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ABSTRACT: We apply concepts of covariant and contravariant vector space in differential geometry and general relativity to
derive new, general, exact relations between potential of mean force and free-energy profile. These relations are immensely
practical in free-energy simulations because a full Jacobian transformation (which is usually unknown) is not required; rather,
only knowledge of the (constraint) coordinate of interest is needed. We reveal that in addition to the Jacobian determinant, the
Jacobian scale factor and Leibnizian contributions must also be considered, as well as a Fixman term with correct mass
dependence. Our newly derived relations are verified with new nontrivial benchmark numerical examples for which exact results
can be computed and compared with relations available in the literature that turn out to exhibit significant deviations from the
exact values.

Free-energy profiles derived from molecular simulations are
widely used in computational physics, biophysics, and

chemistry1−3 to provide valuable insight into biochemical or
physical events ranging from folding and conformational changes
in proteins,4,5 lipid-driven aggregation of nanoparticles6 to
chemical reactions7,8 that occur on material surfaces,9 in aqueous
solution,10 and in the catalytic active sites of RNA11 or
protein12,13 enzymes. Two of the most commonly applied
approaches for simulating free-energy profiles involve methods
based on reweighting biased probability distributions (e.g.,
umbrella sampling)14 and constrained mean-force (CMF)
samplings (e.g., blue-moon sampling).15,16 The former delivers
the free-energy profile directly from the (biased and piecewise)
probability distribution along the coordinate of interest, whereas
the latter relies on the relation between the free-energy profile
and potential of mean force (PMF), first introduced by
Kirkwood over three-quarters of a century ago,17 which
subsequently has become a central underpinning in free-energy
simulations (e.g., the two terms, “PMF” and “free-energy profile”,
are sometimes written as synonyms in the literature).
Advantages of constrained mean-force (CMF) sampling

approaches are that they have neither inherent assumptions
imposed by reweighting algorithms nor binning/overlapping
histograms, and they also do not require biasing forces/
potentials.14−16 Furthermore, it is trivial for the CMF simulations
to have identical numbers of samples (sample uniformly) at any
value of the coordinate of interest (e.g., the number of ‘rare’
samples at the transition state can easily be as many as the
number of ‘abundant’ samples at the ground state). However, in
order to exactly equate PMFwith the free-energy profile, wemust
consider the Jacobian contribution. Explicitly expressing the
Jacobian contribution for any curvilinear coordinate in analytical
form is not straightforward, and in practice, applications are

(thus) often limited to the use of fairly simple coordinates to
describe the events of interest.5,15,18

Substantial theoretical efforts have beenmade to generalize the
original Kirkwood relation and have led to different, sometimes
inconsistent relations between PMF and free-energy profiles
involving a discrepant relation with the integrated mean
Lagrange multiplier of the constraint and incorrect mass
dependence of the Fixman term.15−29 Further, there is a lack
of nontrivial numerical examples in which exact values can be
computed and thus can serve as benchmarks to rigorously test
different formulations.
In this paper, we first (I) reveal a new free-energy-profile term

contributed from Leibniz’s rule30 and then apply the equivalence
between the orthogonal covariant and contravariant vector space
from differential geometry and general relativity to (II) formulate
general equations for the Jacobian contribution to the free-
energy profile that requires knowledge only of the (constraint)
coordinate of interest (full Jacobian transformation is not
needed), (III) present the Fixman term with correct mass
dependence, and (IV) disclose a Jacobian scale factor term that is
required to exactly relate the integrated mean Lagrange
multiplier to the free-energy profile. All new results are compared
with those calculated from other relations reported in the
literature15−29 using new rigorous numerical examples that serve
as validation benchmarks.

I. LEIBNIZIAN CONTRIBUTION (FULL JACOBIAN CASE)
Suppose qξ is the generalized coordinate of interest for describing
a biochemical or physical process and is a member of at least one
complete set of curvilinear coordinates, say {q}N. Then, the
(canonical) free-energy profile as a function of qξ = ξ0 is
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where N is the number of degrees of freedom, β = 1/kBT,
kB is Boltzmann’s constant, T is absolute temperature, |J|⃡ is the
determinant of the Jacobian transformation J ⃡ for {q}N, dqN−1 is a
set of integration variables without dqξ, and C is a normalization
constant from integrating the entire momentum space. Note that
in this paper, integrals without explicit limits imply that the entire
space is integrated. Generalization of eq 1 to the isothermal−
isobaric ensemble is straightforward2,3,31 (and for cases in the
alchemical free-energy simulations,5 if the extended degree of
freedom, say qλ , is completely independent of the original
configuration space, such that its Jacobian scale factor is always
unity in the extended version of eq 1, then there is no Jacobian
and Leibnizian contribution in the following eq 2). Practically, it
is rare to determine the constant C because what we often care
about is the free-energy differences at various values of ξ0. To
exactly equate PMF with the free-energy profile in eq 1, we first
differentiate it with respect to ξ0:
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where ⟨...⟩ξ0 is the ensemble average over all configurations with
qξ = ξ0 (Supporting Information), lUm

and lLm are the upper and
lower integration limits for qm, respectively. Equation 2
establishes an important exact relation between free-energy
profile and ensemble averages (or mean values) of some physical
quantities.
The first term in eq 2 is the negative value of the mean force.

Integrating the first term over the coordinate of interest provides
us with the potential of mean force (PMF). The second term is
the contribution due to the Jacobian determinant. These two
ensemble-average terms are sometimes collectively referred to in
the literature as the mean value of “generalized force”, although
we avoid this designation in the present work.
The third term in eq 2, which is not found in the literature,

derives from the change of domains of {qm≠ξ}
N−1 with respect to

qξ, i.e., from Leibniz’s rule.30 This term arises in the Jacobian
transformation that induces coupling of the integration domains
between some coordinates in {q}N, and is herein referred to as
the Leibnizian contribution. In eq 2, we restrict ourselves to the
cases that if there are domains of qm≠ξ depending on qξ, then all
are functions of qξ only, independent of qj≠m,ξ. For all other
domains of qj≠m,ξ, even depending on qm≠ξ, as long as they are
independent of qξ, then we treat these domains as constants. A
general expression without such restrictions can be found in ref
30.
To demonstrate the importance of the Leibnizian contribution

in eq 2, we consider a three-atom system, initially involving nine
degrees of freedom: {xA,yA,zA,xB,yB,zB,xC,yC,zC}. But now the
motions of the two atoms: A and C are restricted such that they
are always located at the z axis with the values of R/2 and −R/2,
respectively, although their separation, R, is a variable. So the
degrees of freedom is now down to four: {R,xB,yB,zB}. We would

like to express these four degrees of freedom in terms of a set of
four elliptic coordinates {R,ξs,ξa,ϕ}, in which the coordinate of
interest ξa∈[−R,R] is ξa ≡ [xB

2 + yB
2 + (zB − R/2)2]1/2 − [xB

2 +
yB

2 + (zB + R/2)2]1/2. Note that ξa is an effective coordinate to
describe an atom-transfer reaction3,10−13,32 (from atom A to C),
and the domains for {R,ξs,ξa} are related. With the above
definition of the coordinate of interest ξa, and with a three-body
double-well potential and full Jacobian transformation available
in Supporting Information, the exact free-energy profile can be
directly calculated from eq 1.
Figure 1 shows that integration of eq 2 does give back the exact

free-energy profile in eq 1 but requires consideration of all three

(mean force, Jacobian, and Leibnizian) contributions.1 In this
example, neglect of the Leibnizian contribution disclosed in this
work leads to an overestimate of the free-energy barrier (between
minimum and maximum points) by about 25%.

II. ORTHOGONAL CONTRAVARIANT SPACE
FORMULATION (NO FULL JACOBIAN
REQUIREMENT)

To use eq 2, we have to express Cartesian coordinates {x}N and
then V in terms of {q}N for the instantaneous Jacobian and force
contributions, respectively. In the language of differential
geometry or general relativity, eq 2 is in the covariant vector
space representation.33 However, working in the covariant space
is often not practical since we usually only know the definition of
qξ in terms of {x}N, rather than having the ability to express all
{x}N in terms of {q}N.
It would thus be desirable to determine dGξ(ξ0)/dξ0 in the

contravariant space, which is the vector space expressing {q}N in
terms of {x}N. Note that if and only if qξ is orthogonal to the
subspace spanned by the rest of the coordinates, then the
covariant vector space for qξ is identical (or trivially related) to
the contravariant vector space for qξ.

33 We designate these vector
spaces as orthogonal covariant and orthogonal contravariant
spaces, respectively. Nevertheless, as long as qξ can be a member
of at least one complete set of coordinates, then the orthogonal
space always exists, because the rest of the subspace can be simply
adjusted to be perpendicular to qξ by orthogonalization.
In the orthogonal contravariant space, the unit vector for qξ is

1

Figure 1. Exact free-energy profile (eq 1) compared with integrated
mean force with and without Jacobian and Leibnizian contributions (eq
2). All plots are symmetric and anchored at zero value when ξa0 = 0.
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̂ = ∇⃗ |∇⃗ |ξ ξ ξq q q/ (3)

which is identical to the unit vector in the orthogonal covariant
space (Supporting Information). Similarly, in the orthogonal
contravariant space, the Jacobian scale factor for qξ is

1

= |∇⃗ |ξ
−

ξ
h qq

1
(4)

which is identical to the scale factor in the orthogonal covariant
space (Supporting Information). Notably, the Jacobian scale
factor in eq 4 is misinterpreted as the full Jacobian determinant in
ref 20. Equations 3 and 4 are key results for this paper and in
particular the gradient operator in eqs 3 and 4 that can be
calculated in Cartesian coordinates (and in any complete
curvilinear coordinates); i.e., eqs 3 and 4 depend only on the
definition of qξ.
Additionally, it is always possible that we keep orthogonalizing

the subspace {qm≠ξ}
N−1 such that we find a complete set of

coordinates {q′}N which are all orthogonal to one another, in
which qξ' ≡ qξ. Using eqs 3 and 4 and the orthogonality of {q′}N,
we find1
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Equation 5 is the instantaneous negative value of force in the
orthogonal contravariant space that depends only on qξ.
Similarly, using eq 3, eq 4, the Jacobian determinant for {q′}N

as |J′⃡| =Πm=1
N hqm′ (due to the orthogonality in {q′}

N), and qξ′≡ qξ,

now we have the divergence of hqξqξ̂, i.e., ∇⃗·(hqξqξ̂), as
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Equation 6 is the instantaneous Jacobian contribution in the
orthogonal contravariant space that depends only on the
(constraint) coordinate, qξ.
Toward this end, since the coordinates in {q′}N are orthogonal

to one another, the domains of all coordinates should not be
related and should be constants. Thus, there should be no
Leibnizian contribution in eq 2 with {q′}N. Finally, we can
express dGξ (ξ0)/dξ0 in the orthogonal contravariant space16,21

by substituting eqs 5 and 6 into eq 2:1
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Unlike eq 2 which is in the covariant space, eq 7 is in the
orthogonal contravariant space for qξ, which depends only on the
definition of qξ (without full Jacobian transformation). The
desired result, eq 7, is correct and general, as long as qξ can be a
member of a complete set of coordinates.1

We note that ref 21 presents a similar (but different)
formulation as the above eq 7, and it also indicates the
orthogonality requirement that is ignored in ref 16. However,
using the formula given in ref 21 cannot return us the correct unit

or dimension of the mean force when the coordinate of interest is
not in the dimension of length. This is because, as opposed to our
eq 7, in which we have a squared power in our denominator, i.e.,
|∇⃗qξ|2, the corresponding denominator in ref 21 does not have
any power index, i.e., |∇⃗qξ| (instead of |∇⃗qξ|2).
Figure 2 illustrates that integration of eq 7 indeed returns the

exact free-energy profile in eq 1 without requiring any full

Jacobian transformation. Note that by comparing Figure 1 with
Figure 2, no Leibnizian contribution to the free energy profile is
found in the orthogonal contravariant space and that the mean
force and the mean Jacobian contributions in the orthogonal
contravariant space respectively differ from their own counter-
parts in the nonorthogonal covariant space. In the present
example, integrating the nonorthogonal mean force would
overestimate the exact free-energy barrier by about 40% (Figure
1), whereas integrating the orthogonal mean force would lead to
an overestimate of about 300% (Figure 2).

III. FIXMAN TERM (CONSTRAINED MD)

In molecular dynamics (MD) simulations, once we put a
constraint to eliminate a degree of freedom in configuration
space, e.g., qξ = ξ0, then the degree of freedom of its velocity must
vanish, i.e., q ̇ξ = 0. Thus, the constant nature of C in eq 1 does not
exist because we are no longer able to integrate the entire
momentum space with qξ̇ = 0. To figure out the consequence of
this, we re-express eq 1 in the phase space explicitly consisting of
qξ and qξ̇. First, we transform the Cartesian coordinates and
momenta to the mass-scaled coordinates {s}N, si =Mi

1/2xi, and the
mass-scaled velocities {s}̇N, si̇ = pi/Mi

1/2 =Mi
1/2xi̇, respectively. We

denote Js⃡ as the Jacobian transformation for mass-scaled dsj in
terms of a complete set of orthogonal coordinates {w}N, in which
wξ ≡ qξ. Js⃡ is a function of masses and {w}N only. The same Js⃡ is
also the transformation for the kinetic energy and for mass-scaled
dsj̇ in terms of {ẇ}

N, in which ẇξ ≡ q ̇ξ. So eq 1 in the phase space
of {w}N and {ẇ}N is (Supporting Information):

Figure 2. Exact free-energy profile (eq 1) compared with integrated
orthogonal mean force with and without Jacobian contributions (eq 7),
in which the Leibnizian term vanishes. All curves are symmetric and
anchored at zero value when ξa0 = 0.
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where h is Planck’s constant, hwj
is a Jacobian scale factor with |Js⃡|

= Πm=1
N hwm

. By putting one more constraint, ẇξ ≡ qξ̇ = 0, in eq 8,
then integrating out all velocities, themodif ied free-energy profile
Gξξ ̇ is
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By Zwanzig’s free-energy perturbation theory,34 eq 8 and 9 are
related (Supporting Information):
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−
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The second term on the right-hand side of eq 10 is called the
Fixman term, where <...>ξ0qξ̇ is the ensemble average over all
phase space with qξ = ξ0 and qξ̇ = 0 (Supporting Information).28

Now if we do the perturbation on the ensemble average, then
eq 7 can be obtained from the constrained MD (Supporting
Information):
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TheV in eq 11 is the original potential energy. Following from eq
4, it is now straightforward to yield the Jacobian scale factor hwξ

for wξ ≡ qξ in the mass-scaled orthogonal contravariant space:
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Equation 12 correctly indicates that the velocity contribution to
the partition function in eqs 10 and 11 decreases with mass, as
opposed tomomentum (see Supporting Information for a simple
one-dimensional one-body example).1 Notably, the entire
correction term in eq 10, i.e., hwξ

−1, is the inverse of the entire
term reported in other literature.15,16,18,22−27,29

To verify that the mass-dependence of the Fixman term shown
in eq 10 and 12 is correct, we consider a two-degrees-of-freedom
system: x1 and x2 with mass m1 and m2, respectively. We would

like to express these two degrees of freedom in terms of a set of
two standard elliptic coordinates {μ,v}, in which the coordinate
of interest v ∈ [0,2π] is 2a cos v ≡ [(x1+a)

2+x2
2]1/2 − [(x1−

a)2+x2
2]1/2. Figure 3, which is plotted from eqs 1, 9, and 10

(details for the two-body double-well potential and full Jacobian
transformation are in the Supporting Information), assures the
mass-dependence of the Fixman term derived in eqs 10, 11, and
12 is correct and exact (i.e., FEP:VC+FT*), while using the
Fixman term found in the literature15,16,18,22−27,29 (i.e., FEP:VC
+FT) does not return the exact results and underestimates the exact
free-energy barrier by about 35%.

IV. INTEGRATED MEAN LAGRANGE MULTIPLIER
(CONSTRAINED MD)

Certain literature15,16,22−27 suggests that integration of the mean
of the Lagrange multiplier λv associated with the constraint force
would return Gvv(̇v0) (eq 9). If generally true, then this would be
a convenient approach because the explicit knowledge of the
Laplacian of the coordinate of interest in eq 11 is not required. In
their derivations23,26,27 that equate λv with the exact free-energy
profile, the Jacobian contribution is not discussed (or else is
assumed to vanish), and the Fixman term is the inverse of the
Fixman term shown in eqs 10 and 12. As a result, the following
quantity has been claimed to be equal to the original free-energy
profile Gv(v0) (eq 1):15,16,22−27

∫ λ ν⟨ ⟩ ′ − ⟨ ⟩
ν

ν ν ν ν′ ̇ ̇k T hd lnv vB
0

0 (13)

From Figure 3, in contrast to our exact relation (i.e., FEP:VC
+FT*), it is clear that eq 13 (i.e., MLM+FT) does not return us
the exact Gv(v0), and in fact (not shown in Figure 3) integrating
⟨λv⟩vv ̇ (i.e., MLM) also does not return Gvv(̇v0) (i.e., FEP:VC).
The use of eq 13, for this example, would lead to an overestimate
of the exact free-energy barrier by about 10%. In order to correct
eq 13 to obtain the exact free-energy profile, not only do we first
need to use the Fixman term derived in this work (i.e., eqs 10 and

Figure 3. Comparison of exact free-energy profile (eq 1); profile with
zero-velocity constraint (eq 9); Fixman term in this work, “FT*” (eq
12); Fixman term in the literature, “FT” (i.e., inverse of eq
1215,16,18,22−27,29); and integrated mean Lagrange multiplier with and
without Jacobian scale factor derived in this work (i.e., eqs 14 and 13,
respectively). All curves are symmetric and anchored at zero value when
v0 = π/2.
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12) but also we need to add a new contribution from the mass-
scaled Jacobian scale factor as follows:
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This exact relation is illustrated in Figure 3 (MLM+FT*+JSF).
The new third term on the right-hand side of eq 14 is associated
with the differentiation of the mass-scaled Jacobian scale factor of
the coordinate of interest and arises from the inherent v ̇ = 0
condition in constrained MD simulation where the correspond-
ing coordinate is held fixed. With the zero-velocity constraint,
this differentiation information is unavailable in the Lagrange
multiplier and requires explicit knowledge of the Laplacian of the
coordinate of interest to recover it fully18,29 (Supporting
Information).

V. CONCLUSION
In this work, new exact relations between PMF and free-energy
profile (with or without full Jacobian transformation) are
presented. Specifically, we apply mathematical and physical
concepts of covariant and contravariant vector space (e.g., eqs 3,
4, and 12) from differential geometry and general relativity to
derive explicit, practical expressions that equate the PMF
obtained from (constrained) MD simulations with the free-
energy profile in terms of the Cartesian coordinates (i.e., eqs 7
and 11). These general expressions require knowledge only of
the (constraint) coordinate of interest and thus are immensely
practical in molecular simulations that may require complex
coordinate constraints used as basic variables in the free-energy
profile. Further, we demonstrate that, in general, in addition to
the Jacobian contribution, the Leibnizian contribution derived
here still needs to be considered when there is an
interdependence of the integration domains (eq 2) (even if a
full Jacobian transformation is available). Moreover, we illustrate
that the individual contribution from the mean force and from
the Jacobian can vary significantly (e.g., from ∼140% to ∼400%
in terms of the free-energy barriers considered in Figures 1 and 2)
with different complete sets of coordinates for which the
(constraint) coordinate of interest is a simultaneous member of
more than one complete set of coordinates. A sufficient
condition to make the contributions be invariant is to be in the
orthogonal contravariant space (eqs 5 and 6), in which the
Leibnizian contribution vanishes. Next, we present a definition of
the Fixman term with correct dependence on mass in
constrained MD simulations (eqs 10, 11, 12). Finally, we divulge
that an additional term arising from the Jacobian scale factor
contribution that requires explicit knowledge of the Laplacian of
the coordinate of interest (eq 14) must be included in order to
exactly equate the integrated mean Lagrange multiplier with the
free-energy profile. All formulations presented here are verified
and illustrated by new nontrivial benchmark numerical results
and are compared with those reported in other literature, which,
for the examples studied here, result in discrepancies from the
exact values by about 10% to 35% in terms of free-energy barriers
(Figures 1−3). Future work will involve application of the
present formulations to simulations of more complex, real-world
molecular processes and comparison with other methods to
determine the free-energy profiles.
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(19) Heńin, J. r.; Fiorin, G.; Chipot, C.; Klein, M. L. J. Chem. Theory
Comput. 2010, 6 (1), 35−47.
(20) Ruiz-Montero, M. J.; Frenkel, D.; Brey, J. J. Mol. Phys. 1997, 90
(6), 925−942.
(21) Ciccotti, G.; Kapral, R.; Vanden-Eijnden, E. ChemPhysChem
2005, 6, 1809−1814.
(22) den Otter, W. K. J. Chem. Phys. 2009, 131, 205101.
(23) Li, W.; Rudack, T.; Gerwert, K.; Graẗer, F.; Schlitter, J. J. Chem.
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