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The present paper describes the extension of a recently developed smooth conductor-like screening model
for solvation to a d-orbital semiempirical framework (MNDO/d-SCOSMO) with analytic gradients that can
be used for geometry optimizations, transition state searches, and molecular dynamics simulations. The
methodology is tested on the potential energy surfaces for separating ions and the dissociative phosphoryl
transfer mechanism of methyl phosphate. The convergence behavior of the smooth COSMO method with
respect to discretization level is examined and the numerical stability of the energy and gradient are compared
to that from conventional COSMO calculations. The present method is further tested in applications to energy
minimum and transition state geometry optimizations of neutral and charged metaphosphates, phosphates,
and phosphoranes that are models for stationary points in transphosphorylation reaction pathways of enzymes
and ribozymes. The results indicate that the smooth COSMO method greatly enhances the stability of quantum
mechanical geometry optimization and transition state search calculations that would routinely fail with
conventional solvation methods. The present MNDO/d-SCOSMO method has considerable computational
advantages over hybrid quantum mechanical/molecular mechanical methods with explicit solvation, and
represents a potentially useful tool in the arsenal of multi-scale quantum models used to study biochemical
reactions.

1. Introduction

The importance of solvation effects on molecular dynamics
and chemical reactions has motivated two decades of intensive
effort in the development of solvent models for use in molecular
dynamics simulations1-4 and electronic structure calculations.5,6

Implicit solvation models offer a great computational advantage
over explicit models due to the tremendous reduction of the
degrees of freedom that require force evaluation and configu-
rational sampling. The most widely used implicit models include
the finite-difference Poisson-Boltzmann (PB) method,7-9 the
generalized Born (GB) model,1,3,10,11and the boundary element
method (BEM).12-15

One of the most powerful applications of implicit solvation
methods involves their use with electronic structure calculations.
In recent years, electronic structure methods with implicit
solvation models have been applied to the prediction of
approximate pKa’s, solution-phase electronic, NMR and EPR
spectroscopic parameters, conformational equilibria, and chemi-
cal reaction kinetics.5,6 Solvation models based on boundary
element methods have been among the most widely applied in
electronic structure calculations.5 However, applications of these
methods to potential energy surfaces (PES) and chemical
reactions have traditionally been plagued by the lack of
rigorously smooth analytic gradients that prevent reliable
geometry optimization procedures. As a result, the studies of
solvent effects on chemical reactions often default to solvation
energy post correction based on gas-phase optimized geometries.
The need for smooth analytic gradients is amplified for
biological macromolecules where the degrees of freedom

increase and conformational variations may involve large
changes in the solvent exposed area. Recent advances in linear-
scaling algorithms for electronic structure calculations16-18 and
boundary element solvation methods19,21,22have made possible
application to very large systems such as solvated biological
macromolecules at the semiempirical level.23-25 These methods
hold considerable promise combined with the linear-scaling
geometry optimization and transition state search methods26 in
the study of reactions catalyzed by enzymes and ribozymes.

Boundary element methods have particular advantage for
dielectric problems that involve a molecular cavity of unit
dielectric surrounded by a solvent (such as water) modeled as
a high dielectric constant. For such a model, the solvent reaction
field potential can be represented as the potential arising from
a surface charge distribution that lies at the dielectric boundary.
This allows attention to be focused on a two-dimensional surface
problem as opposed to the one involving a large three-
dimensional volume. The advantage is that numerically it is
possible to converge the discretization of the boundary element
surface in a BEM solvation calculation much more readily than
to increase the resolution of a three-dimensional grid in a finite-
difference PB calculation, although the development of adaptive
finite-element mesh methods offers improvement for the lat-
ter.27,28 Numerical convergence is especially important when
combined with quantum methods where the self-consistent
reaction field has a significant polarization effect on the
electronic structure.

BEM based methods such as the polarizable continuum model
(PCM)12,29 and conductor-like screening model (COSMO)14,30

involve discretization of the cavity surface into tesserae used
to expand the solvent polarization density from which the
reaction field potential is derived. A difficulty that arises from
the surface discretization in these methods is to ensure continuity
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in the solvation energy and derivatives with respect to the
nuclear coordinates. The lack of rigorous analytic derivatives
of the solvation energy and reaction field potential, as imple-
mented in many electronic structure packages, often leads to
failure in gradient-based computations, such as molecular
geometry optimizations and transition state searches, and
numerical instabilities in molecular dynamics simulations. One
solution to improve stability in the BEM based solvation energy
and gradient is to derive rigorous derivatives for the surface
tesserae.31,32However, these methods may still be unreliable if
the tessellation procedure itself is not a smooth function of the
nuclear coordinates. A recent reformulation of a surface
tessellation procedure and associated gradients leads to nearly
continuous potential energy surfaces.33 Alternately, the smooth
COSMO method developed by York and Karplus has rigorously
derived smooth analytic derivatives,15 although until now, the
method has not been integrated with an electronic structure
method.

The present work reports the implementation of the smooth
COSMO method15 including analytic gradients within a d-orbital
semiempirical framework.34,35The method allows the calculation
of smooth potential energy surfaces as well as stable energy
minimization and vibrational analysis (computation of second
derivatives via finite difference of the analytic gradients). The
paper is organized as follows. In the theory and methods section,
the smooth COSMO method is briefly reviewed followed by
the discussions of the implementation of the analytic gradients
and the integration within the d-orbital semiempirical frame-
work. A correction for multiple-atom switching is also intro-
duced into the original smooth COSMO formulation. After a
description of the computational details, the combined MNDO/
d-smooth COSMO (MNDO/d-SCOSMO) method is tested on
several systems. First, it is validated on the potential energy
surfaces for separating ions in order to demonstrate smoothness
of the energy and gradient, and coincidence of the stationary
points with the zero-gradient norm. It is then applied to the
dissociative mechanism of phosphoryl transfer in methyl
phosphate and compared to the results obtained from the
conventional COSMO method. The method is also tested in
energy minimum and transition state optimizations for neutral
and charged metaphosphates, phosphates and phosphoranes that
are models for stationary points in transphosphorylation reaction
pathways of enzymes and ribozymes. The final section draws
conclusions and projects directions of future research.

2. Theory and Methods
2.1. Smooth COSMO Method.In the special case of a charge

distributionF contained within a closed cavity of uniform dielec-
tric ε1 ) 1 surrounded by a medium of uniform dielectricε2, the
polarization densityσpol

15 resides only at the dielectric boundary
(i.e., the cavity surface). In the limit that the external dielectric
goes to infinity (i.e., a conductor), a simple variational principle
emerges for the total polarization surface charge density

where

whereG0(r ,r ′) is the Green’s function in vacuo (e.g., 1/|r -
r ,r ′| under real-space boundary conditions), and the integrals
can usually be calculated analytically with the appropriate basis.

The conductor variational principle of eq 1 is the basis for
the conductor-like screening model (COSMO) first pro-
posed by Klamt and Schu¨ürmann15 and later extended by
others.15,19,30,36-39 In the York and Karplus variant of the
COSMO model15 that has rigorously smooth gradients (smooth
COSMO), the solvent polarization energy is written in the
algebraic form as

whereσ is aM × 1 vector representing the polarization surface
charge density (the “pol” subscript will henceforth be dropped
for σ), q is a N × 1 vector representing the solute charge
distribution (the symbolq is used to distinguish from the
electron densityF that will be discussed in the next section),
andA andB areM × M andM × N matrixes representing the
self-interaction of the surface charge vectors and the interaction
of the surface charge and solute charge density, respectively.
In the general case, where there is an internal dielectricε1 and
external dielectricε2, theA matrix is scaled by a factor 1/f (ε1,ε2)
in accord with Gauss’ law for the total reaction field surface
charge density

whereA0 is the (unscaled) Coulomb interaction matrix andf
(ε1,ε2) is given by

In the case ofε1 * 1, the polarization density includes a simple
volume polarization term that takes the form of a scaled charge
density,σV ) q(1-ε1)/ε1.

In electronic structure calculations, the condition that the
solute charge density is completely contained within the cavity
is not strictly satisfied due to the exponential decay of the tail
of the molecular electron density. Several remedies have been
proposed to account for the effects due to outlying charges (also
referred to as “charge penetration” effects).15,40-42 One proposed
solution involves the use of linear constraints on the total
polarization surface charge in accord with Gauss’ law for a
conductor (including the possibility of higher order multipole
moments) in the variational minimization of the solvent
polarization energy. Accordingly, the constrained variational
principle becomes

whereλ is a vector of Lagrange multipliers onNc constraint
conditions

where DT is a Nc × M matrix representing theNc linear
constraint equations and the vectorZ‚q contains the constraint
values.

The surface charge vector obtained from the constrained
variational minimization is

δEpol/δσpol ) 0 (1)

Epol[σpol] ) 1
2∫∫σpol(r )G0(r ,r ′)σpol(r ′) d3r d3r′ +

∫∫σpol(r )G0(r ,r ′)F(r ′) d3r d3r′ (2)

Epol[σ] ) 1
2

σT‚A‚σ + σT‚B‚q (3)

A )
A0

f (ε1,ε2)
(4)

f (ε1,ε2) )
ε2 - ε1

ε1ε2
(5)

δ{Epol[σ] - λT‚(DT‚σ - Z‚q)} ) 0 (6)

DT‚σ ) Z‚q (7)

σ*(λ) ) -A-1 (B‚q - D‚λ)

) σ*(0) + δσ*(λ) (8)
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whereσ*(0) ) -A-1‚B‚q is the unconstrained surface charge
vector andδσ*(λ) ) A-1‚D‚λ is the constraint correction. The
vector of Lagrange multipliers,λ, is given by

whereQ ) DT‚A-1‚D andR ) (Z + DT‚A-1‚B). The resulting
solvent polarization energy is then

whereGpol(λ) ) Gpol(0) + δGpol(λ) is the Green’s function of
the constrained variational procedure,Gpol(0) ) -BT‚A-1‚B is
the unconstrained Green’s function, andδGpol(λ) ) RT‚Q-1‚R
is the constraint correction. It is evident from the first line of
eq 10 that the constrained variational energy is simply equal to
the unconstrained variational energy,Epol[σ*(0)], plus a positive
semidefinite term that is the self-energy due to the constraint
correction to the polarization density,δσ*(λ). In the limit that
the constraint correction vanishes, the unconstrained variational
energy is recovered.

In the smooth COSMO method, the polarization surface
charge density at the dielectric boundary used to model the
solvent reaction field potential is described by a set of surface
elements on a discretized solvent accessible surface. The
discretized surface is constructed as a superposition of individu-
ally discretized atom-centered spheres (adjusted by a solvent
probe radius). The discretization of each atomic sphere,
described in detail elsewhere,15 was derived from sets of points
{r̂ k} and weights{wk} used in high-order numerical angular
quadrature schemes with octahedral symmetry adapted for
integration of spherical harmonic functions,43 first pioneered by
Lebedev44 and extended to high order by Delley.45

The smooth COSMO method uses spherical Gaussian func-
tions of the form

to represent the electrostatic potential and surface element
interaction matrixes and circumvents the Coulomb singularity
problem due to overlapping surface elements represented by
point charges. Here,r k is the coordinate of the surface element
k andúk is the Gaussian exponent that is adjusted to obtain the
exact Born ion solvation energy.15

In order for the appearance and disappearance of surface
elements to occur smoothly as a function of geometrical changes,
a switching layer around each atom is introduced (Figure 1).
The switching layer forjth atom has an inner radius (Rinj) and
outer radius (Routj) defined by

whereRj is the atomic radius (plus solvent probe radius) of atom
j, Rswj is the switching layer thickness, andRj is the switching
layer shift parameter (see below). The switching layer serves
to “turn off” or “turn on” the surface elements associated with
other atoms as they pass into or out of the layer. This effect is

brought about by scaling the surface element self-energy values
from their calibrated values atRoutj rapidly but smoothly to
infinity as they reachRinj. In the present work, the switching
function takes the form

where p is a parameter, not present in the original smooth
COSMO formulation,15 which accounts for surface elements that
are, on average, being switched simultaneously by more than
one other atom, andSwf(r̂k,j) is the switching function given by

and r̂k,j is defined as

Tests of different values of thep parameter for large molecules
suggest that a value of around 0.25 may give more uniform
convergence with respect to discretization level than the original
formulation with p set to unity, although further testing is
required.

In the original smooth COSMO formulation, the switching
layer shift parameter in eq 12 was taken in accord with a simple
analytic surface area formula for two overlapping atomic spheres

λ )Q-1‚R‚q (9)

Epol[σ*(λ)] ) Epol[σ*(0)] + 1
2

δσ*(λ)T‚A‚δσ*(λ)

) 1
2

qT‚[Gpol(0) + δGpol(λ)]‚q

) 1
2

qT‚Gpol(λ)‚q (10)

gk(|r - r k|) ) (úk
2/π)3/2e-úk

2|r-rk|2 (11)

Rinj
) Rj - RjRswj

(12)

Routj
) Rj + (1-Rj)Rswj

(13)

Figure 1. Switching layer in the smooth COSMO method that allows
the appearance and disappearance of surface elements to occur smoothly
as a function of geometrical changes.

Sk ) [ ∏
j

atoms

Swf(r̂k, j)]
p for k ∉ j (14)

Swf(r) ) {0 r < 0
r3(10 - 15r + 6r2) 0 e r e 1
1 r < 1

(15)

r̂k,j ) [|r k - Rj|- Rinj
]/Rswj

for k ∉ j (16)
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whereâ is a parameter that depends on the form of the switching
function and in the present case (eq 15) is equal to (2x7)-1.
This choice of theRj parameter is independent of the relative
positions of the radii and, hence, does not require derivative
terms in the formulas for the gradient.

The surface element interaction matrixA0 of eq 4 is given by

wherek, l are indexes for the surface elements,Sk is the smooth
switching parameter of eq 14, andú′k,l is given by

whereúk andúl are the Gaussian exponents of thek andl surface
elements, respectively.

The B matrix of eq 3 that describes the interaction between
the reaction field surface Gaussian charge (σ) and solute charge
distribution (q), in the case that the latter is a point charge
distribution, takes the form

wherek is the surface element index andj is the index of the
solute atomic point charge. In the next section, the formulas
for the B matrix elements will be extended to the multipole
interactions used in the d-orbital semiempirical formalism.

In addition to the electrostatic component, there are other
terms that contribute to the solvation energy, including the
energy required to form a cavity when placing a solute molecule
in the solvent and the repulsion-dispersion interactions between
the solute and solvent. These terms are frequently collected into
a single term, referred to here as the nonpolar component of
the solvation energy,Enpol. In this work, Enpol will take the
general form19,46,47

whereγj is an effective microscopic surface tension parameter
that takes into account cavity formation and dispersion-
repulsion interactions47,47for atomj, and SAj is the surface area
on the solvent accessible surface associated with atomj given
by

where the summation overk is over all surface elements
associated with atomj, wk is the angular quadrature weight,19

andSk is the scale factor as given in eq 14. Modifications of
the switching layer shift parameter in accord with this formula
may lead to further improvements of the model but have not
been explored in the present study. The use of modified forms
of the switching function and switching layer shift parameter
and their relation to the solvent accessible and solvent excluding

surfaces and impact on the solvation energy will be investigated
in future work.

The total smooth COSMO solvation energy,Esol, is given by
the sum of the solvent polarization and nonpolar contributions

2.2. Implementation of Analytic Energy Gradients.This
section discusses the implementation of the analytic gradient
for the smooth COSMO method, with an emphasis on modifica-
tions of the original derivation.15 Formulas will be restricted to
the derivatives of the unconstrained variational form of the
COSMO energy, i.e.,Epol[σ*(0)] in eq 10.

Consider a set of solute atoms with positionsRm, wherem is
an atom index, described by a charge distribution vectorq. The
gradient of the unconstrained solvation energy,Epol[σ*(0)] in
eq 10, with respect toRm is given as

The first term that involvesδEpol/δσpol vanishes in the case of
the unconstrained variational solvation energy, and the second
term that involves∂q/∂Rm vanishes in the case the charge
distribution vectorq does not depend on the atomic positions
(e.g., if q is a static charge distribution; for generalization to
quantum charge distributions, see below). The last line of the
above equation provides a compact Green’s function solution
that can be generalized to incorporate constraints by replacement
of the Gpol(0) term byGpol(λ) of eq 10.

The gradient for the diagonal elements of theA0 matrix
(which would be zero in the absence of switching) is given by

where

The gradient for the off-diagonal elements of theA matrix is

Rj ) 1
2

+
Rj

Rswj

- x( Rj

Rswj
)2

- â2 (17)

(A0)k, k)
2úk

x2π
Sk

-1 (18)

(A0)k,l )
erf(ú′k,l|r k - r l|)

|r k - r l|
(19)

ú′k, l ) úkúl/xúk
2+úl

2 (20)

(B)k, j )
erf(úk|r k - Rj|)

|r k - Rj|
(21)

Enpol ) ∑
j

atoms

γj‚SAj (22)

SAj ) ∑
k∈j

wkSk (23)

Esol ) Epol + Enpol (24)

∇mEpol ) [δEpol

δσpol
]

σpol
/

‚
∂σpol

/

∂Rm
+ [δEpol

δq ]q0‚
∂q
∂Rm

+ 1
2

σpol
/ T‚ ∂A

∂Rm
‚σpol

/ + σpol
/ T‚ ∂B

∂Rm
‚q

) 1
2

σpol
/ T‚∇mA‚σpol + σpol

/ T‚∇mB‚q

) 1
2
qT‚∇mGpol(0)‚q (25)

∇m(A0)k,k ) - (A0)k,kSk
-2∇mSk (26)

∇mSk ) p‚Sk∑
j

∂Swf(r̂k,j)

∂r̂k,j

∇mr̂k,j (27)

∂Swf(r)

∂r
) {0 r < 0

30r2(r - 1)2 0 e r e 1
0 r < 1

(28)

∇mr̂k,j )
r k - Rj

|r k - Rj|
1

Rswj

for k ∈ m (29)

)
r k - Rj

|r k - Rj|
1

Rswj

δjm for k ∉ m (30)

∇m(A0)k,l )

-
r k - r l

|r k - r l|2 ((A0)k,l - 2

xπ
ú′k,le

-úk,l
′2 |rk-r l|2)(δim - δjm) (31)
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wherek ∈ i, and l ∈ j. The gradient for theB matrix is

The gradient of the nonpolar solvation energy can be written
as

where∇mSk is given in eq 27.
2.3. Integration with a d-Orbital Semiempirical Quantum

Method. For a fixed geometry, the total solution-phase energy
of a molecule can be written as

whereE0[F] is the functional that returns the total gas-phase
electronic energy for the solvent-polarized electron densityF,
Enuc is the nuclear-nuclear repulsion energy, andEsol[F] is the
solvation energy of eq 24. Note thatEpol in eq 24 is the only
term in the solvation energy that depends explicitly on the
electron density through the total charge distribution vectorq.

Since the solvation energy can be written as a functional of
F through the dependence on the charge distribution vectorq,
it must be included in the variational procedure of the molecular
electronic energy, leading to the solution-phase Fock matrix

whereFµν is the single-particle density matrix,Fµν
0 ) δE0[F]/

δFµν is the Fock matrix in the absence of solvation, andδFµν
RF

) δEsol[F]/δFµν is the correction to the Fock matrix for the
solvent reaction field potential (see below).

From eq 34, the gradient of the solution-phase molecular
energy with respect to the nuclear coordinate is

whereF0 is the ground-state electron density in solution. The
last term vanishes for molecules that are constrained to a fixed
number of electrons, since

whereµ is the chemical potential of the system in solution.
For semiempirical NDDO-type methods, the solute charge

can be written in a vector form obtainable from the atom-block
diagonal elements (one-center basis pairs) of the density matrix

where the double indexi,µν refers to the basis pairµν centered
on the ith atom, qi

core is the effective core charge (nuclear

charge and core electrons) of that atom, andFi,µν is the density
matrix elementµν of the ith atom block.

TheB matrix that describes the Coulomb interaction between
the solute and surface charges can be written as

where the indexk,(i,µν) refers to the interaction of thekth
surface element with the density matrix element (i,µν) and
gk(|r - r k|) is the spherical Gaussian function.B̃(i,µν)(r )
represents the electrostatic potential atr arising from the density
matrix element (i,µν). In accord with the semiempirical NDDO
formalism,48 B̃(i,µν)(r ) can be approximated as the potential due
to the atomic monopole, dipole, and quadrupole moments. With
inclusion of d orbitals,34 the B̃ matrix contains the following
nonzero elements:

wherel andl′ represent the Cartesian componentsx, y, or z, r k,i

) r k - Ri, andd2,i, d3,i, d4,i, d5,i, andd6,i are the multipole charge
separations corresponding tosp, pp, sd, pd, anddd basis pairs
centered on theith atom, respectively.34

In light of eqs 39 and 40, theB matrix involves the Gaussian-
monopole integral

∇m(B)k,j )

-
r k - Rj

|r k - Rj|2((B)k,j - 2

xπ
úke

-úk
2|rk-Rj|2)(δim - δjm) (32)

∇mEnpol ) ∑
j

atoms

γj ∑
k∈j

wk∇mSk (33)

E[F] ) E0[F] + Esol[F] + Enuc (34)

Fµν )
δE[F]
δFµν

) Fµν
0 + δFµν

RF (35)

∇mE[F] ) ∇mE0[F] + ∇mEpol[F] + ∇mEnpol + ∇mEnuc+

∫[δ(E0[F]+Epol[F])

δF(r ) ]F0
∇mF0(r ) d3r (36)

∫[δ(E0+Epol)

δF(r ) ]F0
∇mF0(r ) d3r ) µ∇m∫F0(r ) d3r ) 0 (37)

qi,µν ){qi
core- Fi,µν µν ) ss

-Fi,µν µν ∉ sp, sd, pd, pp, dd
(38)

Bk,(i,µν) ) ∫ B̃(i,µν)(r )gk(|r - r k|) d3r (39)

basis
matrix
element

µ ν B̃(i,µν)(r k)

s s 1
|rk,i|

(40)

s pl
d2,i(rk,i)l

|rk,i|3
(41)

pl pll ′
1

|rk,i|
δll ′ -

d3,i

|rk,i|3
δll ′ +

3d3,i(rk,i)l
2

|rk,i|5
(42)

s dll ′
3d4,i(rk,i)l(rk,i)l′

|rk,i|5
(43)

s dx2 - y2
3d4,i(rk,i)x

2 - (rk,i)y
2

2|rk,i|5
(44)

s dz2
x3d4,i[2(rk,i)z

2 - (rk,i)x
2 - (rk,i)y

2]

2|rk,i|5
(45)

pl dll ′
d5,i(rk,i)l′

|rk,i|3
, l * l′ (46)

pl dx2 - y2
d5,i

|rk,i|3
[(rk,i)xδlx + (rk,i)yδly] (47)

pl dz2
d5,i

x3|rk,i|3
[-(rk,i)xδlx - (rk,i)yδly + 2(rk,i)zδlz] (48)

dz2 dz2
1

|rk,i|
-

d6,i

|rk,i|3
+

3d6,i(rk,i)z
2

|rk,i|5
(49)

dx2 - y2 dx2 - y2
1

|rk,i|
+

d6,i

|rk,i|3
-

3d6,i(rk,i)z
2

|rk,i|5
(50)

dll ′ dll ′
1

|rk,i|
+

d6,i

|rk,i|3
-

3d6,i(rk,i)l′′
2

|rk,i|5
, l * l′ * l′′ (51)

dll ′ dll ′′
3d6,i(rk,i)l'(rk,i)l′′

|rk,i|5
, l * l′ * l′′ (52)

dll ′ dz2
x3d6,i

|rk,i|5
[(rk,i)l(rk,i)l′δlz - 2(rk,i)x(rk,i)yδlxδl′y], l * l′ (53)

dlz dx2 - y2
3d6,i

|rk,i|5
[(rk,i)x(rk,i)zδlx - (rk,i)y(rk,i)zδly-

((rk,i)x
2 - (rk,i)y

2)δlz] (54)
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and the following Gaussian-multipole integrals

wherer̃ ) Ri - r . Notice that the Gaussian-monopole integral
is consistent with eq 21. SinceI0 has an analytic form, the
Gaussian-multipole integrals can be derived from the following
differential relations:

OnceBk,(i,µν) is obtained, the gradient easily follows from eq
32. The value ofBk,(i,µν) is, in general, very close to that of
B̂(i,µν)(r k), because the distance between the Gaussian function
and atomic multipole is much larger than the width of the
Gaussian function. The total reaction field potential that is added
to the Fock matrix elements corresponding to the one-center
basis pairs (see eq 35) can be calculated as

whereσk
/ is the surface charge atr k due to both effective core

charge and valence electrons.
2.4. Computational Details. All test calculations were

performed using the combined MNDO/d-smooth COSMO
method implemented in MNDO97.49 In the electronic structure
calculations, the (default) tolerance to SCF convergence was
set to 10-6 eV on the energy and 10-10 au on the norm of the
density matrix. For the geometry optimizations of biological
phosphorus compounds, the (default) tolerance for geometry
convergence was 1 kcal/mol/Å on the gradient norm, whereas
a more stringent tolerance of 0.01 kcal/mol/Å was used in the
adiabatic reaction paths for dissociation of methyl phosphate
to obtain smooth PESs.

Unless otherwise noted, the solvent accessible surface was
constructed with the atomic radii due to Bondi,50 with a surface
discretization level of 110 points per sphere, and the parameters
used in the smooth COSMO switching wereγs ) 1.0 andR ≈
0.5 in accord with eq 17. In all of the calculations that follow,
the dielectric model involves a fixed internal dielectric constant
of ε1 ) 1 (vacuo) in the region of the solute as defined by the

solvent accessible surface, and a fixed external dielectric
constant ofε2 ) 80 (water) outside the solvent accessible surface
(with the exception of NaCl where a constant external dielectric
of ε2 ) 2 was used, see below). The nonpolar component of
the solvation energy (Enpol in eq 24) was neglected for two
reasons. First, this term is small relative to the electrostatic
counterpart for the ionic systems under study (typically less than
2%). For example, the electrostatic and nonelectrostatic solvation
energy component predicted by density-functional calculations51

are-66.4 and+0.3 kcal/mol, respectively, for a metaphosphate
anion (PO3

-). Second, the parameter does not vary excessively
during geometry optimizations and/or along reaction pathways.

In the case of the separating Na+‚‚‚Cl- ions, to create a
minimum in the total energy curve, a low dielectric ofε ) 2.0
was used. The solvation radii for Na+ and Cl- were taken as
the Born ion radii of 1.66 and 2.15 Å,52 respectively. The smooth
COSMO model for d-orbital semiempirical methods has been
implemented into the MNDO code49 and interfaced to the
CHARMM molecular modeling package53 and will be available
in future MNDO and CHARMM releases.

3. Results and Discussion
3.1. Potential Energy Curve for NaCl.The purpose of this

subsection is to examine a benchmark potential energy surface
(PES) in order to test the smoothness of solvation energy and
gradient and demonstrate the coincidence of the energy mini-
mum and zero-gradient points.

Figure 2 (top) shows the gas-phase (dotted,ε ) 1) and low-
dielectric (solid, ε ) 2) binding energies and total energy

Figure 2. Binding energies (kcal/mol) and energy gradients (kcal/
mol/Å) of NaCl as a function of internuclear distance R (Å). Top:
binding energy (∆E) and binding energy gradient (d∆E/dR). Dotted
and solid black curves are from the gas (ε ) 1) and low-dielectric (ε
) 2) calculations, respectively. The stationary points (zero gradient)
are indicated byR* for each curve. The use of low dielectric ofε ) 2
was necessary for creating a minimum in the total binding energy along
the ion separation coordinate (see text). Middle: electrostatic solvation
component of the binding energy gradient (d∆Epol/dR). Bottom:
electrostatic solvation component of the binding energy (∆Epol).
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gradients for Na+‚‚‚Cl- as a function of the internuclear
distance. If the dielectric is set to that of water (roughly 80),
the solvent stabilization produces an energy curve that decreases
monotonically with internuclear separation (data not shown).
Consequently, for demonstration purposes, a low dielectric (ε

) 2) was used to create a minimum for illustrating the
coincidence of the minimum energy and zero-gradient distance
values. As the total energy gradient approaches zero, the binding
energy reaches the minimum atRε)1 ) 2.45 Å in the gas phase
andRε)2 ) 2.60 Å in the low dielectric. TheRε)2 value is shifted
to a larger Na-Cl distance relative toRε)1, since the effect of
the dielectric is to preferentially stabilize the oppositely charged
ions as they separate.

The middle and bottom parts of Figure 2 show that the
electrostatic low-dielectric “solvation” energy gradient has a
minimum atR ) 3.60 Å, whereas the corresponding solvation
energy decreases monotonically. Both the solvation energy and
gradient are continuous and differentiable (smooth). The gradient
of the solvation energy, dEpol/dE, shows some small but stable
oscillatory features that represent the smooth appearance of
surface elements as the ions separate. Note that the gradient
oscillations are almost undetectable in the corresponding energy
curveEpol.

3.2. Geometry Optimizations of Biological Phosphorus
Compounds. The purpose of this subsection is to test the
implementation of the MNDO/d-smooth COSMO for stable
geometry optimizations of anionic and neutral biological
phosphorus compounds. To accomplish this, different compo-
nents of the solvation energy are examined on the gas phase
and solution potential energy surface and the expected trends
are discussed.

The total solvation energy,∆Esol
tot is given as

where E0 and E refer to the gas- and solution-phase total
energies, respectively, at the electronically relaxed geometry
indicated in brackets,∆Esol ) E - E0 is the corresponding
solvation energy contribution at a particular fixed geometry
(hence, neglecting structural relation). Shown in brackets are
the geometries optimized on the gas-phase PES (R0) or solution-
phase PES (R). For the systems studied in the present work,
the computational cost of single-point energy and gradient
calculation with MNDO/d-SCOSMO increased relative to the
gas phase MNDO/d by a factor of 4-5. For anions, the self-
consistent field procedure was considerably more stable with
SCOSMO than in the gas phase. Geometry optimizations in the
gas phase and in solution took similar number of steps.

Figure 3 illustrates the thermodynamic process of solvation
which is decomposed into solvent induced electronic charge

redistribution (vertical processes) and structural relaxation
(horizontal processes)

where the difference energy terms are defined as∆Esol[R0] )
E[R0] - E0[R0], ∆Erel ) E[R] - E[R0], ∆Estr ) E0[R] - E0[R0],
and ∆Esol[R] ) E[R] - E0[R]. The quantities∆Esol(R0) and
∆Esol(R) are the solvation energies at the gas- and solution-
phase geometries, respectively. The relaxation energy∆Erel

represents the energy gain associated with the structural
relaxation fromR0 to R in solution, and∆Estr is the unfavorable
strain energy introduced by perturbing the structure fromR0 to
R in the gas phase.

The neutral and anionic trivalent (metaphosphate), tetravalent
(phosphate) and pentavalent (phosphorane) phosphorus com-
pounds are models for the reactants and products involved in
the biological phosphoryl transfer and phosphate hydrolysis
reactions.54,55 The gas- and solution-phase energies as well as
the RMS deviations between the gas- and solution-phase
structures of the model compounds are summarized in Table 1.
The total solvation energy,∆Esol

tot, for the molecules listed in
Table 1 ranges from-9.9 to -25.4 kcal/mol for the neutral
forms and from-75.0 to-81.3 kcal/mol for the monoanionic
forms. Among both neutral and monoanionic species, the most
favorable total solvation energy occurs for the smallest meta-
phosphate, and the least favorable solvation energy occurs for
the largest acyclic phosphorane.

The stabilization due to the solvent-induced structural relax-
ation (∆Erel) generally increases with the increasing degrees of
freedom and the total charge of the molecule. For the neutral
phosphorus compounds,∆Erel ranges up to-1.4 kcal/mol and
makes up typically less than 5% of the total solvation energy.
For the corresponding anionic forms,∆Erel ranges up to-2.6
kcal/mol. Both acyclic and cyclic phosphorane anions are subject
to appreciable energy stabilization (about 2.5 kcal/mol) due to
the solvent-induced structural relaxation. Dimethyl phosphate
has gauche-gauche (g-g) and gauche-trans (g-t) conforma-
tions that are close in energies. The combined MNDO/
d-SCOSMO method yields lower solution-phase energy and a
slightly smaller solvation energy for the g-g conformation, in
agreement with previous studies using ab initio methods.56,57

The quantities∆Estr and∆Erel are similar in magnitude, but of
opposite sign, which is plausible since they correspond to reverse
structural relaxation processes. The range of∆Erel and ∆Estr

values in Table 1 suggests that inclusion of solvent-induced
structural relaxation may be an important factor, on the order
of a few kcal/mol, for anionic biological phosphorus compounds.

Solvent-induced structural perturbations for the molecules
listed in Table 1 can result in appreciable changes in torsion
angles involving hydrogen atoms (data not shown). However,
the heavy atom RMS deviations are relatively small, ranging
from 0.02 to 0.1 Å. The largest structural relaxation occurs in
acyclic phosphorane monoanion. In particular, solvation opens
the axial O-P-O bond angle by about 5° and moves the
hydrogen atom (from the O-H bond) by about 0.3 Å further
away from the closest axial oxygen atom. These results
emphasize the importance of solvent-induced structural relax-
ations for anionic phosphoranes that form transition states and
intermediates in the biological transphosphorylation reactions.

Recently, there has been a comprehensive study57 of the
structure and stability of biological metaphosphate, phosphate,
and phosphorane compounds in the gas phase and in solution
based on density-functional calculations and continuum solvation

Figure 3. Thermodynamic cycle of the solvation process.E0 and E
refer to gas-phase and solution-phase energy calculations, respectively,
and indicated in brackets are the geometries optimized in the gas phase
(R0) or in solution (R).

∆Esol
tot ) ∆Esol[R0] + ∆Erel ) ∆Estr + ∆Esol[R] (60)

∆Esol
tot ) (E0[R] + ∆Esol[R]) - E0[R0]

) E[R] - E0[R0] (59)
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methods. The magnitudes of the solvation energies reported here
are slightly larger than those given previously,57 likely due to
the use of Bondi radii50 that were not optimized for use with
the present smooth COSMO method. Tables S1 and S2 in the
Supporting Information show the performance of the MNDO/
d-SCOSMO method with Bondi radii and neglecting nonpolar
contributions in calculating solvation energies of ions. Solvation
energies with Bondi radii are on average slightly too negative
for cations and especially for the anions. Scaling the Bondi radii
by a factor of 1.1 improves the agreement with experimental
solvation energies significantly. A full re-parametrization of
solvation radii for use in the MNDO/d-SCOSMO method is
forthcoming.

It is a worthwhile endeavor to further develop new semiem-
pirical Hamiltonian models58 in conjunction with implicit
solvation methods in order to accurately predict solvation free
energies and related properties of biological phosphorus com-
pounds, in particular pKa shifts of phosphoranes.59,60The method
developed here represents an important step toward this goal.
It remains to further calibrate and parametrize semiempirical
quantum methods for obtaining accurate gas-phase proton
affinities (an important step in the thermodynamic cycle to
obtain pKa values),61 in concert with the improvement of the
smooth COSMO solvation model (parametrization of the radii
and nonelectrostatic terms) to arrive at a reliable tool for the
prediction of pKa shifts for biological phosphates and phospho-
ranes.

3.3. Potential Energy Surface for Phosphoryl Transfer of
Methyl Phosphate. In this subsection, the smooth COSMO
solvation method is applied to the dissociative mechanism of
phosphoryl transfer in methyl phosphate and compared with
results obtained from the conventional COSMO solvation
method as implemented in MNDO97.49 The focus here is on
the numerical stability of the smooth COSMO method relative
to the conventional COSMO method.

In this reaction, the phosphoryl group of methyl phosphate
([CH3O-PO3]2-) dissociates as a metaphosphate anion (PO3

-),
leaving behind a methoxide anion (CH3O-). This reaction is
the first step in the dissociative phosphoryl transfer pathway, a
systematic theoretical study of which has been described in detail
by others.62 Since this step of the reaction can be described with
a dianionicDN type mechanism63 where the departing groups
are both monoanions, Coulomb repulsion preferentially stabilizes
the dissociated species. Solvation effects to a large extent

counterbalance the Coulomb effects by shielding the inter-ionic
Coulomb repulsion and preferentially stabilizing the dianionic
reactant and transition state complexes relative to the dissociated
monoanionic products.

3.3.1. ConVergence of Stationary Points with Discretization
LeVel. Table 2 shows the convergence of the unconstrained
reactant and transition state energy values relative to the
infinitely separated monoanionic species for stationary points
optimized in solution as a function of the discretization level
of cavity surface in the smooth COSMO method. Both the
relative reactant and transition state energies converge from
above. At very high discretization levels, the relative energy
values agree to within 0.01 and 0.03 kcal/mol for the reactant
and transition state, respectively. The geometries of the opti-
mized stationary points converge much more rapidly with
surface discretization (data not shown) such that the observed
differences in relative energies arise mainly from the solvation
energy terms. This is evident in Table 2 by inspection of the
gas-phase relative energy values (E0) evaluated at the solution-
phase stationary points (either the reactant minimumR or the
transition stateRq). The E0(R) and E0(Rq) values range from
65.42 to 65.60 kcal/mol and from 73.49 to 78.79 kcal/mol,
respectively. The greater range in theE0(Rq) values (5.30 kcal/
mol) relative to the range ofE0(R) values (0.18 kcal/mol) reflects
the relatively loose character of the transition state that is more

TABLE 1: Energies and Structural Deviations of Biological Phosphorus Compounds in the Gas Phase and in Solutiona

molecule ∆Esol
tot ∆Esol(R0) ∆Erel ∆Estr ∆Esol(R) RMSD

metaphosphates
P(O)(O)(OH) -25.4 -24.8 -1.4 0.6 -26.2 0.028
P(O)(O)(O)- -81.3 -81.3 -0.0 0.0 -81.3 0.018
acyclic phosphates
P(O)(OH)(OCH3)(OCH3) -16.9 -16.0 -0.9 1.1 -18.0 0.049
P(O)(O)(OCH3)(OCH3)- (g-g) -79.3 -77.0 -2.3 2.8 -82.1 0.043
P(O)(O)(OCH3)(OCH3)- (g-t) -79.8 -77.7 -2.1 2.3 -82.1 0.030
cyclic phosphates
P(O)(OH)(-OCH2CH2O-) -14.8 -14.2 -0.7 0.6 -15.5 0.049
P(O)(O)(-OCH2CH2O-)- -78.9 -77.2 -1.8 2.1 -81.0 0.019
acyclic phosphoranes
P(OH)(OH)(OCH3)(OCH3)(OCH3) -9.9 -9.6 -0.3 0.3 -10.2 0.025
P(O)(OH)(OCH3)(OCH3)(OCH3)- -75.0 -72.4 -2.6 2.4 -77.4 0.100
cyclic phosphoranes
P(OH)(OH)(-OCH2CH2O-)(OCH3) -13.6 -13.1 -0.5 0.7 -14.3 0.032
P(O)(OH)(-OCH2CH2O-)(OCH3)- -78.8 -76.3 -2.5 2.3 -81.1 0.033

a For definitions of different components of the total solvation energy,∆Esol
tot, see Figure 3 and eqs 59 and 60. All energetic quantities are in

kcal/mol. Heavy-atom (non-hydrogen) root-mean-square deviations (RMSD) between structures optimized in the gas phase and in solution are in
Å.

TABLE 2: Comparison of Relative Energy Values for
Stationary Points Along the Dissociative Pathway for
Phosphoryl Transfer of Methyl Phosphate in Solution as a
Function of Discretization Levela

reactant transition state

Nse ∆Estr E0(R) ∆Esol(R) E(R) ∆Estr E0(Rq) ∆Esol(Rq) E(Rq)

26 4.46 65.42 -96.95 -31.53 2.88 73.49 -71.48 2.01
50 4.67 65.64 -96.94 -31.30 5.20 75.81 -74.32 1.49

110 4.62 65.58 -96.81 -31.23 8.15 78.76 -77.50 1.26
194 4.58 65.54 -96.71 -31.17 8.26 78.86 -77.73 1.14
302 4.63 65.59 -96.80 -31.22 7.95 78.56 -77.45 1.10
434 4.63 65.59 -96.81 -31.21 8.11 78.72 -77.63 1.09
590 4.63 65.59 -96.80 -31.21 8.13 78.74 -77.66 1.08
770 4.63 65.59 -96.81 -31.22 8.14 78.75 -77.68 1.07
974 4.63 65.59 -96.81 -31.22 8.16 78.76 -77.69 1.08

1202 4.64 65.60-96.82 -31.22 8.18 78.79 -77.72 1.07

a Relative energy values (kcal/mol) with respect to infinitely
separated species. Shown are the total energy in solutionE(R), and the
solvation energy components (see Figure 3, and eqs 59 and 60).
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sensitive to changes in the solvation energy than the tighter
reactant minimum.

The convergence behavior of the energies with respect to
surface discretization is a feature that is well-behaved in the
present smooth COSMO solvation method (typically much better
than that of other boundary element solvation methods thus far
tested). All boundary element solvation models, as well as the
finite difference Poisson or Poisson-Boltzmann methods, have
issues with regard to their convergence behavior that is not trivial
to characterize. Ultimately, however, the accuracy of an applied
solvation method depends, in part, on the parameters that are
obtained by fitting to experimental or theoretical results at a
particular discretization level.

3.3.2. Comparison of PES with ConVentional and Smooth
SolVation Models.Figure 4 compares the energy and gradient
along the reaction coordinate CH3O-‚‚‚PO3

- for the phosphoryl
transfer in methyl phosphate obtained from the smooth COSMO,
the smooth COSMO without switching function (conventional
COSMO with Gaussian surface elements), and the conventional
COSMO methods as implemented in MNDO97.49 The energy
profile generated with the smooth COSMO method has station-
ary points at the reaction coordinate values of 1.74 Å (dianionic
reactant) and 3.22 Å (transition state), respectively, that are
coincident with the points where the corresponding gradients
have zero values. The conventional COSMO method (green
curve, designated “COSMO” in Figure 4) results in singularities
in both binding energy and gradient curves. This is caused by
the numerical instability in the matrix elements due to the point-
charge approximation14 and more importantly, the fluctuation
in the dimensionality of the interaction matrixes due to the
appearance or disappearance of surface elements.15 These factors
affect both the solvent response as well as the solvent-induced
electronic polarization energy. Inclusion of Gaussian functions

provides numerical stability for the matrix elements. As a result,
the energy curve appears to be continuous although with little
nonsmoothness; however, singularities persist in the gradients
(red curve, designated “SCOSMO-0” in Figure 4). Finally, the
additional inclusion of a smooth switching function circumvents
the problem with regard to the appearance or disappearance of
surface elements. Both energy and gradient values are smooth
with respect to geometrical changes (black curve, designated
“SCOSMO-1” in Figure 4). It is worthwhile to note that, out of
the 411 geometry optimizations making up the energy curves,
all 411 of the conventional COSMO calculations and 380 of
SCOSMO-0 calculations failed to reach the convergence criteria
of 0.01 kcal/mol/Å on the gradient norm. However, all calcula-
tions performed with the SCOSMO-1 method successfully met
the convergence criteria.

Comparison between energy and gradient curves in Figure 4
reveals that “small” nonsmoothness in the energy profile (such
as in the SCOSMO-0 curve) can develop into singularity
problems in the gradients leading to numerical instability and
failure in the optimization procedures. The problem is typically
exacerbated with increasing degrees of freedom,33 especially
in large-scale geometry optimizations and transition state
searches that utilize linear-scaling techniques.26 Most recently,
alternative strategies have been explored to address the discon-
tinuity problem in boundary element solvation methods.33,64

3.3.3. Effect of SolVation on the PES.Figure 5 compares the
energy profile of the phosphoryl transfer during the methyl
phosphate reaction in solution and in the gas phase. The
dianionic reactant complex is a stable energy minimum in both
cases. In the gas phase, the reactant complex is less stable than
the dissociated monoanionic metaphosphate and methoxide,
whereas in solution, it is more stable by about 30 kcal/mol due
to more favorable solvation compared with the dissociated
product. The same effect causes a shift of the reactant minimum
from 1.90 Å in the gas phase to 1.74 Å in solution. At the
transition state (R ) 3.22 Å), the solution-phase activation
energy barrier relative to the dianionic reactant complex is 32.2
kcal/mol, in reasonable quantitative agreement with the experi-
mental value of 37( 3 kcal/mol.65 This energy barrier can be
decomposed into the gas-phase energy (∆E0

q) of 6.3 kcal/mol,
and the solvation contribution (∆∆Esol

q) of 25.9 kcal/mol. The

Figure 4. Reaction energy profile of the dissociative pathway for
phosphoryl transfer of methyl phosphate in solution using the MNDO/
d-smooth COSMO model (SCOSMO-1), the MNDO/d-smooth COS-
MO model without surface element switching (SCOSMO-0), and the
conventional COSMO method as implemented in MNDO97 (COSMO).
Shown are the binding energy values with respect to the infinitely
separated products (∆E, top) in kcal/mol and the associated gradient
norm with respect to the reaction coordinate (|d∆E/dR|, bottom) in kcal/
mol/Å. The reaction coordinate is defined as the CH3O-‚‚‚PO3

- distance
(R).

Figure 5. Reaction energy profile of the dissociative pathway for
phosphoryl transfer of methyl phosphate in the gas phase and in solution
using the MNDO/d-smooth COSMO model. Shown are the binding
energy values (black curve), in addition to the shifted gas-phase (blue
curve) and solvation energy components (red curve) along the reaction
coordinate defined as the CH3O-‚‚‚PO3

- distance (R). In order for all
the energy curves to appear on the same scale, the gas-phase energy
(∆E0) and solvation energy (∆∆Esol) components are shifted by-40
and+40 kcal/mol, respectively.
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transition state is significantly destabilized by solvation relative
to the reactant and product states due to the larger effective
radius of the associated dianionic complex, causing a shift from
2.77 Å in the gas phase to 3.22 Å in solution. In accord with
the Hammond postulate,66 the preferential reactant stabilization
by solvent increases the forward activation barrier and causes
the transition state to be shifted toward the products. The result
is a very late transition state, consistent with a dissociative
mechanism, with a higher forward activation barrier than would
occur in a low dielectric environment.

These results demonstrate the stability of the MNDO/
d-SCOSMO method and illustrate the general effect of solvation
on phosphoryl transfer reactions that involve association/
dissociation of like-charged ionic species. The activation barrier
calculated by the MNDO/d-SCOSMO method is in reasonable
agreement with the experimental value. It is encouraging that
realistic results are obtained with the use of standard solvation
parameters and a robust d-orbital quantum model, neither of
which has been specifically parametrized to obtain accurate
energies for biochemical reactions. A more comprehensive study
of this reaction would involve inclusion of explicit water
molecules62 and QM/MM simulation with specific reaction
parameters for phosphoryl transfer reactions. Previous tests of
the MNDO/d method for dianionic reaction mechanisms for
phosphate diesters, however, agree reasonably well with density-
functional results,58 as do application results from hybrid QM/
MM simulations.67,68 The concurrent development of semiem-
pirical quantum methods and improved parameters for implicit
and QM/MM solvation methods is an area of current effort that
can greatly benefit from the results of the present work.

4. Conclusion

The present paper describes the implementation of analytic
gradients for the smooth COSMO method and integration within
the d-orbital semiempirical framework.49 A correction for
multiple-atom switching is also introduced into the original
smooth COSMO formulation.

The combined MNDO/d-SCOSMO method has been tested
on the potential energy curve for separating Na+ and Cl- ions
to demonstrate the smoothness in the solvation energy and
gradient along the internuclear axis, and coincidence of the
energy minimum with the zero-gradient norm. Tests of the
method on the energies and structures for a series of neutral
and charged metaphosphate, phosphate, and phosphorane com-
pounds were performed. Solvent-induced structural relaxation
was typically less than 1.4 kcal/mol for neutral compounds and
2.6 kcal/mol for the anionic compounds. The overall effects on
the structure were moderate.

Application to the energy and gradient profile for the
dissociative phosphoryl transfer of methyl phosphate reaction
illustrates the stability of the method, and the failure of other
nonsmooth solvation models to produce smooth profiles. The
convergence of the smooth COSMO method with respect to
discretization level is shown to be well behaved both for energy
minima and transition states. Tests on the dianionic dissociation
of methyl phosphate provide insight into the role of solvation
in reactions that involve the dissociation (or association) of
monoanions to form a dianionic transition state complex. The
magnitude of the solvation energy is observed to decrease
monotonically as a function of the dissociative reaction coor-
dinate. The overall effect of solvation is to preferentially stabilize
the associated dianionic complexes relative to the dissociated
reactants and increase the activation barrier relative to that of
the gas-phase reaction in accord with the Hammond postulate.

The current work demonstrates the numerical stability of the
smooth COSMO method in performing solution-phase quantum
mechanical geometry optimizations and transition state searches
for biologically important molecules, for which the previous
COSMO implementation fails. The results of the present work
allow application of the MNDO/d-SCOSMO method to model
chemical reactions in solution.51 One of the major advantages
of the MNDO/d-SCOSMO method is the significantly lower
computational cost relative to QM/MM simulations with explicit
solvent. Although further effort including radii optimization is
warranted, the presented results are encouraging and may assist
in the design of new implicit solvent models that provide
increased accuracy and transferability for biological reactions.
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