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ABSTRACT

Replica exchange represents a powerful class of algorithms
used for enhanced configurational and energetic sampling in
a range of physical systems. Computationally it represents
a type of application with multiple scales of communication.
At a fine-grained level there is often communication with a
replica, typically an MPI process. At a coarse-grained level,
the replicas communicate with other replicas — both tempo-
rally as well as in amount of data exchanged. This paper
outlines a novel framework developed to support the flexible
execution of large-scale replica exchange. The framework
is flexible in the sense that it supports different coupling
schemes between replicas and is agnostic to the specific un-
derlying simulation — classical or quantum, serial or paral-
lel simulation. The scalability of the framework is assessed
using standard simulation benchmarks. In spite of the in-
creasing communication and coordination requirements as a
function of the number of replicas, our framework supports
the execution of hundreds replicas without significant over-
head. Although there are several specific aspects that will
benefit from further optimization, a first working prototype
has the ability to fundamentally change the scale of replica
exchange simulations possible on production distributed cy-
berinfrastructure such as XSEDE, as well as support novel
usage modes. This paper also represents the release of the
framework to the broader biophysical simulation community
and provides details on its usage.
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1. INTRODUCTION

Replica exchange (RE)[1, 5, 11, 18] denotes a family of
advanced conformational sampling algorithms widely em-
ployed in molecular simulations of chemical and biological
systems. The key aspect of RE algorithms is that multiple
importance sampling simulations (typically molecular dy-
namics trajectories) are executed in parallel, making use of
intermittently exchanged information. It has been shown
in many contexts[2, 7, 14, 17, 19, 23, 24] that such ex-
changes can greatly enhance sampling efficiency relative
to non-communicating simulations. For physical applica-
tions the information exchanged takes the form of thermo-
dynamic state definitions. Strict microscopic reversibility
requirements then ensure that each simulation maintains
the correct importance sampling weights in each state. The
simulations can therefore be viewed as identical “replicas”
in both the target configurational and state spaces. This
imposition of uniform sampling across replicas makes it eas-
ier to diagnose locally insufficient sampling and assess the
accuracy of (ultimately desired) global properties.

The advantages of RE approaches are partly counterbal-
anced by the additional complexities inherent in instating
and maintaining a communication framework amongst repli-
cas. This requirement has historically discouraged large
scale deployment of RE on XSEDE. In our view this is not
necessarily due to lack of suitable hardware and networking
resources, but rather to the lack of suitable software tech-
nologies capable of efficiently harnessing this latent compu-
tational power in a convenient and practical way.

Although the coupling between replicas is conceptually
simple, RE applications represent the general challenge of
scaling many loosely-coupled simulations. The difficulty



arises from the fact that, although most communication
is internal to the individual replicas (generally large-scale
MPI-style simulations), there exists a less frequent and com-
parably slow communication mode that increases in com-
plexity, importance, and cost as the number of replicas in-
creases. Providing an approach that works across multiple
replica size, number, and coupling schemes presents both a
software and conceptual challenge. Replica states typically
change with high frequency and often with significant de-
pendence on the outcome of an exchange. Furthermore, re-
source assignment and scheduling is typically required after
an exchange. Thus there is a need for finer grained resource
management than is typically provided by the batch-queue
level resource management.

To address some of these issues, there has been recent
progress towards asynchronous RE formulations based on
a pilot-job framework that can support dynamic and scal-
able resource execution and management, thereby providing
the basis for a flexible and scalable formulation of RE on
XSEDE. These developments are the subject of this report.

Many applications areas, such as the ones illustrated here,
benefit greatly from multi-dimensional RE implementations
employing hundreds to thousands of replicas. However, cur-
rent implementations of RE methods used by the computa-
tional chemistry community are severely limited in terms of
scalability and control when many replicas are involved. In
conventional implementations of RE[12] simulations progress
in unison and exchanges occur in a synchronous manner
whereby all replicas must reach a pre-determined state (like
the completion of a certain number of sampling steps) before
exchanges are performed. This synchronous approach has
severe limitations: first, sufficient dedicated computational
resources must be secured for all of the replicas before the
simulation can begin execution. Second, the computational
resources must be statically maintained until the simulation
is completed. Third, failure of any replica simulation typ-
ically causes the whole calculation to abort. The reliance
on a static pool of computational resources and zero fault
tolerance prevents the synchronous RE approach from being
a feasible solution for large scale RE deployments.

As earlier prototypical implementations of asynchronous
RE (aRE) algorithms[9] have illustrated, the RE method
itself does not restrict exchanges to occur synchronously
across all threads, nor need all replicas run at the same time.
The basic idea of aRE is to allow pairs of replicas to per-
form exchanges independently from the other replicas. This
paradigm lends itself naturally to implementations based on
the pilot-job framework described below, which, while al-
ready extensively employed to automate the asynchronous
execution of independent ensembles, can be effectively em-
ployed to manage inter-communicating replicas.

In this work we present ASyncRE, an aRE software util-
ity built on the BigJob/SAGA distributed computing envi-
ronment on XSEDE capable of scaling to arbitrarily large
numbers of replicas. Illustrative applications of the software
to large-scale multi-dimensional RE problems are presented
and analyzed.

2. SCIENTIFIC PROBLEM

The conformational sampling problem in molecular simula-
tions can be described as the problem of efficiently drawing

samples x from the ensemble distribution of the chemical
system:

exp[—U(z; 3, 6)]
UL 5,01 ()

p(x;8,0) =
where x represents the configuration of the system (atomic
coordinates, volume, composition, etc.), Z denotes the con-
figurational partition function, 8 = 1/kgT is the inverse
(absolute) temperature, and U(z; 3,0) = BV (z; ) is the di-
mensionless effective potential energy of the system. U(x; 3, 0)
depends linearly on the inverse temperature and, depend-
ing on the ensemble (canonical, isobaric, grand canonical,
etc.) also on thermodynamic parameters such as pressure
and chemical potential. The effective potential energy also
depends on potential energy parameters (e.g. the atomic
charges or parameters of any biasing potentials), here col-
lectively denoted as 6.

In conventional MD-based sampling implementations, =
evolves in time with fixed model parameters. Slow conver-
gence is the main issue of concern with methods of this kind
as it is notoriously difficult to achieve equilibration within
the time scale afforded by even the fastest supercomputers.
Fortunately, great progress has been achieved in recent years
with the development of generalized ensemble formulations,
which now allow modeling of complex biochemical processes
with unprecedented fidelity. This sampling enhancement
is achieved via a random walk, not only in conformational
space, but also in parameter space.

Amongst generalized ensemble sampling algorithms, replica
exchange molecular dynamics (REMD) remains one of the
most convenient and effective due to its broad applicability
and amenability to nearly all parallel computing architec-
tures. The core concept of REMD is that multiple replicas
traveling in conformational space are additionally enabled
to move in parameter space by exchanging state parameters
amongst each other. The first and most widely employed RE
scheme is temperature REMD (T-REMD) in which inverse
temperatures (3; are exchanged. T-REMD accelerates inter-
conversions between stable states of the system by letting
replicas temporarily visit high temperatures where barrier
crossings are more rapid. However, REMD schemes can in-
volve exchanges of any number of state parameters. For
example, schemes exchanging more than one parameter are
often referred to as multi-dimensional REMD schemes.[18]

Any REMD scheme is required to satisfy microscopic re-
versibility. In the present context this is ensured by struc-
turing exchanges so that permutations of state parameters
assigned to replicas are distributed according to the discrete
unnormalized probability distribution:[4]

p({JM}) = €xp |:ZU($175J759J7):| (2)

where {ju} denotes one of the M! permutations of a vec-
tor of M states, x; is the atomic configuration of replica 1,
and (3;, and 6, are the inverse temperature and potential
parameters assigned to replica i.

In this work we analyze four science application areas that
benefit from the application of multi-dimensional REMD
protocols. The first is the modeling of binding between a
guest molecule and a host to form a supramolecular com-
plex in solution[8]. In this case the dimensionless energy



is[6]:
U(z; 8,A) = B8 [Vo(z) + Au(z)] 3)

where Vp(z) is the potential energy when the host and the
guest are separated, u(z) is the interaction energy between
the host and the guest, and A is an alchemical parameter.
This system is modeled by multi-dimensional RE with A
and (3 as exchange parameters. The purpose of the sam-
pling along A is to enhance mixing of conformations along
the alchemical pathway while high temperatures enhance
sampling at each alchemical stage.

The second application studied by multi-dimensional RE
is the folding of a mini-protein. In this case the dimension-
less potential energy function is

Ux; 8,A) = B[V (2) + waoVao ()] (4)

where V(z) is the unbiased potential energy, Vao is a bias-
ing potential favoring the formation of natively folded con-
formations[20], and wgo is an energy weight. The exchange
parameters are wgo and (3 so as to enhance the rate of fold-
ing and unfolding at multiple temperatures.

The last two applications employ multi-dimensional replica
exchange umbrella sampling (RE-US), but in two quite dif-
ferent scenarios, thus demonstrating the broad applicability
of the approach. In all RE-US simulations, the dimension-
less potential energy can be written as

U(z; 8,A) = B [Vo(z) + W(z; )] (5)

where Vy(z) is the unbiased potential and W (x;\) is a bi-
asing potential applied to one or more coordinates in order
to localize sampling to regions that might not otherwise be
sampled.

The first RE-US scheme analyzes small-scale conforma-
tional changes in an explicitly solvated biopolymer by ap-
plying biasing potentials to the backbone degrees of free-
dom. The second application is a chemical reaction in solu-
tion. Biases are applied to breaking and forming bonds. The
chemically reactive solute is treated quantum mechanically,
the solute is treated by classical molecular mechanics.

Due to numerous calculations needed in quantum calcula-
tions and the unfavorable scaling of these calculations (un-
like classical force fields, quantum potentials cannot be de-
scribed as pair-wise interactions), it is extremely difficult
to sample over the conformational space to obtain sufficient
and meaningful ensembles. Hence the advantages of a RE-
US approach are especially important in QM simulations,
such as the example system presented here. RE-US is one
of the most promising ways to increase the feasible applica-
tion of quantum potentials via increased sampling efficiency.

2.1 Computational Requirements

As introduced above and further elaborated below, in or-
der to efficiently perform large scale RE calculations of this
kind on XSEDE we adopt an asynchronous formulation of
RE, which, unlike conventional synchronous implementa-
tions, requires only a fraction of the computing resources
nominally required by the application [(number of replicas)
times (number of CPU cores per replica)]. Furthermore the
loss of computing resources does not cause termination of
the application. Conversely, it allows the expansion of the
application dynamically as new resources become available.

In the current implementation, communication between
pairs of replicas is achieved through a shared filesystem while
they are temporarily checkpointed and not actively running.
This approach has the advantage of being very general and
well supported by BigJob. It also does not require source
code modification of legacy MD kernels.

3. SOFTWARE ENVIRONMENT

A Pilot-Job is a mechanism by which a proxy for the actual
simulations is submitted on the resource to be utilized; this
proxy, in turn, conveys to the application the availability of
resources and also influences which tasks are executed.

The P* model [16], a model for Pilot-Abstractions, works
to clearly define the computation and data components of a
distributed application as 'compute units’ and ’data units’ in
the context of Pilot-Jobs and Pilot-Data. A compute unit
describes a self-containing piece of work, e.g. a computa-
tional task that potentially operates on a set of input data,
while a data unit is a container for a logical group of data
that is often accessed together or comprises a larger set of
data; e.g. a data file or chunk.

BigJob is a Pilot-Job system implementation which pro-
vides a framework for running many types of distributed
applications — including but not limited to very-large scale
parallel simulations, many small high-throughput simula-
tions, or ensemble-based workflows. Consistent with the P*
model, BigJob [21, 15] provides a unified run-time environ-
ment for Pilot-Jobs on heterogeneous infrastructures. For
this purpose, BigJob provides a higher-level, unifying inter-
face to heterogeneous and/or distributed data and compute
resources. The framework is accessed via the Pilot-API,
which provides two key abstractions: Pilot-Job and Pilot-
Data.

In order for BigJob to work on heterogeneous resources,
it requires an interoperability layer which provides access to
a variety of middleware. This is achieved through the use of
the Simple API for Grid Applications (SAGA) [10, 22].

3.1 AsyncRE

ASyncRE is a Python package for performing file-based aRE
simulations. The current implementation is primarily in-
tended for use on computer clusters managed by a queuing
system and supported by a shared filesystem. The BigJob
distributed computing infrastructure is used for job launch-
ing and monitoring.

The ASyncRE package includes a core module that per-
forms common tasks such as job staging through BigJob
and exchanging of parameters among replicas. Support for
arbitrary MD engines and RE schemes can be introduced
via simple user-provided extensions (Figure 1). Modules
are currently available for the AMBER and IMPACT MD
engines. A similar modular mechanism provides support
for arbitrary RE schemes (temperature, Hamiltonian, etc.),
including arbitrary multidimensional combinations of these
(such as 2D RE temperature/Hamiltonian). The software
is currently distributed with modules for multi-dimensional
RE umbrella sampling with AMBER[3], and BEDAM X-
RE alchemical binding free energy calculations with the IM-
PACT MD engine[6, 8, 13].

The BigJob-based Asynchronous Replica-Exchange (ASyn-
cRE) framework is available for public download at: https:
//github.com/saga-project/asyncre-bigjob



RE RE RE RE
Protocol 1 Protocol 2 Protocol 3 Protocol 4
Adaptor Adaptor Adaptor Adaptor
MD Engine 1 MD Engine 2
Adaptor Adaptor
ASyncRE
Core
BigJob

Figure 1: The structure of the ASyncRE library. The ASyn-
cRE Core module implements all of the general-purpose facili-
ties to start and monitor replicas via BigJob, and coordinates
replica exchanges. Routines implemented in adaptor modules
perform functions specific to particular combinations of MD en-
gines and RE schemes such as AMBER+umbrella sampling or
IMPACT+BEDAM.

The algorithm implemented by ASyncRE can be summa-
rized as follows:

1. Job files and executables for the replicas are set up
as appropriate for the MD engine and RE scheme as
specified by the user-provided module/script. Typi-
cally this is accomplished by parsing a set of template
input files according to the thermodynamic and po-
tential energy settings that define the thermodynamic
states. Each replica lives in a separate sub-directory
of the working directory.

2. As resources become available, a randomly chosen sub-
set of the replicas are submitted to BigJob for execu-
tion and enter a running (“R”) state. When a replica
completes a “cycle” (currently a fixed number of time
steps specified in the MD engine input file), it enters
a waiting (“W”) state, making it eligible for exchange
with other replicas as well as initiation of a new cycle.

3. Periodically, exchanges of thermodynamic parameters
are attempted between replicas in a waiting state based
on the appropriate replica exchange rules. This gen-
erally requires the specification of a user-defined mod-
ule, namely the definition of a procedure for obtaining
the (relative) reduced energies defining the Bolzmann
sampling weights.

Internally, a dictionary (status) is used to track the sta-
tuses of the replicas (cycle, thermodynamic state, running
status, etc.) The status of the application is check-pointed
periodically using pickle. When restarting a previously stopped
job, the status data structure is restored from this file and
the calculation proceeds.
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An important feature of ASyncRE is the use of a “run
buffer” to hide latencies involved in the management of ex-
changes. That is, ASyncRE submits subjobs to BigJob in
excess of the allocated compute resources such that the sub-
mission of a replica for execution does not, in general, imply
that it is immediately executed. Rather, the replica is pack-
aged in a BigJob compute unit which is ready to begin ex-
ecution as soon as sufficient resources are available. BigJob
thus does not have to wait for a replica to be prepared for

the next cycle before it can be executed. Instead, replicas
are launched from a pool of already prepared replicas.

3.1.1 Installation

Following the installation of BigJob (see above) in the vir-
tual user Python environment, ASyncRE is installed using
PyPi as follows:

pip install numpy
pip install configobj
pip install async.re —0.1.0.tar.gz

numpy and configobj are currently required dependencies
and will be installed automatically after ASyncRE is inte-
grated into the PyPi archive. async_re-0.1.0.tar.gz is
the current Python distribution package for ASyncRE and
is available publicly through github.

In addition to installing the package in the virtual envi-
ronment, it is convenient to maintain a copy of the ASyncRE
modules, scripts, and examples in an easy-to-access location
such as:

cd “/src
tar zxvf async_.re —0.1.0.tar.gz

Current application-level class files (such as
amberus_async_re.py behave as executable scripts when
launched directly (see below). Documentation files can be
found in the doc subdirectory and sample files in the examples
subdirectory of the package directory.

3.1.2 FEzecution

A typical sequence of commands to initiate an ASyncRE
run on XSEDE is as follows:

ssh <cluster_head_node>

source ~/.bigjob/bin/activate

cd <working_directory >

python amber_us.py us.config > LOG 2>& &

The second command above activates the virtualenv Python
environment (see above). amber_us.py is a simple user-
provided Python script that loads the appropriate modules
and launches the simulation. For example, for AMBER /um-
brella sampling it might be:

import sys
from amberus_async.re \
import amberus_async_re_job
rx = amberus_async_re_job (sys.argv[1l])
rx .setupJob ()
rx.scheduleJobs ()

A control file (us.config above) containing keyword/-
value pairs is used for setting ASyncRE runtime parameters.
A control file for an AMBER umbrella sampling simulations
might look like:

# Main settings
ENGINE = ’AMBER’
RE.TYPE = ’AMBERUS’
RESETUP = ’yes’
VERBOSE = ’yes’



ENGINEINPUT BASENAME = ’foo’
ENGINE_INPUT_EXTFILES = \
"foo .parm7,foo_0.rst7’
# RE/simulation settings
FORCE.CONSTANTS = \
’5.0,5.0:5.0,5.0:5.0,5.0:5.0,5.0"
BIAS_POSITIONS = \
’275.,275.:275.,280.:280.,285.:285.,280."°
# BigJob settings
WALLTIME = 200
COORDINATION.URL = ’redis://<redis_server >’
RESOURCE.URL = ’pbs://localhost’
QUEUE = ’batch’
BJ.WORKINGDIR = ’/home/user /amber_us/agent’
TOTAL.CORES = 16
SUBJOB_CORES = 8

#

A detailed description of these settings is provided in the
ASyncRE user documentation.

The command above causes, among other things, the sub-

mission of a job to the local queuing system named bliss_job.

Execution terminates after a specified amount of wall-clock
time. The internal state of the simulation is check-pointed
periodically as well as at the end of execution so that it can
be restarted. Failed runs are automatically detected and the
relevant replicas are reset and restarted.

The ASyncRE package is user-extensible and users are
free to implement RE modalities not natively supported by
the current ASyncRE package (see details on writing exten-
sion modules in the ASyncRE documentation). Scripts that
implement user-provided RE schemes are typically preceded
by customized classes/methods (usually overriding one in-
herited from the main class). A custom application might
look like:

import sys, math, os,
from amber_async_re import pj_amber_job

class myREscheme_async_re_job(pj_amber_job ):
def _checkInput(self):

def _buildInpFile(self, replica):

def

if __name__ =— ’__main__":

rx = myREscheme_async_re_job(sys.argv[1l])
rx.setupJob ()
rx.scheduleJobs ()

workflow, we identify three distinct components: (1) BigJob
as the underlying Pilot-Job system, (2) ASyncRE as the
replica exchange application framework, and (3) AMBER /
IMPACT as the application kernels.

Each of the three component has its own performance
characteristics and can introduce overhead to the overall
application. We define overhead from an application per-
spective as the fraction of the application runtime that is
not spent on running the application kernels, but on appli-
cation management logic, communication and coordination.

From an application point of view, the most important
performance metric is throughput, which is defined as the
amount of simulation time achieved per hour compute time
on a given number of CPU cores. This is equivalent with the
time to completion (TT'C') for a specific number of steps (s).
On the lowest level, TTC is the sum of the queue waiting
time and the application runtime:

TTC, =TS + Tx

However, if the overall runtime of the simulation is suf-
ficiently long, T becomes negligible. We split up Tx into
application kernel runtime Tz and overhead. Since over-
head can occur in all three components, we define T'S, 7 as
the overhead introduced by BigJob, TSy, as the overhead in-
troduced by the AsyncRE package, and T as the overhead
introduced in the application kernel itself:

TTC, =Tr + TSy + TSe + TY

Application kernel overhead occurs for example if the ker-
nel supports thread-level parallelism but doesn’t scale lin-
early with the number of threads. Overhead in ASyncRE oc-
curs when the framework executes management tasks, e.g.,
finding matching exchange partners for a set of replicas and
no computation happens during that time. Lastly, we con-
sider BigJob overhead as the time that is spent by BigJob
on the placement and monitoring of subjobs during which
no computation occurs. This includes network round-trip
time for communication via Redis.

To measure the different aspects of application overhead,
instrumentation of all three components is necessary. This
is still work in progress and the experiments and results de-
scribed below only implement probes on a very high level.
Nevertheless, the model helps us to reason about the ob-
served differences in application performance. Detailed mea-
surements and instrumentation of BigJob and ASyncRE are
planned for the future.

4.2 Systems Investigated

Four physical model systems were investigated, two each
with the IMPACT and AMBER MD engines. These sys-
tems represent broad classes of problems of chemical inter-

4. LARGE-SCALE REPLICA EXCHANGEBSt’ namely binding, “large scale” macro-molecular folding,

ON XSEDE: EXPERIMENTS AND
RESULTS

4.1 Performance Model

Like many complex distributed applications, replica exchange
consists of multiple individually developed components that
are combined and orchestrated to carry out the application
workload. In our implementation of the replica exchange

‘small scale” conformational changes, and chemical events
(i.e. bond annihilation/formation). Briefly, the systems are
as follows:

IMPACT (implicit solvent)

1. Host/guest binding of cyclooctanol/3-cyclodextrin. The
exchange parameters are all combinations (192, 384,
or 768) of the system temperature (8, 16, or 32 values,
300 - 600 K) and an alchemical parameter (24 values,
0 - 1) coupling the host/guest interactions (Eqn. 3).



2. Folding of the TrpCage mini-protein. The exchange
parameters are all combinations (84, 336, or 1008) of
the system temperature (6, 24, or 72 values, 300 - 600
K) and the coupling weight (14 values, 0 - 0.42) of a
Go-type biasing potential (Eqn. 4).

AMBER (explicit solvent)

1. Umbrella sampling of the ¢/t torsions (24 values, 0 -
360 degrees) of alanine dipeptide. The exchange pa-
rameters are all combinations (576 total) of the har-
monic biasing potentials on each torsion (Eqn. 5).

2. Hybrid quantum mechanical/molecular mechanical um-
brella sampling of phosphoryl transfer in 2-hydroxy
ethyl ethyl phosphate, a model reaction for base cat-
alyzed RNA cleavage. The exchange parameters are
all combinations (192 total) of the harmonic biasing
potentials on the breaking (12 values, 1.5 - 4.25A) and
forming bonds (16 values, 1.5 - 5.25A).

4.3 Experimental Configuration

Multiple RE simulations were performed on each system in
one of three different modes intended to probe various scal-
ing aspects of ASyncRE and BigJob. All runs were given
a wall time of one hour (with appropriate extrapolations).
The three modes were as follows:

I (IMPACT systems 1-2, MM) Fixed Pilot size, fixed Pi-
lot runtime, and varying number of replicas in propor-
tion to the number of cores per replica

II (AMBER system 1, MM-US) Fixed Pilot size and ap-
proximately fixed cycle length (in CPU time) while vary-
ing the number of concurrent jobs (i.e. the number of
cores per job) and the simulation time of each cycle.

III (AMBER system 2, QM/MM-US) Fixed replica count
while varying the Pilot size.

4.4 Results

The main results for IMPACT system 1 (host/guest binding)
are reported in Table 1. In this test the number of replicas
was varied from 768 to 192 by increasing the level of paral-
lelism of IMPACT (from 1 core per replica to 4), while the
size of the BigJob was kept fixed at 384 cores (half of the
CPU cores required to run all of the replicas at once). With
1 core per replica and 768 replicas the measured throughput
is 954 ns/day to be compared with the nominal maximal
throughput of 1,300 ns/day corresponding to uninterrupted
MD at the measured MD CPU speed (4.2 minutes for 10ps
per replica). The fraction of the observed throughput rela-
tive to the maximum (73%) measures the overhead imposed
by replica exchange coordination (T§; + T$r above). We
see that the throughput (expressed in simulation time per
day) is reduced from 945 ns/day with 768 replicas to 708
ns/day with 192 replicas. The reduction is due in large part
to parallelization overheads in going from 1 core per replica,
as it can be deduced from the time required to complete
one MD cycle (10,000 MD steps in this case). The parallel
efficiency is approximately 76 and 67% with 2 and 4 cores,
respectively, which is reasonable for this very small chemi-
cal system. The replica exchange coordination overhead re-
mains approximately constant; for the test with 192 replicas

# of cores/ time/cycle simulation speed
replicas  replica (min) (ns/day)

768 1 4.2 945

384 2 2.6 880

192 4 1.5 708

Table 1: Scaling results for IMPACT system 1 (host/guest bind-
ing). Each run consisted of 384 cores running for one hour while
varying both the number of replicas and the number of cores al-
located to each replica.

3500 T T T T T

3400 F k
3300 F k
3200 F k
3100 F k
3000 F k
2900 F k

simulation speed (ns/day)

2800 F k

2700 L L L L L
200 400 600 800 1000

# of replicas

Figure 2: Scaling results for IMPACT system 2 (mini-protein
folding). Each run consisted of 504 cores with 12 cores per replica
running for one hour while varying the number of replicas. The
maximum throughput (3.5 ps/day) is obtained with the largest
number of replicas.

for example the throughput is 76% of the maximum similar
to the 73% measured with 768 replicas. This indicates that
the ASyncRE/BigJob framework is capable of handling this
rather high replicas turn over (up to 4,000 subjob launches
per hour) quite efficiently.

The results for IMPACT system 2 (mini-protein binding)
(Fig. 2) confirm the general trends observed for the smaller
host-guest system above. For this case IMPACT’s paral-
lel efficiency is more favorable due to the greater number
of atoms. It has been possible to test with the maximum
number of cores per replica (12) allowed by the hardware.
As expected maximum throughput (3.5us/day) is obtained
with serial replica execution with the largest number of repli-
cas (1008). The maximum throughput in this case is 4.7
us/day yielding a replica exchange overhead of 75% simi-
lar to the host-guest system above. With the largest core
count the throughput is 2.8 us/day, lower than the observed
maximum, but yielding a 6-fold speed up in terms of single-
replica MD throughput.

Standard REMD simulations employing molecular me-
chanics (MM) force fields offer parallel scaling in both the
number of replicas and the number of processors allocated
to each replica. In principle, an optimal scheme should bal-
ance the efficiency gains of both types of scaling in order to
produce the most simulation time in a given period of real
time. In order to assess the efficiency of ASyncRE/BigJob
in combination with the AMBER MD engine, a fixed size
pilot job of 720 cores was allocated (AMBER system 1 under
Experimental Configuration) with various numbers of cores
allotted to each simulation. In this scheme, the number of
simulations being coordinated in REMD varies, as well as
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Figure 3: Scaling results for AMBER system 1. Each run con-
sisted of 720 cores divided amongst differing numbers of replicas
(the pool of potential replicas was fixed at 576) and coordina-
tion frequencies, w, (i.e. the frequency with which simulations
are started, stopped, and exchanged). Ideal performance (black
line) would be obtained if there were no overhead in launching or
coordinating simulations (w = 0). Increasing the frequency with
which replicas are “launched” results in diminished performance.

the simulation rate (in ns/day) attained by each replica. In
order to probe the efficiency with which ASyncRE/BigJob
coordinates simulations, the length of each simulation cy-
cle (alternatively the frequency with which simulations are
coordinated) was fixed in real time by varying the simula-
tion time per cycle (Figure 3). Ideal performance would be
obtained if there were no overhead in coordinating the sim-
ulations. However, some cost must be incurred in starting,
stopping, and restarting simulation cycles as well as in co-
ordinating exchanges amongst stopped replicas and the cost
of this overhead is obviously expected to increase as it is in-
curred more frequently. As seen in Figure 3, this does indeed
result in diminished output (as measured in ns/day) as the
coordination frequency increases. However, for a fixed co-
ordination interval, performance appears to quickly plateau
with respect to the number of simulations being coordinated,
especially in comparison to ideal, un-coordinated behavior.

The efficiency of many advanced simulation models, in-
cluding quantum mechanically based methods, is fundamen-
tally difficult or impossible to improve by parallelization.
However, RE-US provides a general tool for increasing the
efficiency of such simulations anyway, by increasing the sta-
tistical power of the short trajectories that can still be ob-
tained in a reasonable time frame. In the present work, scal-
ing in this way would rely exclusively on the ability of ASyn-
cRE/BigJob to handle hundreds or thousands of concurrent
simulations. As a test of this, the performance benefit of
increasing the pilot size was checked in conjunction with
the AMBER MD engine running a serial quantum mechan-
ical/molecular mechanical potential with RE-US (AMBER
system 2 under Experimental Configuration). As seen in
Figure 4 performance increases linearly with the core count
and tracks very closely with an estimated ideality, especially
up to about 100 replicas. It should be noted that ideal per-
formance assumes no starting/stopping overhead as well as
perfect and consistent hardware performance. Therefore,
this behavior is likely not even exactly attainable with un-
coupled, embarrassingly parallel execution.
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Figure 4: Scaling results for AMBER system 2. The total num-
ber of cores allocated was varied while each simulation was always
run on a single core. As expected, performance increases linearly
(red fit line) with the available resources. The performance of in-
dividual simulations is also extremely consistent at different core
counts (green fit line), verifying that the linear scaling is in fact
representative of an increase in the number of simulations running
and not just the increased core count. Ideal behavior is defined
as all simulations running with constant efficiency equal to the
empirical average (black lines with values and 95% confidence
intervals from green linear fit).

5. DISCUSSION

The results presented here demonstrate ASyncRE/BigJob
as a single general purpose framework for enabling replica
exchange protocols with arbitary simulation engines. This is
accomplished by suitable abstraction of replica exchange as
a variant of the pilot job abstraction. That is, a protocol is
added to communicate information and regulate exchanges.
Because this coordination is only dependent on the statisti-
cal laws underlying importance sampling methods (i.e. de-
tailed balance), it is applicable to any simulation engine or
combination of engines. This versatility is utilized in the
development of simulation engine adaptors (Figure 1) and
provides access to essentially any existing implementation
of a simulation methodology (e.g. MD) or model (e.g. MM
or QM/MM). Information exchange between adaptors and
Pilot are further mediated by specialized exchange adaptors,
thereby enabling arbitrary exchange protocols (e.g. temper-
ature exchange or umbrella sampling).

The tests reported here demonstrate that the above frame-
work is applied in a consistent manner across simulation
engines and execution modes. That is, the performance of
the simulation engines are inline with expected behavior in
the absence of coordination from ASyncRE/BigJob. This
can been seen for the host/guest system with implicit sol-
vation in Table 1, where near linear decreases in time per
cycle are obtained with linear increase the processor count
(perfect linear scaling is unlikely for such a small system).
Similar behavior is seen for the system in Figure 3 with AM-
BER. Figure 4 shows that behavior is also consistent as the
amount of coordinate resources increase: there is little to no
penalty for running additional concurrent jobs on additional
resources (note: the ideal behavior is only an estimate).

Lastly, stress tests of the coordination overhead of ASyn-
cRE/BigJob show that some efficiency is lost when the ex-
change intervals are very short (Figure 3). Fortunately,
there appears to be some mitigation of this effect at lower



coordination frequencies and it may be possible to optimize
performance by tuning the coordination frequency to the
number of replicas. That is, while it is desirable to avoid di-
minished simulation speed, this may not always be an issue
in practice since one can, to a degree, manually control the
coordination frequency. Additionally, inefficient or poorly
scaling applications (such as QM /MM methods) may never
even be able to obtain short enough cycles to cause concern.
Regardless, this phenomenon will be the subject of future
investigation and development.

Naively, an optimal simulation produces as much simula-
tion time as possible in a given period of real time. There-
fore, it is tempting to evaluate the quality of a simulation
protocol based on its simulation speed. However, not all sim-
ulation time is equal — e.g., multiple short simulations do not
usually contain as much statistical information as a single
long simulation of the same length, although the real time
speed of the former generally exceeds the latter. The basic
aim of REMD is to increase the statistical power of multiple
simulations by facilitating the exchange of information be-
tween them in a concerted fashion. This should be kept in
mind when analyzing performance graphs, as one might be
tempted to run as many small simulations as possible in an
attempt maximize simulation speed. For real applications
and performance optimizations, other more physically and
statistically relevant metrics must be employed, however,
these are beyond the scope of the present work.
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