structure treatment. Quantum mechanical
(QM) methods, if made sufficiently fast to be computationally
tractable, offer a potentially transformative solution to these
problems.
In this regard, one could argue that practically every

alchemical free energy prediction used in drug discovery could
potentially benefit from accurate QM methods. In addition to
the general cases described above, particularly prominent
examples that demand QM methods include systems, such as
metalloproteins where drugs target inner-sphere coordination
to the metal centers, and in general highly charged systems
(including RNA targets) or systems that involve charge-
changing transformations (including protonation/deprotona-
tion events) that exacerbate the need for many-body
polarization and charge transfer effects. As these QM methods
are still in early stages with respect to their application to drug
discovery in alchemical free energy simulations, it remains to
be seen the degree to which they may have impact and over
what range of targets and drugs.
Free energy simulations with combined quantum mechan-

ical/molecular mechanical (QM/MM) potentials or fully
quantum mechanical force fields (QMFFs), if made sufficiently
fast to be computationally tractable, offer a potentially
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transformative solution to these problems.233−238 Quantum
models, if made affordable, are thus highly attractive for drug
design applications owing to their accuracy, robustness, and
lack of adjustable free parameters relative to MM force
fields.239

A common strategy to efficiently correct is to perform the
alchemical transformation with a MM method and then apply
MM → QM/MM free energy corrections to the end-states.
This is referred to as a “bookending”, “indirect”. or “reference
potential” approach60,240−252 The primary goal of these
methods is to indirectly estimate a free energy difference
between states A and B, ΔGA→B, using a computationally
demanding Hamiltonian by evaluating the free energy change
at a low-level of theory and then correcting for the free energy
difference associated with changing the Hamiltonian.
The bookending method development was motivated by the

idea of using QM and QM/MM Hamiltonians to improve the
accuracy of solvation and RBFE predictions.239 Bookending
methods circumvent a number of obstacles. First, the
alchemical transformation step often involves simulation of
several nonphysical intermediate states connecting the end-
states, and it may not be obvious how the nonphysical states
might be modeled with a QM Hamiltonian. For example, in
the case where atoms are deleted or inserted into the system,
one might have to contend with the idea of having a
noninteger number of electrons and partial nuclear charges.
Furthermore, alchemical thermodynamic pathways often
require a number of intermediate states, each of which
requiring a significant amount of sampling to converge the free
energy result, which would be prohibitively expensive with a
QM or QM/MM Hamiltonian. A bookending method instead
computes the alchemical transformation with a molecular
mechanical Hamiltonian method, where softcore potentials
have been developed and which are inexpensive enough to be
sampled. The estimation of the MM → QM/MM free energy
changes does not require simulation of alchemical systems; one
simulates the two end-states (A and B) using one-or-more
Hamiltonians that connect the low- and high-level Hamil-
tonians. It is important to choose the most compatible
reference (MM) potential for the particular high-level
Hamiltonian to avoid slow convergence of the Hamiltonian
free energy correction estimate.253−256 This has led to work
that sought to increase the distribution overlap between the
reference and high-level Hamiltonians,244,245,254,257−261 includ-
ing methods that perform ad hoc parametrization of the MM
reference potential via “force matching” to the QM/MM
potential.245,255,260−267

It is worthwhile to note that other methods have been
explored to reduce the number of energy and force evaluations
necessary to converge QM or QM/MM free energy estimates.
These include trajectory reweighting,251,268−271 the use of
frozen density functional approximations,272,273 integrated
Hamiltonian sampling,274 orthogonal space random walk
strategies,275 and paradynamics.258,276 Collectively, these
methods offer considerable promise to greatly improve the
accuracy and predictive capability of alchemical free energy
simulations with practical computational resources.
6.2. Further Softcore Improvements. 6.2.1. Modify the

Exponents in the Softcore Potential. We are exploring
different forms of the softcore potentials to obtain more
numerically stable and smooth results in TI, BAR, and MBAR
calculations. The general forms of “effective diatomic
distances” (eq 15) are
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for the Lennard-Jones and the Coulombic interactions,
respectively. In the current default AMBER softcore form, m
is 2 and n is 6. As mentioned earlier, now both rij

LJ(λ;αLJ) and
rij
Coul(λ;αCoul) are in exactly the same form and αLJ and αCoul are
unitless. (Note that αLJ is the same as the original α in
AMBER.) Hence, it is easier to explore and directly compare
different parameters. One obvious observation is that, in the
current form, a larger m or n will imply a shorter range of the
softcore effect. The current setting (m = 2, n = 6) will have
stronger short-range softness in LJ than in Coul interactions,
which could be one of the reasons that it is difficult to balance
them by only modifying α and αCoul.
We explored different combinations of (m, n), including (m

= 1, n = 1) and (m = 2, n = 2), incorporated with the
smoothstep function SSC(2) and the new softcore parameter
αCoul and the preliminary results are shown in Figures 7 and 8.

Figure 7 compares the current default scheme (m = 2, n = 6)
with (m = 1, n = 1) and (m = 2, n = 2) schemes with the
AMBER18 default β value (12 Å2) for (m = 2, n = 6) and αLJ =
1 for (m = 1, n = 1) and (m = 2, n = 2), with various α (the
same as αLJ in the new form) values. Figure 8 shows the same
comparison except β is the AMBER20 default β value for
SSC(2) scheme (50 Å2) and αCoul = 4. The preliminary results
shown in Figures 7 and 8 suggest that by modifying the
softcore exponents m and n, the imbalance between the LJ and
Coul interactions can be significantly reduced. We are
currently extending the verification to other more realistic
molecular systems.

6.3. λ-Scheduling with Smoothstep Functions. As
mentioned earlier, AMBER20 now provides λ-scheduling for

Figure 7. Comparison of ⟨dU/dλ⟩ curves from (leftmost column) the
original SSC(2) scheme with (m = 2, n = 6), from (middle column)
the modified SSC(2) scheme with (m = 2, n = 2), and from
(rightmost column) the modified SSC(2) scheme with (m = 1, n = 1)
(defined in eq 20). The β value is 12 Å2 and αCoul is 1. The molecular
systems are (upper row) the absolute hydration free energy of
diphenyltoluene, (middle row) the relative hydration free energy
between the Factor Xa ligand L51h and L51c, and (lower row) the
absolute hydration free energy of a single Na+ ion.
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flexible turning on and off for individual interactions at
different stages along the alchemical λ-axis, similar to other
simulation packages such as GROMOS92 and NAMD.84,122

The commonly used “stepwise” scheme is equivalent to
“schedule” the LJ and Coul interactions at different stages (e.g.,
in NAMD). Furthermore, the λ-scheduling can be applied to
bonded terms, that is, bond length, bond angle, and torsion
terms, so that the internal conformation of a disappearing
softcore region can be kept until very late in the λ
transformation, which could prevent or reduce the con-
formation sampling problems when the internal bonded terms
need to be scaled with λ. We are currently exploring different
λ-scheduling for different interactions to identify the best

scheduling that will deliver the most smooth and stable Ud
dλ

curves.
6.4. Enhanced Sampling. In the past few decades

methods have been developed that address the sampling
problem, such as replica-exchange molecular dynamics,
metadynamics, simulated annealing, and orthonomal space
methods. Major focus has been on enhanced sampling in the
conformational spaces. Nevertheless, with the rapid developing
advances in hardware and software, the MD-based free energy
methods become feasible and hence emerges the importance
of enhanced sampling in the alchemical space. On one hand,
enhanced sampling methods in the alchemical space concern
similarly as the counter methods in the conformational space.
They both need to have adequate space coverage to obtain
proper statistically meaningful ensembles and at the same time
need to reduce the time spent on the spaces that are not
critical for the desired properties. On the other hand, a
fundamental difference is that the free energy is a state
function; hence, theoretically, it is possible to reduce
alchemical sampling through efficient and theoretically robust
methods.

With the advanced methods recently implemented in
AMBER20 reported here, we are in a much better position
to explore various advanced enhanced sampling methods in the
alchemical space. For example, the developed SSC(2) scheme
is well suited for advanced λ-scheduling optimization and
enhanced sampling schemes in the alchemical space, where a
single-pass concerted λ transformation is desirable, including λ
dynamics,99−102 Hamiltonian replica exchange meth-
ods,91,103−107 adaptive biasing,100,108,109 and self-adjusted
mixture sampling110,111 methods. For the conformational
enhanced sampling at a given λ, the REST/REST2
methods277,278 have been shown to be very successful. We
are actively investigating possible incorporation of the SSC(2)
potential with these techniques.
Another approach is the use of Gaussian accelerated

molecular dynamics (GaMD) and its more recent derivatives,
particularly LiGaMD, as an enhanced sampling method-
ology.216,218 This methodology allows for a Gaussian boost
potential to be selectively applied to either the bonded terms,
nonbonded terms, and/or the potential energy. These can be
applied to the entire system or selectively to the ligand and its
contacts. This amount of control allows for faster sampling of
ligand binding states and to overcome high energy barriers. As
the methodology currently does not support λ scaling
simulations, we are actively investigating incorporating these
methodologies for TI and MBAR.

6.5. Force Field. Substantial progress has been made in the
parametrization of empirical molecular force fields, as manifest
in the consistent improvements in the agreement between the
predictions of molecular dynamics simulations and the
experimental measurements,279 including in the binding free
energies.116,140 The remaining journey to experimental-level
accuracy, however, is almost surely no shorter and no less
arduous than the road that has led us to where we are now.
Although further improvements in predictive accuracy are
expected from fine-tuning the parameters for the current
functional forms in the force fields, more substantive
modifications may be required to reach experimental level
accuracy.
It is now widely recognized that off-atom-center partial

charges are necessary to accurately capture the electrostatic
potential around a molecule.140,280−282 These off-atom-center
charges, referred to as virtual sites, are placed at a
predetermined position within a molecular frame defined by
a parent atom and up to three neighboring atoms that are
covalently bonded to the parent atom. The current AMBER
code only supports a limited number of ways for placing the
virtual sites, and refer to them as extra points (EP).
Generalized virtual sites, however, have been implemented in
a developmental branch of AMBER. Some new types of virtual
sites are shown in Figure 9 and will likely become available in
the next official release. To make the virtual sites truly useful,
however, substantial work is required to optimize their
locations and the methods to parametrize their charge values.
The short-range repulsive interactions between atoms have

commonly been modeled by a 1/r12 potential, which was
originally proposed for computational efficiency rather than for
physical accuracy. Buckingham suggested that the repulsive
potential due to the Pauli exclusion principle should resemble
an exponential, and he proposed the following potential
function as a substitute for the prevalent Lennard-Jones 12−6
potential:

Figure 8. Comparison of ⟨dU/dλ⟩ curves from (leftmost column) the
original SSC(2) scheme with (m = 2, n = 6), from (middle column)
the modified SSC(2) scheme with (m = 2, n = 2), and from
(rightmost column) the modified SSC(2) scheme with (m = 1, n = 1)
(defined in Eq. 20). The β value is 50 Å2, and αCoul is 4. The
molecular systems are (upper row) the absolute hydration free energy
of diphenyltoluene, (middle row) the relative hydration free energy
between the Factor Xa ligand L51h and L51c, and (lower row) the
absolute hydration free energy of a single Na+ ion.
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The Buckingham potential, first published in an article
authored by Buckingham and communicated by no other
than Lennard-Jones himself to the Proceedings of the Royal
Society of London,283−285 has found widespread use in
material science simulations. But its adoption in biomolecular
simulations is so far limited. It will be interesting to see
whether its more realistic description of the repulsive potential
can lead to more accurate binding free energy results.
In protein−ligand binding, the ligand molecule transfers

from the high dielectric environment of water to a different
dielectric environment of the protein binding pocket. This
typically induces a redistribution of the electrons in the ligand
due to molecular polarizability. Thus, at least in theory, a
polarizable force field should improve the accuracy of binding
free energy calculations.286 Polarizability can be modeled by
either inducible dipoles287 or Drude oscillators.288 So far,
however, polarizable force field models have not been widely

used in binding free energy calculations, due to both the
roughly 10- to 20-fold increase in the computational cost and
the difficulty in parametrizing the models.289 Nevertheless, it
will be worthwhile to keep an eye out for the development of
polarizable models290 and to implement them in AMBER
when the time comes.

6.6. Network RBFE. In a typical drug discovery project,
BFE is routinely used to compute the binding free energies of a
large numberusually 10−100 s in each batchof candidate
molecules against the same protein target of interest. There are
many ways to collectively compute these binding free energies.
Take a simple example of 3 molecules: A, B, and C. One can
compute the individual binding free energy for A (ΔGA) and
the relative binding free energies between A and B (ΔΔGAB)
and between A and C (ΔΔGAC), and then estimate the binding
free energies for B and C by ΔGB = ΔGA + ΔΔGAB and ΔGC =
ΔGA + ΔΔGAC. Alternatively, one can compute the individual
binding free energies ΔGA and ΔGB, as well as the relative
binding free energies ΔΔGBC and ΔΔGAC, and estimate the
binding free energies for C by ΔGC = (ΔGA + ΔΔGAC + ΔGB
+ ΔΔGBC)/2. Moreover, some of the calculations can be
allocated more simulation time than others, resulting in
different statistical errors in different calculations. Given a fixed
computational cost, there are infinite numbers of ways to
allocate them to the calculations of different individual and
relative binding free energy calculations. This poses an
interesting problem of experimental design: how to best
allocate the computational resources to the calculations so as
to minimize the overall statistical error in the estimated
binding free energies?
A number of approaches have been developed to address

this problem and to plan the binding free energy calculations
for a set of many (between 10 and 100) compounds against
the same target. The earlier approaches such as LOMAP195

aim to construct a network of relative binding free energy
calculations so that any pair of molecules can be computed by
combining the results of a small number of pairs of structurally
similar molecules and the binding free energy difference
between any pair can be computed by at least two different
combinations above. Subsequent works introduced rigorous

Figure 9. Seven types of virtual sites will be made available in a future
release of AMBER. (a) Aromatic halogens: fixed-distance VS from 2-
atom frame. (b) Aromatic halogens: flexible-distance VS from 2-atom
frame. (c) Aromatic nitrogens: flexible-distance VS from 3-atom
frame. (d) Aromatic nitrogens: fixed-distance VS from 3-atom frame.
(e) Aromatic nitrogens: fixed-distance-with-angle VS from 3-atom
frame. (f) Aromatic carbons: out-of-plane VS from 3-atom frame. (g)
Amines: in(out-of)-pyramid VS from 4-atom-frame. The virtual sites
are shown as cyan beads: P and fn (n = 1, 2, 3) are parent and frame
atoms to define virtual sites. The relative positions of the virtual sites
are specified by the illustrated geometric parameters.

Figure 10. RBFE results for CDK2 (16 ligands). The left pane computes each edge of the RBFE network from independent MBAR optimizations.
The center pane simultaneously optimizes all edges in the network, coupling the results through 22 cycle closure constraints. The right pane further
includes a constraint that forces the RBFE of “ligand 28” to match experiment.
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mathematical frameworks to minimize the overall statistical
error with respect to either the selection of computed pairs291

or the allocation of computational resources to each pair.292

Using these optimal allocations, the same level of statistical
precision may be achieved at half of the computational cost
compared to commonly used ad hoc allocations. Such
optimized network of binding free energy calculations may
help expand the number of molecules that can be characterized
by binding free energy calculations in each round of drug
design.
6.7. Network-Wide Free Energy Analysis. In the future,

methods will be explored that can incorporate known
experimental binding energies into RBFE networks to improve
the quality of the remaining free energy estimates. One idea for
achieving this is to incorporate constraints into the RBFE
calculations. Recently, the solution of the MBAR equations has
been re-expressed in terms of a nonlinear minimization of an
objective function, rather than having to solve a self-referential
set of equations.293 This re-expression of the MBAR solution
allows one to use nonlinear parameter optimization software to
minimize the objective function, where the parameters of the
optimization are the simulation free energies (to within a
constant). When a network of RBFEs are considered, one can
expand the optimization method by constructing a new
objective function that is a sum of objectives corresponding
to each edge of the network. Optimization of the objective
function sum is equivalent to the independent optimization of
each objective unless constraints are introduced that couple the
free energies between edges. An obvious set of constraints are
cycle closures that force the sum of free energies along a closed
path to be zero. Furthermore, if a partial list of known RBFEs
are experimentally known, then those free energies can be
included as affine constraints.
Giese and York have performed a preliminary, proof-of-

concept implementation of the constrained network MBAR
approach described above, and an example of its use is shown
in Figure 10 which displays RBFEs of ligands to the CDK2
protein. There are 16 ligands, and the ligand with the highest
experimental binding free energy was chosen to define the zero
of free energy. There are a total 22 cycle closure constraints
(11 constraints for the solution-phase network and 11
constraints for the CDK2-bound network). The image shows
that enforcing cycle closure constraints within the MBAR
optimization has little effect on the RBFEs unless an additional
experimental RBFE is included. In this example, the calculated
RBFE of “ligand 28” was constrained to match experiment. It is
noteworthy that the inclusion of the experimental RBFE
improves the prediction of most ligands because the calculated
RBFEs are highly coupled by cycle closures. If the cycle
closures were not included as constraints, then the
experimental constraint on “ligand 28” would only change
the result of “ligand 28”. Improvement to the correlation
coefficient (R) would still be made if a different ligand’s RBFE
was constrained to match experiment. The average correlation
coefficient of the 15 possible constraints (the “ligand 28”
constraint illustrated in Figure 10 is only one of the 15 cases) is
0.84 ± 0.02, which is a significant improvement relative to the
0.69 correlation coefficient obtained when cycle-closure and
experimental constraints are not enforced. Furthermore, the
average mean unsigned error is reduced from 1.0 to 0.6 ± 0.1
kcal/mol, and the average mean signed error is improved from
0.9 to 0.3 ± 0.2 kcal/mol.

7. CONCLUSION
In this work, we describe new features in AMBER20 for
performing GPU-accelerated alchemical binding free energy
simulations. We focus on features and functionality related to
drug discovery effort that arose from an ongoing collaboration
between the York Group, the Laboratory for Biomolecular
Simulation Research at Rutgers University, and Silicon
Therapeutics. We also describe the ancillary tools outside of
AMBER needed for preparing and analyzing alchemical
binding free energy simulations. We have attempted to note
the nuances associated with free energy simulations in the
context of drug discovery, especially regarding the balance
between ease-of-use and expert control. While automated
protocols can work, especially for highly validated protein
targets, each target presents unique challenges with respect to
free energy landscapes and intrinsic time scales for sampling
relevant protein and solvent motions. As such, currently the
best results can be obtained by experienced users with fine-
tuned control of the software packages that they use. Indeed,
while alchemical free energy simulations offer great value even
with current automated packages, it is important to note that
significant challenges still exist related to obtaining accurate
and robust binding free energy predictions for drug discovery
applications. We hope that this work has illustrated some of
the critical issues that should be considered and will help
educate the broader population of researchers engaged in the
use of binding free energy simulations in drug discovery and
related applications to emerging areas such as precision
medicine.
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W.; Whitesides, G. M. Mechanism of the Hydrophobic Effect in the
Biomolecular Recognition of Arylsulfonamides by Carbonic Anhy-
drase. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 17889−17894.

(169) Breiten, B.; Lockett, M. R.; Sherman, W.; Fujita, S.; Al-Sayah,
M.; Lange, H.; Bowers, C. M.; Heroux, A.; Krilov, G.; Whitesides, G.
M. Water Networks Contribute to Enthalpy/Entropy Compensation
in Protein−Ligand Binding. J. Am. Chem. Soc. 2013, 135, 15579−
15584.
(170) Fox, J. M.; Kang, K.; Sastry, M.; Sherman, W.; Sankaran, B.;
Zwart, P. H.; Whitesides, G. M. Water-Restructuring Mutations Can
Reverse the Thermodynamic Signature of Ligand Binding to Human
Carbonic Anhydrase. Angew. Chem., Int. Ed. 2017, 56, 3833−3837.
(171) Imai, T.; Kovalenko, A.; Hirata, F. Solvation Thermodynamics
of Protein Studied by the 3D-RISM Theory. Chem. Phys. Lett. 2004,
395, 1−6.
(172) Ross, G. A.; Bodnarchuk, M. S.; Essex, J. W. Water Sites,
Networks, and Free Energies with Grand Canonical Monte Carlo. J.
Am. Chem. Soc. 2015, 137, 14930−14943.
(173) Michel, J.; Tirado-Rives, J.; Jorgensen, W. L. Prediction of the
Water Content in Protein Binding Sites. J. Phys. Chem. B 2009, 113,
13337−13346.
(174) Beuming, T.; Che, Y.; Abel, R.; Kim, B.; Shanmugasundaram,
V.; Sherman, W. Thermodynamic Analysis of Water Molecules at the
Surface of Proteins and Applications to Binding Site Prediction and
Characterization. Proteins: Struct., Funct., Genet. 2012, 80, 871−883.
(175) Bodnarchuk, M. S. Water, Water, Everywhere··· It’s Time to
Stop and Think. Drug Discovery Today 2016, 21, 1139−1146.
(176) Nittinger, E.; Flachsenberg, F.; Bietz, S.; Lange, G.; Klein, R.;
Rarey, M. Placement of Water Molecules in Protein Structures: From
Large-scale Evaluations to Single-case Examples. J. Chem. Inf. Model.
2018, 58, 1625−1637.
(177) Mayol, E.; García-Recio, A.; Tiemann, J. K.; Hildebrand, P.
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