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The present paper describes the extension of a recently developed smooth conductor-like screening model
for solvation to a d-orbital semiempirical framework (MNDO/d-SCOSMO) with analytic gradients that can

be used for geometry optimizations, transition state searches, and molecular dynamics simulations. The
methodology is tested on the potential energy surfaces for separating ions and the dissociative phosphoryl
transfer mechanism of methyl phosphate. The convergence behavior of the smooth COSMO method with
respect to discretization level is examined and the numerical stability of the energy and gradient are compared
to that from conventional COSMO calculations. The present method is further tested in applications to energy
minimum and transition state geometry optimizations of neutral and charged metaphosphates, phosphates,
and phosphoranes that are models for stationary points in transphosphorylation reaction pathways of enzymes
and ribozymes. The results indicate that the smooth COSMO method greatly enhances the stability of quantum
mechanical geometry optimization and transition state search calculations that would routinely fail with
conventional solvation methods. The present MNDO/d-SCOSMO method has considerable computational
advantages over hybrid quantum mechanical/molecular mechanical methods with explicit solvation, and
represents a potentially useful tool in the arsenal of multi-scale quantum models used to study biochemical
reactions.

1. Introduction increase and conformational variations may involve large
changes in the solvent exposed area. Recent advances in linear-

The importance of solvation effects on molecular dynamics . . :
and chemical reactions has motivated two decades of intensiveScallng algorithms for electronic structure calculatiéns and

i 1,22 i
effort in the development of solvent models for use in molecular bour_‘daf_y element solvation methdts'22have made pos_,S|bIe_
dynamics simulatioris* and electronic structure calculations, ~ 2Pplication to very large systems such as solvated biological

. > -
Implicit solvation models offer a great computational advantage macromol_ecules atthe sn_amlempmpal Ie%fe_ﬁ Thes‘? methods_
over explicit models due to the tremendous reduction of the hold considerable promise combined with the linear-scaling

degrees of freedom that require force evaluation and configu- gheomegy Oft'm'zat'on and Itransltéon state searcr& mgﬂq"‘“’s
rational sampling. The most widely used implicit models include € Study of reactions catalyzed by enzymes and ribozymes.

the finite-difference PoisserBoltzmann (PB) method;® the Boundary element methods have particular advantage for
generalized Born (GB) modég-1%11and the boundary element ~ dielectric problems that involve a molecular cavity of unit
method (BEM)!2-15 dielectric surrounded by a solvent (such as water) modeled as

One of the most powerful applications of implicit solvation & high dielectric constant. For such a model, the solvent reaction
methods involves their use with electronic structure calculations. field potential can be represented as the potential arising from
In recent years, electronic structure methods with implicit @ surface charge distribution that lies at the dielectric boundary.
solvation models have been applied to the prediction of This allows attention to be focused on a two-dimensional surface
approximate K’s, solution-phase electronic, NMR and EPR problem as opposed to the one involving a large three-
spectroscopic parameters, conformational equilibria, and chemi-dimensional volume. The advantage is that numerically it is
cal reaction kinetic&8 Solvation models based on boundary possible to converge the discretization of the boundary element
element methods have been among the most widely applied insurface in a BEM solvation calculation much more readily than
electronic structure calculatiohgiowever, applications of these  to increase the resolution of a three-dimensional grid in a finite-
methods to potential energy surfaces (PES) and chemicaldifference PB calculation, although the development of adaptive
reactions have traditionally been plagued by the lack of finite-element .mesh methods offers improvement for the lat-
rigorously smooth analytic gradients that prevent reliable ter?”28 Numerical convergence is especially important when
geometry optimization procedures. As a result, the studies of combined with quantum methods where the self-consistent
solvent effects on chemical reactions often default to solvation reaction field has a significant polarization effect on the
energy post correction based on gas-phase optimized geometriesslectronic structure.

The need for smooth analytic gradients is amplified for  BEM based methods such as the polarizable continuum model
biological macromolecules where the degrees of freedom (PCM)!229and conductor-like screening model (COSMES)
involve discretization of the cavity surface into tesserae used
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in the solvation energy and derivatives with respect to the The conductor variational principle of eq 1 is the basis for

nuclear coordinates. The lack of rigorous analytic derivatives the conductor-like screening model (COSMO) first pro-

of the solvation energy and reaction field potential, as imple- posed by Klamt and Sc¢liomand® and later extended by

mented in many electronic structure packages, often leads toothers!®19.303639 |n the York and Karplus variant of the

failure in gradient-based computations, such as molecular COSMO mode¥ that has rigorously smooth gradients (smooth

geometry optimizations and transition state searches, andCOSMO), the solvent polarization energy is written in the

numerical instabilities in molecular dynamics simulations. One algebraic form as

solution to improve stability in the BEM based solvation energy L

and gradient is to derive rigorous derivatives for the surface _L1 1. T.p.

tesseraéh32However, these methods may still be unreliable if Epal ] 2¢ Aot oBg (3)

the tessellation procedure itself is not a smooth function of the

nuclear coordinates. A recent reformulation of a surface WhereoisaM x 1 vector representing the polarization surface

tessellation procedure and associated gradients leads to nearl¢harge density (the “pol” subscript will henceforth be dropped

continuous potential energy surfacédlternately, the smooth ~ T0r @), q is a N x 1 vector representing the solute charge

COSMO method developed by York and Karplus has rigorously distribution (the symbolq is used to distinguish from the

derived smooth analytic derivativésalthough until now, the electron density that will be d|scusseel in the next s.ectlon),

method has not been integrated with an electronic structure@ndA andB areM x M andM x N matrixes representing the

method. self-interaction of the surface charge vectors and the interaction
The present work reports the implementation of the smooth Of the surface charge and solute. charge density, respectively.

COSMO methotf including analytic gradients within a d-orbital  IN the general case, where there is an internal dieleetramd

semiempirical framework3The method allows the calculation ~ external dielectrie, theA matrix is scaled by a factorflfes,e2)

of Smooth poten“al energy Surfaces as We" as Stable energy|n accord W|th Gauss’ law for the total reaction field surface

minimization and vibrational analysis (computation of second charge density

derivatives via finite difference of the analytic gradients). The

paper is organized as follows. In the theory and methods section, A= Ao

the smooth COSMO method is briefly reviewed followed by f(e,€))

the discussions of the implementation of the analytic gradients

and the integration within the d-orbital semiempirical frame- whereA, is the (unscaled) Coulomb interaction matrix and

work. A correction for multiple-atom switching is also intro-  (eg,¢,) is given by

duced into the original smooth COSMO formulation. After a

description of the computational details, the combined MNDO/ €, €

d-smooth COSMO (MNDO/d-SCOSMO) method is tested on flever) = ®)

several systems. First, it is validated on the potential energy e

surfaces for separating ions in order to demonstrate smoothnes$, the case of; = 1, the polarization density includes a simple

of the energy and gradient, and coincidence of the stationary,o|yme polarization term that takes the form of a scaled charge
points with the zero-gradient norm. It is then applied to the density,6V = q(1—e)/e1.

dissociative mechanism of phosphoryl transfer in methyl |5 glectronic structure calculations, the condition that the
phosphate and compared to the results obtained from thegg)te charge density is completely contained within the cavity
conventional COSMO method. The method is also tested in jg o strictly satisfied due to the exponential decay of the tail
energy minimum and transition state optimizations for neutral ot the molecular electron density. Several remedies have been
and charged metaphosphates, phosphates and phosphoranes thathosed to account for the effects due to outlying charges (also
are models for stationary points in transphosphorylation reaction aferred to as “charge penetration” effecf&%-42 One proposed
pathways of enzymes and ribozymes. The final section draws sq|ytion involves the use of linear constraints on the total
conclusions and projects directions of future research. polarization surface charge in accord with Gauss’ law for a
2. Theory and Methods conductor (including the possibility of higher order multipole
2.1. Smooth COSMO Method In the special case of a charge moments) in the variational minimization of the solvent
distributionp contained within a closed cavity of uniform dielec- ~ polarization energy. Accordingly, the constrained variational

(4)

tric e; = 1 surrounded by a medium of uniform dielecteic the principle becomes
polarization densitypo° resides only at the dielectric boundary
(i.e., the cavity surface). In the limit that the external dielectric O{Eyola] — A(D"0—27Z-q)} =0 (6)
goes to infinity (i.e., a conductor), a simple variational principle
emerges for the total polarization surface charge density where is a vector of Lagrange multipliers d. constraint
conditions
OE,of00,, =0 (2)
De=2Z-q 7
where

where DT is a N; x M matrix representing theN. linear
1 , N B By constraint equations and the vecibig contains the constraint
Enol ol =5 J f TpalN)Golr 1)) or o + values.

N A3 i3 The surface charge vector obtained from the constrained
ffopo,(r)GO(r,r )o(r') d dT" (2) variational minimization is

where Go(r,r') is the Green’s function in vacuo (e.g.,|rlF *7) — —A-Ll(Ruy — .
r,r'| under real-space boundary conditions), and the integrals o*(2) A (B:q—D4)
can usually be calculated analytically with the appropriate basis. = ¢*(0) + 00*(4) (8)
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whereg*(0) = —A~1-B-q is the unconstrained surface charge
vector anddeo*(4) = A~1-D-4 is the constraint correction. The
vector of Lagrange multiplierst, is given by

A=Q "R-q ©)

whereQ = DT-A~1-D andR = (Z + D"-A~1-B). The resulting
solvent polarization energy is then

ol (2)] = Eof0*(0)] + 5 004(2) - A-00%(2)
=32 0"Gyo(0) + 0G4

=3 "Gy (10)

whereGyoi(4) = Gpol(0) + 0Gpoi(4) is the Green'’s function of
the constrained variational procedu@(0) = —B"™-A"1-Bis
the unconstrained Green'’s function, a¥@pq(4) = R™-Q 1-R
is the constraint correction. It is evident from the first line of
eq 10 that the constrained variational energy is simply equal to
the unconstrained variational ener@yeo[o*(0)], plus a positive
semidefinite term that is the self-energy due to the constraint
correction to the polarization densiyg*(4). In the limit that
the constraint correction vanishes, the unconstrained variational
energy is recovered.

In the smooth COSMO method, the polarization surface
charge density at the dielectric boundary used to model the
solvent reaction field potential is described by a set of surface

elements on a discretized solvent accessible surface. TheFigure 1. Switching layer in the smooth COSMO method that allows

discretized surface is constructed as a superposition of individu- e appearance and disappearance of surface elements to occur smoothly
ally discretized atom-centered spheres (adjusted by a solventgs a function of geometrical changes.

probe radius). The discretization of each atomic sphere,

described in detail elsewhe%was derived from sets of points  prought about by scaling the surface element self-energy values
{f and weights{wi} used in high-order numerical angular ~ from their calibrated values @y rapidly but smoothly to

quadrature schemes with octahedral symmetry adapted forinfinity as they reactRy,. In the present work, the switching
integration of spherical harmonic functiofijrst pioneered by function takes the form

Lebede®* and extended to high order by Dell&y.

The smooth COSMO method uses spherical Gaussian func- atoms
tions of the form S=I |‘| Sm(fk,j)]p fork 0] (14)
j
glr = ryl) = (§m) %% ST (12)

where p is a parameter, not present in the original smooth
to represent the electrostatic potential and surface elementCOSMO formulatiort> which accounts for surface elements that
interaction matrixes and circumvents the Coulomb singularity are, on average, being switched simultaneously by more than
problem due to overlapping surface elements represented byone other atom, an8,(fx;) is the switching function given by
point charges. Herey is the coordinate of the surface element
k and is the Gaussian exponent that is adjusted to obtain the 0 r<o

exact Born ion solvation enerdy. N={r310—15r +6r3) 0<r<1 15
In order for the appearance and disappearance of surface Su(?) ( ) 9=r= (13)

elements to occur smoothly as a function of geometrical changes, 1 r<1
a switching layer around each atom is introduced (Figure 1). L i
The switching layer fojth atom has an inner radiuRy) and andfy; is defined as
outer radius Roy;) defined by . )
rkyi:[|rk_ le_ RmJ]/stJ fOka] (16)
RinJ = R] - 0*szwJ (12)

Tests of different values of theparameter for large molecules
Rou = R+ (1= 0y)Ryyy (13) suggest that a value of around 0.25 may give more uniform
convergence with respect to discretization level than the original
whereR,; is the atomic radius (plus solvent probe radius) of atom formulation with p set to unity, although further testing is
j» Rew is the switching layer thickness, anglis the switching required.
layer shift parameter (see below). The switching layer serves In the original smooth COSMO formulation, the switching
to “turn off” or “turn on” the surface elements associated with layer shift parameter in eq 12 was taken in accord with a simple
other atoms as they pass into or out of the layer. This effect is analytic surface area formula for two overlapping atomic spheres
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1 R R 2 surfaces and impact on the solvation energy will be investigated
og=>+="—[l5=| —F 17) in future work.
2 RSW, RSW, The total smooth COSMO solvation enerdy,, is given by
) ~_ the sum of the solvent polarization and nonpolar contributions
wheref is a parameter that depends on the form of the switching
function and in the present case (eq 15) is equal g7(22. Eso1= Epo T Enpol (24)

This choice of then; parameter is independent of the relative
positions of the radii and, hence, does not require derivative 2.2. Implementation of Analytic Energy Gradients. This
terms in the formulas for the gradient. section discusses the implementation of the analytic gradient
The surface element interaction matfiy of eq 4 is given by for the smooth COSMO method, with an emphasis on modifica-
tions of the original derivatio? Formulas will be restricted to

(A, :ﬁsk—l (18) the derivatives of the unconstrained variational form of the
Ok kT on COSMO energy, i.e Epolo*(0)] in eq 10.
Consider a set of solute atoms with positidtg wheremis
erfG Ire— 1) an atom index, described by a charge distribution vegtdihe
(A= W (19) gradient of the unconstrained solvation energy[o*(0)] in

eq 10, with respect t®n, is given as
wherek, | are indexes for the surface elemergss the smooth

*
switching parameter of eq 14, aigf, is given by VE = 5Epol 30501 + aEpol 9q
’ m=pol ~ | 55 iR oq |99R
) > > polfokg m m
Ck, 1= Ckg/\/ &g (20) 1 T 0A : 9B
. 5 o;;ol '_'Gz;ol + Ozol o5 d
wheregy and{; are the Gaussian exponents of kendl surface 2 R, R,
elements, respectively. 1

The B matrix of eq 3 that describes the interaction between
the reaction field surface Gaussian chargeand solute charge
distribution @), in the case that the latter is a point charge 17
distribution, takes the form =34 *“VinGpoi(0)-d (25)

_erf@dr, — Ryl) The first term that involve$Eyo/d0p0 vanishes in the case of
(B)k,J - W (21) the unconstrained variational solvation energy, and the second
term that involvesdg/oRy, vanishes in the case the charge
wherek is the surface element index apés the index of the distribution vectorg does not depend on the atomic positions
solute atomic point charge. In the next section, the formulas (€.9., if g is a static charge distribution; for generalization to
for the B matrix elements will be extended to the multipole quantum charge distributions, see below). The last line of the
interactions used in the d-orbital semiempirical formalism. ~ above equation provides a compact Green’s function solution
In addition to the electrostatic component, there are other that can be generalized to incorporate constraints by replacement
terms that contribute to the solvation energy, including the of the Gpai(0) term byGpoi(4) of eq 10.
energy required to form a cavity when placing a solute molecule  The gradient for the diagonal elements of the matrix
in the solvent and the repulsion-dispersion interactions between(which would be zero in the absence of switching) is given by
the solute and solvent. These terms are frequently collected into

_ x T *x T
- Eapol 'VmA'GpoI + Opol 'VmB'q

a single term, referred to here as the nonpolar component of ViAo = — (RS VS (26)
the solvation energyEnpo. In this work, Enpor will take the
general forrm?:46.47 where
atoms 9S(Fy)
EnpoI: Z Vj'SAf (22) VmSK: pS(Z ¢ erk,j (27)
] | kij
wherey; is an effective microscopic surface tension parameter 3S,r) 0 r<o
that takes into account cavity formation and dispersion Wil 3020 — 1)2 0<r<1 (28)
repulsion interactiorfé#”for atomj, and SAis the surface area or 0 r<1
on the solvent accessible surface associated with atgiren
by . n—Ry 1
erk,j = m RS— forkem (29)
SA = Z W, S, (23) K 1w
<l rn—R

where the summation ovek is over all surface elements Ire — Rl Ry

associated with atorjy wy is the angular quadrature weidfit,

and & is the scale factor as given in eq 14. Modifications of The gradient for the off-diagonal elements of thematrix is
the switching layer shift parameter in accord with this formula

may lead to further improvements of the model but have not V,(Ag), =

been explored in the present study. The use of modified forms re—r

of the switching function and switching layer shift parameter - ((Ao)k,| -
and their relation to the solvent accessible and solvent excluding Ire =1l

i 1
L—=-0,, forkOm (30)
W

2

&cgle%'“'z)<aim ~ 5, (31)
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wherek € i, andl € j. The gradient for th& matrix is

|r|<—R|(( )kJ _ Té e — 52— RJZ)(alm _ 6]m) (32)

The gradient of the nonpolar solvation energy can be written
as

atoms

VmE Z Vj gjwkvmsx (33)

npol =

where VS is given in eq 27.

2.3. Integration with a d-Orbital Semiempirical Quantum
Method. For a fixed geometry, the total solution-phase energy
of a molecule can be written as

Elp] =

whereEq[p] is the functional that returns the total gas-phase
electronic energy for the solvent-polarized electron density
Enucis the nuclearnuclear repulsion energy, aldo[p] is the
solvation energy of eq 24. Note thBje in eq 24 is the only
term in the solvation energy that depends explicitly on the
electron density through the total charge distribution vegtor
Since the solvation energy can be written as a functional of
p through the dependence on the charge distribution vegtor
it must be included in the variational procedure of the molecular
electronic energy, leading to the solution-phase Fock matrix

EO[p] + Esol[p] + Enuc (34)

_ SElp)
M 0P,

=F,, +0F,, (35)

wherep,, is the single-particle density matrik,, = oEo[p]/

Opuv is the Fock matrix in the absence of solvatlon, "

= OEsolpl/dpuv is the correction to the Fock matrix for the
solvent reaction field potential (see below).

From eq 34, the gradient of the solution-phase molecular
energy with respect to the nuclear coordinate is

ViElpl = ViEolp] +V, Epol[p] +V Enpol+ Vo

I O(Eqlp ]+Ep0|[p])]
op(r)
wherepg is the ground-state electron density in solution. The

last term vanishes for molecules that are constrained to a fixed
number of electrons, since
O(E,t+E,

11 5p(r)

whereu is the chemical potential of the system in solution.
For semiempirical NDDO-type methods, the solute charge
can be written in a vector form obtainable from the atom-block

nuc

V,00(r) o (36)

W]wann uVe [po(r) dr =0 (37)
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charge and core electrons) of that atom, ang is the density
matrix elemenjuv of theith atom block.

TheB matrix that describes the Coulomb interaction between
the solute and surface charges can be written as

= f B(i,,uv)(r)gkﬂr - rk|) d3r
where the index,(i,uv) refers to the interaction of thkth
surface element with the density matrix elemeinty) and
gdlr — rd) is the spherical Gaussian functiol ..(r)
represents the electrostatic potential atising from the density
matrix elementiuv). In accord with the semiempirical NDDO
formalism?8 B; ,,)(r) can be approximated as the potential due
to the atomic monopole, dipole, and quadrupole moments. With
inclusion of d orbital$4 the B matrix contains the following
nonzero elements:

= (39)

matrix
basis  element
# v B(i,yv)(rk)
s s 1 o)
Tl
s P Ay (re )
Irl® 2
d 3d..(r, .
I P 1 " 3I3 . 3,|(r|;|)| 42)
|rk|| |rk|| |rk,i‘
s o Ll ”
"yl
3d4i(rk i)XZ - (I‘k i)y2
) ey T ' (44)
2“k,i|5
s dy V3d,[2(r,),” — (r:,i)xz = (), s
2Iry il
P dh —5'(rk e (46)
Irk||
d5.l .
" R ()] @7)
Ki
ds;
? o Tz T (MO + 2(1) O (48)
\/_l kl
ds: 3d..(r, ).2
dz2 dz 1 6~'3 i k5,|)z @)
Il [l "l
1 dg;  3dg(ry i)22
A Y (50)
Ml |rk’i‘3 |rk,i|5
de. 3d.(r, )2
o a o _Gls - Lksl)l [=1 =" (51)
L% DT In
3d
dir dy M DRI 52)
|"k.\
N
dy dz2 p Igv'[(rk,i)l(rk,i)réu - z(rk,i)x(rk,i)y(jlxéry], |=]" (53)
K,i
3dg;
de -y N ls[(rk,i)x(rk,i)za,x — ey () Oy~
ki

((rk,i)x2 - (rk,i)yz)alz] (54)

diagonal elements (one-center basis pairs) of the density matrix

core

q| - loi,/,w uv = Ss

38
" Piy wuv O sp, sd pd, pp, dd (38)

qi,,uv _{

where the double indebuv refers to the basis pairv centered
on theith atom, g is the effective core charge (nuclear

wherel andl’ represent the Cartesian componeqtg or z, ry;
=rk— R;, anddy;, dsj, daj, ds;, andds; are the multipole charge
separations corresponding 4p, pp, sd pd, anddd basis pairs
centered on théh atom, respectively:

In light of egs 39 and 40, the matrix involves the Gaussian-
monopole integral



9804 J. Phys. Chem. B, Vol. 109, No. 19, 2005

_ 1 _ 3
lo= [l oI —rd) o

_ erf(§ /R, — rl)

IR — 1yl (°5)
and the following Gaussian-multipole integrals
I, = f;ggk(“ =) d
IR; —r
L= [ ——adr - dr
IR; —r
[ 3
ly= [ ———adr —r)dr, I1=xyorz
IR; —
T, 3 '
loy = f—rﬁgk(lr —rd) dr, 1= (56)

IR —

wheref = R; — r. Notice that the Gaussian-monopole integral
is consistent with eq 21. Sindg has an analytic form, the
Gaussian-multipole integrals can be derived from the following
differential relations:

&
d_r2 IO: 2|1
0
8_r, lo=—1y,
0, _
ar, Ly = =3l + 1.0 (57)

OnceBy ) is obtained, the gradient easily follows from eq
32. The value ofBy . is, in general, very close to that of

B(W)(rk), because the distance between the Gaussian function,

and atomic multipole is much larger than the width of the
Gaussian function. The total reaction field potential that is added
to the Fock matrix elements corresponding to the one-center
basis pairs (see eq 35) can be calculated as

5':55 = Z Bk,(i,,w)ai (58)

whereoy, is the surface charge at due to both effective core
charge and valence electrons.

2.4. Computational Details. All test calculations were
performed using the combined MNDO/d-smooth COSMO
method implemented in MNDO9%.In the electronic structure
calculations, the (default) tolerance to SCF convergence was
set to 10 eV on the energy and 1° au on the norm of the
density matrix. For the geometry optimizations of biological
phosphorus compounds, the (default) tolerance for geometry
convergence was 1 kcal/mol/A on the gradient norm, whereas
a more stringent tolerance of 0.01 kcal/mol/A was used in the
adiabatic reaction paths for dissociation of methyl phosphate
to obtain smooth PESs.

Khandogin et al.
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Figure 2. Binding energies (kcal/mol) and energy gradients (kcal/
mol/A) of NaCl as a function of internuclear distance R (A). Top:
binding energy AE) and binding energy gradient A&/dR). Dotted
and solid black curves are from the gas< 1) and low-dielectric {
= 2) calculations, respectively. The stationary points (zero gradient)
are indicated byr* for each curve. The use of low dielectric of= 2
was necessary for creating a minimum in the total binding energy along
the ion separation coordinate (see text). Middle: electrostatic solvation
component of the binding energy gradientAfgh./dR). Bottom:
electrostatic solvation component of the binding ener§).

solvent accessible surface, and a fixed external dielectric
constant ok, = 80 (water) outside the solvent accessible surface
(with the exception of NaCl where a constant external dielectric
of e, = 2 was used, see below). The nonpolar component of
the solvation energyHupol in €q 24) was neglected for two
reasons. First, this term is small relative to the electrostatic
counterpart for the ionic systems under study (typically less than
2%). For example, the electrostatic and nonelectrostatic solvation
energy component predicted by density-functional calculations
are—66.4 andt0.3 kcal/mol, respectively, for a metaphosphate
anion (PQ"). Second, the parameter does not vary excessively
during geometry optimizations and/or along reaction pathways.
In the case of the separating NaCl~ ions, to create a
minimum in the total energy curve, a low dielectriccof= 2.0
was used. The solvation radii for Nand CI were taken as
the Born ion radii of 1.66 and 2.15 % respectively. The smooth
COSMO model for ebrbital semiempirical methods has been
implemented into the MNDO codg and interfaced to the
CHARMM molecular modeling packageand will be available
in future MNDO and CHARMM releases.

3. Results and Discussion

Unless otherwise noted, the solvent accessible surface was 3.1. Potential Energy Curve for NaCl. The purpose of this

constructed with the atomic radii due to Bof@liyith a surface

subsection is to examine a benchmark potential energy surface

discretization level of 110 points per sphere, and the parametergPES) in order to test the smoothness of solvation energy and

used in the smooth COSMO switching werge= 1.0 anda ~

0.5 in accord with eq 17. In all of the calculations that follow,
the dielectric model involves a fixed internal dielectric constant
of €1 = 1 (vacuo) in the region of the solute as defined by the

gradient and demonstrate the coincidence of the energy mini-
mum and zero-gradient points.

Figure 2 (top) shows the gas-phase (dotted, 1) and low-
dielectric (solid,e = 2) binding energies and total energy



Smooth Solvation Method. 1. Implementation J. Phys. Chem. B, Vol. 109, No. 19, 2008305

AE redistribution (vertical processes) and structural relaxation
Eg[Ro] ——

gas Eo[R] (horizontal processes)
AEgq[Ro] AES | AEg[R
SsoltRol | 0Bl | AEsalR] AE® = AE_[R)] + AE, = AE,, + AE.[R| (60)
. where the difference energy terms are defined\Bso[Ro] =
solution  E[Rol —m— E[R] E[Rq] — Eo[Ro, AEre = E[R] — E[Ry], AEsr = Eo[R] — B[R],
e

and AEs[R] = E[R] — Eo[R]. The quantitiesAEs(Ro) and

Figure 3. Thermodynamic cycle of the solvation proceBs.andE  Ap_(R) are the solvation energies at the gas- and solution-
refer to gas-phase and solution-phase energy calculations, respectively hase geometries, respectively. The relaxation enerBy

and indicated in brackets are the geometries optimized in the gas phas . - .
represents the energy gain associated with the structural

(Ro) or in solution R).

relaxation fromR, to Rin solution, andAEgy is the unfavorable
gradients for Na---Cl~ as a function of the internuclear Strain energy introduced by perturbing the structure fRyto
distance. If the dielectric is set to that of water (roughly 80), Rin the gas phase.
the solvent stabilization produces an energy curve that decreases The neutral and anionic trivalent (metaphosphate), tetravalent
monotonically with internuclear separation (data not shown). (phosphate) and pentavalent (phosphorane) phosphorus com-
Consequently, for demonstration purposes, a low dieleatric ( pounds are models for the reactants and products involved in
= 2) was used to create a minimum for illustrating the the biological phosphoryl transfer and phosphate hydrolysis
coincidence of the minimum energy and zero-gradient distancereaction**°The gas- and solution-phase energies as well as
values. As the total energy gradient approaches zero, the bindinghe RMS deviations between the gas- and solution-phase

energy reaches the minimumRt; = 2.45 A in the gas phase
andR.—, = 2.60 A in the low dielectric. Th&.—, value is shifted
to a larger Na-Cl distance relative t&.—,, since the effect of

structures of the model compounds are summarized in Table 1.

The total solvation energyAEs,, for the molecules listed in

Table 1 ranges from-9.9 to —25.4 kcal/mol for the neutral

the dielectric is to preferentially stabilize the oppositely charged forms and from—75.0 to—81.3 kcal/mol for the monoanionic

ions as they separate.

forms. Among both neutral and monoanionic species, the most

The middle and bottom parts of Figure 2 show that the favorable total solvation energy occurs for the smallest meta-
electrostatic low-dielectric “solvation” energy gradient has a phosphate, and the least favorable solvation energy occurs for
minimum atR = 3.60 A, whereas the corresponding solvation the largest acyclic phosphorane.
energy decreases monotonically. Both the solvation energy and The stabilization due to the solvent-induced structural relax-
gradient are continuous and differentiable (smooth). The gradientation (AE;e) generally increases with the increasing degrees of

of the solvation energy,E}o/dE, shows some small but stable

freedom and the total charge of the molecule. For the neutral

oscillatory features that represent the smooth appearance ofphosphorus compound4E ranges up to-1.4 kcal/mol and
surface elements as the ions separate. Note that the gradientakes up typically less than 5% of the total solvation energy.
oscillations are almost undetectable in the corresponding energyFor the corresponding anionic form&E. ranges up to-2.6

curve Epol.
3.2. Geometry Optimizations of Biological Phosphorus

kcal/mol. Both acyclic and cyclic phosphorane anions are subject
to appreciable energy stabilization (about 2.5 kcal/mol) due to

Compounds. The purpose of this subsection is to test the the solvent-induced structural relaxation. Dimethyl phosphate

implementation of the MNDO/d-smooth COSMO for stable
geometry optimizations of anionic and neutral biological

has gauchegauche (g-g) and gauchetrans (g-t) conforma-
tions that are close in energies. The combined MNDO/

phosphorus compounds. To accomplish this, different compo- d-SCOSMO method yields lower solution-phase energy and a
nents of the solvation energy are examined on the gas phaseslightly smaller solvation energy for the-gg conformation, in
and solution potential energy surface and the expected trendsagreement with previous studies using ab initio mettf6ds.

are discussed.
The total solvation energy\Ex, is given as

AE® = (EJR] + AE[R]) — Ej[R]
= E[R] — EJR]

where Ep and E refer to the gas- and solution-phase total

(59)

The quantitieAEg, and AE,¢ are similar in magnitude, but of
opposite sign, which is plausible since they correspond to reverse
structural relaxation processes. The rangeA&e and AEg
values in Table 1 suggests that inclusion of solvent-induced
structural relaxation may be an important factor, on the order
of a few kcal/mol, for anionic biological phosphorus compounds.
Solvent-induced structural perturbations for the molecules
listed in Table 1 can result in appreciable changes in torsion

energies, respectively, at the electronically relaxed geometry angles involving hydrogen atoms (data not shown). However,

indicated in bracketsAEsq; = E — Ep is the corresponding

the heavy atom RMS deviations are relatively small, ranging

solvation energy contribution at a particular fixed geometry from 0.02 to 0.1 A. The largest structural relaxation occurs in
(hence, neglecting structural relation). Shown in brackets are acyclic phosphorane monoanion. In particular, solvation opens

the geometries optimized on the gas-phase FgSof solution-

phase PESR). For the systems studied in the present work,

the axial O-P—0O bond angle by about°5and moves the
hydrogen atom (from the ©H bond) by about 0.3 A further

the computational cost of single-point energy and gradient away from the closest axial oxygen atom. These results
calculation with MNDO/d-SCOSMO increased relative to the emphasize the importance of solvent-induced structural relax-

gas phase MNDO/d by a factor of-%. For anions, the self-

ations for anionic phosphoranes that form transition states and

consistent field procedure was considerably more stable with intermediates in the biological transphosphorylation reactions.
SCOSMO than in the gas phase. Geometry optimizations in the Recently, there has been a comprehensive 8tudfythe

gas phase and in solution took similar number of steps.

structure and stability of biological metaphosphate, phosphate,

Figure 3 illustrates the thermodynamic process of solvation and phosphorane compounds in the gas phase and in solution
which is decomposed into solvent induced electronic charge based on density-functional calculations and continuum solvation
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TABLE 1: Energies and Structural Deviations of Biological Phosphorus Compounds in the Gas Phase and in Solutidn

molecule AEQ, AEqo(Ro) AEg AEq AEw(R) RMSD
metaphosphates
P(O)(O)(OH) —25.4 —24.8 -1.4 0.6 —26.2 0.028
P(0)(O)(Oy —81.3 —81.3 -0.0 0.0 —81.3 0.018
acyclic phosphates
P(O)(OH)(OCH)(OCHs) —-16.9 —-16.0 -0.9 1.1 —-18.0 0.049
P(O)(O)(OCH)(OCHs)™ (9—0) —-79.3 -77.0 -2.3 2.8 -82.1 0.043
P(O)(O)(OCH)(OCHs)™ (9-1) —79.8 -77.7 -2.1 2.3 -82.1 0.030
cyclic phosphates
P(0)(OH)OCH,CH,0-) —14.8 —14.2 -0.7 0.6 —-15.5 0.049
P(0)(0)(~OCH,CH,0-)" —-78.9 -77.2 -1.8 2.1 —81.0 0.019
acyclic phosphoranes
P(OH)(OH)(OCH)(OCH)(OCH) -9.9 -9.6 -0.3 0.3 —-10.2 0.025
P(O)(OH)(OCH)(OCHs)(OCHs)~ —-75.0 —72.4 —2.6 2.4 —77.4 0.100
cyclic phosphoranes
P(OH)(OH)OCH,CH,0-)(OCHs) —13.6 -13.1 -0.5 0.7 —14.3 0.032
P(O)(OH)(~OCH,CH,0-)(OCH)~ —-78.8 —-76.3 —2.5 2.3 —81.1 0.033

aFor definitions of different components of the total solvation energf, see Figure 3 and eqs 59 and 60. All energetic quantities are in

kcal/mol. Heavy-atom (non-hydrogen) root-mean-square deviations (RMSD) between structures optimized in the gas phase and in solution are in

methods. The magnitudes of the solvation energies reported her%’%‘f’itﬁaz& S&mgaﬂﬁ)%% ct’;] Eg%t;\(’)eciggfergg a\{ﬁw;;fgr

are slightly larger than those given previouiyikely due to Phosphoryl Transfer of Methyl Phosphate in Solution as a
the use of Bondi radif that were not optimized for use with  Function of Discretization Levek
the present smooth COSMO method. Tables S1 and S2 in the

8 : reactant transition state
Supporting Information show the performance of the MNDO/ = 2 ER
d-SCOSMO method with Bondi radii and neglecting nonpolar Nse ABsr BoR) ABo(R) E(R) AEw EoR) AE(R) E(R)
contributions in calculating solvation energies of ions. Solvation 26 4.46 65.42-96.95 —31.53 2.88 73.49 —71.48 2.01
energies with Bondi radii are on average slightly too negative 1??) i-gg 22-2‘; :gg-g‘l‘ :gigg g-ig ;g-% :;‘7‘-2(2) 1-‘212
for cations and esp_eC|aIIy for the anions. Scalln_g the Bor_1d| radii 194 458 6554-9671 —31.17 826 7886 —77.73 114
by a factor of 1.1 improves the agreement with ex_pen_mental 302 4.63 65.59-96.80 —31.22 7.95 7856 —77.45 1.10
solvation energies significantly. A full re-parametrization of 434 4.63 65.59-96.81 —31.21 8.11 78.72 —77.63 1.09
solvation radii for use in the MNDO/d-SCOSMO method is 590 4.63 65.59-96.80 —31.21 8.13 78.74 —77.66 1.08
forthcoming. 770 4.63 65.59-96.81 —31.22 8.14 78.75 —77.68 1.07

It thwhil d to further d | . 974 4.63 65.59-96.81 —31.22 8.16 78.76 —77.69 1.08
IS a worthwhile endeavor (o further develop new semiem- 150> 464 65.60-96.82 —31.22 8.18 78.79 —77.72 1.07

pirical Hamiltonian modef$ in conjunction with implicit
solvation methods in order to accurately predict solvation free
energies and related properties of biological phosphorus com-
pounds, in particulark, shifts of phosphorané85°The method
developed here represents an important step toward this goal
It remains to further calibrate and parametrize semiempirical
guantum methods for obtaining accurate gas-phase proton
affinities (an important step in the thermodynamic cycle to -
obtain K, values)t! in concert with the improvement of the monoanionic products. . ) o o
smooth COSMO solvation model (parametrization of the radii 3.3.1. Comergence of Stationary Points with Dlscret|zat|9n
and nonelectrostatic terms) to arrive at a reliable tool for the Level. Table 2 shows the convergence of the unconstrained
prediction of K, shifts for biological phosphates and phospho- eactant and transition state energy values relative to the
ranes. infinitely separated monoanionic species for stationary points
3.3. Potential Energy Surface for Phosphoryl Transfer of optimiz_ed in soluti_on as a function of the discretization level
Methyl Phosphate. In this subsection, the smooth COSMO  Of cavity surface in the smooth COSMO method. Both the
solvation method is applied to the dissociative mechanism of "elative reactant and transition state energies converge from
phosphoryl transfer in methyl phosphate and compared with above. At very high discretization levels, the relative energy
results obtained from the conventional COSMO solvation Vvalues agree to within 0.01 and 0.03 kcal/mol for the reactant
method as implemented in MNDOYY The focus here is on ~ and transition state, respectively. The geometries of the opti-
the numerical stability of the smooth COSMO method relative Mized stationary points converge much more rapidly with
to the conventional COSMO method. surface discretization (data not shown) such that the observed
In this reaction, the phosphoryl group of methyl phosphate differences in relative energies arise mainly from the solvation
(ICHs0—PO;)2") dissociates as a metaphosphate anions(PO  €nergy terms. This is evident in Table 2 by inspection of the
leaving behind a methoxide anion (@Bt). This reaction is  gas-phase relative energy valugs)(evaluated at the solution-
the first step in the dissociative phosphoryl transfer pathway, a phase stationary points (either the reactant mininRior the
systematic theoretical study of which has been described in detailtransition stateR). The Eo(R) and Eo(R¥) values range from
by others®? Since this step of the reaction can be described with 65.42 to 65.60 kcal/mol and from 73.49 to 78.79 kcal/mol,
a dianionicDy type mechanisfif where the departing groups  respectively. The greater range in E&R) values (5.30 kcal/
are both monoanions, Coulomb repulsion preferentially stabilizes mol) relative to the range d(R) values (0.18 kcal/mol) reflects
the dissociated species. Solvation effects to a large extentthe relatively loose character of the transition state that is more

aRelative energy values (kcal/mol) with respect to infinitely
separated species. Shown are the total energy in sol(®y and the
solvation energy components (see Figure 3, and eqgs 59 and 60).

counterbalance the Coulomb effects by shielding the inter-ionic
Coulomb repulsion and preferentially stabilizing the dianionic
reactant and transition state complexes relative to the dissociated
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.g 20 N Figure 5. Reaction energy profile of the dissociative pathway for
- i ] phosphoryl transfer of methyl phosphate in the gas phase and in solution
using the MNDO/d-smooth COSMO model. Shown are the binding
0 energy values (black curve), in addition to the shifted gas-phase (blue
] | curve) and solvation energy components (red curve) along the reaction
2 3 . 4 5 coordinate defined as the GBI ---PO;~ distance R). In order for all
R (A) the energy curves to appear on the same scale, the gas-phase energy

) ) i . . (AEp) and solvation energyNAEs,) components are shifted by40
Figure 4. Reaction energy profile of the dissociative pathway for  anq+40 kcal/mol, respectively.

phosphoryl transfer of methyl phosphate in solution using the MNDO/

d-smooth COSMO model (SCOSMO-1), the MNDO/d-smooth COS- ; ; o ;
MO model without surface element switching (SCOSMO-0), and the provides numerical stability for the matrix elements. As a result,

conventional COSMO method as implemented in MNDO97 (COSMO). the energy curve appears to. be con'ginuous alth.OUQh with !ittle
Shown are the binding energy values with respect to the infinitely Nonsmoothness; however, singularities persist in the gradients
separated producta\E, top) in kcal/mol and the associated gradient (red curve, designated “SCOSMO-0" in Figure 4). Finally, the
norm with respect to the reaction coordingti\E/dR|, bottom) in kcal/ additional inclusion of a smooth switching function circumvents
mol/A. The reaction coordinate is defined as the;OH--PQO;~ distance the problem with regard to the appearance or disappearance of
(R). surface elements. Both energy and gradient values are smooth
N ) ) ) with respect to geometrical changes (black curve, designated
sensitive to phanges in the solvation energy than the tighter«<scosmo-1” in Figure 4). It is worthwhile to note that, out of
reactant minimum. the 411 geometry optimizations making up the energy curves,
The convergence behavior of the energies with respect toall 411 of the conventional COSMO calculations and 380 of
surface discretization is a feature that is well-behaved in the SCOSMO-0 calculations failed to reach the convergence criteria
present smooth COSMO solvation method (typically much better of 0.01 kcal/mol/A on the gradient norm. However, all calcula-
than that of other boundary element solvation methods thus fartions performed with the SCOSMO-1 method successfully met
tested). All boundary element solvation models, as well as the the convergence criteria.
finite difference Poisson or PoisseBoltzmann methods, have Comparison between energy and gradient curves in Figure 4
issues with regard to their convergence behavior that is not trivial reveals that “small” nonsmoothness in the energy profile (such
to characterize. Ultimately, however, the accuracy of an applied as in the SCOSMO-0 curve) can develop into singularity
solvation method depends, in part, on the parameters that argroblems in the gradients leading to numerical instability and
obtained by fitting to experimental or theoretical results at a failure in the optimization procedures. The problem is typically
particular discretization level. exacerbated with increasing degrees of freeddespecially
3.3.2. Comparison of PES with Cgentional and Smooth  in large-scale geometry optimizations and transition state
Sobkation Models.Figure 4 compares the energy and gradient searches that utilize linear-scaling techniggfgglost recently,
along the reaction coordinate @B ---PG;~ for the phosphoryl alternative strategies have been explored to address the discon-
transfer in methyl phosphate obtained from the smooth COSMO, tinuity problem in boundary element solvation meth&#%'
the smooth COSMO without switching function (conventional 3.3.3. Effect of Sehtion on the PESFigure 5 compares the
COSMO with Gaussian surface elements), and the conventionalenergy profile of the phosphoryl transfer during the methyl
COSMO methods as implemented in MNDOY7The energy phosphate reaction in solution and in the gas phase. The
profile generated with the smooth COSMO method has station- dianionic reactant complex is a stable energy minimum in both
ary points at the reaction coordinate values of 1.74 A (dianionic cases. In the gas phase, the reactant complex is less stable than
reactant) and 3.22 A (transition state), respectively, that are the dissociated monoanionic metaphosphate and methoxide,
coincident with the points where the corresponding gradients whereas in solution, it is more stable by about 30 kcal/mol due
have zero values. The conventional COSMO method (greento more favorable solvation compared with the dissociated
curve, designated “COSMO” in Figure 4) results in singularities product. The same effect causes a shift of the reactant minimum
in both binding energy and gradient curves. This is caused by from 1.90 A in the gas phase to 1.74 A in solution. At the
the numerical instability in the matrix elements due to the point- transition state R = 3.22 A), the solution-phase activation
charge approximatidfi and more importantly, the fluctuation energy barrier relative to the dianionic reactant complex is 32.2
in the dimensionality of the interaction matrixes due to the kcal/mol, in reasonable quantitative agreement with the experi-
appearance or disappearance of surface elerfehtese factors mental value of 37 3 kcal/mol® This energy barrier can be
affect both the solvent response as well as the solvent-induceddecomposed into the gas-phase energfi{) of 6.3 kcal/mol,
electronic polarization energy. Inclusion of Gaussian functions and the solvation contributiom\(AEs,i") of 25.9 kcal/mol. The
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transition state is significantly destabilized by solvation relative ~ The current work demonstrates the numerical stability of the
to the reactant and product states due to the larger effectivesmooth COSMO method in performing solution-phase quantum
radius of the associated dianionic complex, causing a shift from mechanical geometry optimizations and transition state searches
2.77 A'in the gas phase to 3.22 A in solution. In accord with for biologically important molecules, for which the previous
the Hammond postulafé the preferential reactant stabilization COSMO implementation fails. The results of the present work
by solvent increases the forward activation barrier and causesallow application of the MNDO/d-SCOSMO method to model
the transition state to be shifted toward the products. The resultchemical reactions in soluticd.One of the major advantages
is a very late transition state, consistent with a dissociative of the MNDO/d-SCOSMO method is the significantly lower
mechanism, with a higher forward activation barrier than would computational cost relative to QM/MM simulations with explicit
occur in a low dielectric environment. solvent. Although further effort including radii optimization is
These results demonstrate the stability of the MNDO/ warranted, the presented results are encouraging and may assist
d-SCOSMO method and illustrate the general effect of solvation in the design of new implicit solvent models that provide
on phosphoryl transfer reactions that involve association/ increased accuracy and transferability for biological reactions.
dissociation of like-charged ionic species. The activation barrier
calculated by the MNDO/d-SCOSMO method is in reasonable ~ Acknowledgment. D.Y. is grateful for financial support
agreement with the experimental value. It is encouraging that Provided by the National Institutes of Health (Grant GM62248)
realistic results are obtained with the use of standard solvationand the Army High Performance Computing Research Center
parameters and a robust d-orbital quantum model, neither of (AHPCRC) under the auspices of the Department of the Army,
which has been specifically parametrized to obtain accurate Army Research Laboratory (ARL) under Cooperative Agree-
energies for biochemical reactions. A more comprehensive studyment Number DAAD19-01-2-0014. The content does not
of this reaction would involve inclusion of explicit water —hecessarily reflect the position or the policy of the government
molecule&? and QM/MM simulation with specific reaction ~ and no official endorsement should be inferred. Computational
parameters for phosphoryl transfer reactions. Previous tests offesources were provided by the Minnesota Supercomputing
the MNDO/d method for dianionic reaction mechanisms for Institute.
phosphate diesters, however, agree reasonably well with density- ) ) ] ] )
functional result$8 as do application results from hybrid QM/ Supporting Information Available: - Solvation energies for
MM simulations®”:88 The concurrent development of semiem- the MNDO/d smooth cosmo method using Bondi radii are
pirical quantum methods and improved parameters for implicit Presented for a set of cations and anions, and compared to
and QM/MM solvation methods is an area of current effort that €XPeriment. This material is available free of charge via the
can greatly benefit from the results of the present work. Internet at http://pubs.acs.org.
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