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ABSTRACT: A novel variational method for construction of free energy
profiles from molecular simulation data is presented. The variational free
energy profile (VFEP) method uses the maximum likelihood principle
applied to the global free energy profile based on the entire set of simulation
data (e.g., from multiple biased simulations) that spans the free energy
surface. The new method addresses common obstacles in two major
problems usually observed in traditional methods for estimating free energy
surfaces: the need for overlap in the reweighting procedure and the problem of data representation. Test cases demonstrate that
VFEP outperforms other methods in terms of the amount and sparsity of the data needed to construct the overall free energy
profiles. For typical chemical reactions, only ∼5 windows and ∼20−35 independent data points per window are sufficient to
obtain an overall qualitatively correct free energy profile with sampling errors an order of magnitude smaller than the free energy
barrier. The proposed approach thus provides a feasible mechanism to quickly construct the global free energy profile and
identify free energy barriers and basins in free energy simulations via a robust, variational procedure that determines an analytic
representation of the free energy profile without the requirement of numerically unstable histograms or binning procedures. It
can serve as a new framework for biased simulations and is suitable to be used together with other methods to tackle the free
energy estimation problem.

■ INTRODUCTION

Free energy simulations provide a wealth of insights into
complex biomolecular problems. However, the robust calcu-
lation of free energies, and in particular free energy surfaces,
remains a challenging problem for which much work has been,
and continues to be, devoted.1 One of the primary challenges
involves the need to properly sample the necessary degrees of
freedom from which a free energy profile can be derived.
Strategies to solve this problem are many-fold, and some of the
most widespread include multistage/stratified sampling,2

statically3−5 and adaptively6−8 biased sampling, self-guided
dynamics,9 and constrained dynamics,10,11 as well as multi-
canonical12,13 and replica exchange14 algorithms. In addition, a
number of simulation protocols based on nonequilibrium
sampling15−18 have also been recently proposed as well as
hybrid algorithms.19,20

One of the most widely used methods for determining free
energy surfaces for chemical reactions, where often there are
geometric coordinates that are known to be aligned with the
overall reaction coordinate, is the “umbrella sampling”4

technique, which combines stratification with equilibrium,
statically biased sampling. Umbrella sampling is particularly
amenable to parallel execution, especially in high performance
distributed environments,21,22 as well as extension or
combination with replica exchange23,24 and alchemical

simulation techniques.25 There are two key difficulties in
umbrella sampling methods that remain serious challenges: the
problems of “data re-weighting” and “data representation.” Data
reweighting refers to the fact that differently biased simulations
can only yield accurate information about unbiased simulations
after application of a corrective statistical weight. Data
representation describes the problem of giving a functional
form (either parametric or nonparametric, numerical or
analytical) to the target expectation or statistics.

The Need of Overlap in Data Reweighting. The data
reweighting problem has long been known in the field of
molecular simulation and is, in principle, exactly solved by the
free energy perturbation (FEP)/Zwanzig relation and the
related expression for arbitrary mechanical observables.4,26,27

However, naive implementation of the FEP estimator is not
optimal when considering more than one sample set (see ref 28
for a recent survey). Contemporary methods include the
Bennett acceptance ratio,29 weighted histogram analysis
method (WHAM),30 and multistate Bennett acceptance ratio
(MBAR).31,32 All of these methods are essentially equivalent in
their statistical underpinning and rely on the overlap between
states (windows) to perform the reweighting but can vary in
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practical applications where sampling is incomplete and, as a
result, improved methods continue to be developed.33−37 The
Umbrella Integration (UI) approach of Kas̈tner and Thiel38−40

assumes a Gaussian model for the unweighted probability
density in each umbrella window, from which the analytic
derivatives are integrated in order to recover the global
probability density, and hence no explicit reweighting is
necessary. In fact, UI evades the need of overlap in data
reweighting by assuming continuous first derivatives of the free
energy profile between windows, even though the usage of a
Gaussian model for the unweighted probability density is not
ideal in many cases.
Data Representation. The data representation problem is

particularly important when one is interested in studying
mechanisms whereby chemical transformations occur along a
minimum free energy pathway. Perhaps the simplest method of
data representation is to use a histogram estimate of the
probability density.25,30,36 However, this approach is not
numerically stable when data are sparse or sampling does not
overlap. Alternatively, one could assume a parametric fit to the
biased density in each simulation41 or apply a more robust
kernel density estimator.8,42 Other methods that address the
data representation problem have also been proposed.
Maragakis et al. suggested a maximum likelihood approach
utilizing a Gaussian-mixture umbrella sampling (GAMUS)
model for the global probability density based on the
reweighted data43,44 in order to provide an adaptive bias in
umbrella sampling simulations. Basner and Jarzynski proposed
a binless estimator based on the optimal correction to an
arbitrary reference distribution.45 Again, UI38−40 uses Gaussian
models for the unweighted probability densities and has also
recently been extended to higher order densities (i.e., skewed
Gaussians).46 The result of these assumptions is a significant
reduction in the number of data points in each simulation
needed to obtain a converged result. This is because parametric
estimators converge much more quickly than nonparametric
estimators, such as histograms, but often at the expense of
increased bias. For example, the approximations/assumptions
in UI require near-quadratic (or near quartic) behavior of the
local free energy surface. Such behavior can be artificially
imposed by using strong harmonic biasing potentials, but this
often leads to low overlap between windows and the same kind
of failures associated with sparsely populated histogram
estimators.47

In the present work, we introduce a new variational method
for robust determination of free energy profiles (VFEP) from
molecular simulation data. The method uses a maximum
likelihood principle applied to the global free energy profile and
addresses common obstacles: the need for overlap in the data
reweighting and the representation problem. In the following
sections, the formalism is derived, as well as formulas for the
estimation of statistical errors. The method is then applied to a
number of numerical simulations, using two general, parametric
frameworks based on Akima cubic splines and Floater−
Hormann rational function interpolation. The results are
compared with those derived from WHAM and MBAR
(different reweighting protocols with a histogram density
estimate) as well as the UI method. For the test cases
examined here, the VFEP method provides extremely robust
performance relative to the other methods, particularly in the
case of limited or poorly overlapping sampling, and hence
appears to be a promising method for robust and rapid

estimation of analytic free energy profiles from molecular
simulation data.

■ THEORY
Here, we briefly describe the maximum likelihood method
utilized in the present work, beginning with a clarification of
what the difference is between the terms “probability”and
“likelihood” used in this context. In statistical modeling,
probability refers to the possible outcome of data and is usually
modeled by a fixed functional form and a variable set of
parameters. On the other hand, likelihood refers to how likely a
given model can describe a set of observed outcome data.48

Hence,

• Probability: p({xn}|{θm}) is the probability model,
defined by a fixed functional form and variable set of
parameters {θm}, that returns the probability of observing
the data set {xn}; i.e., for a given set of model parameters
{θm}, p({xn}|{θm}) predicts the outcome for the set of
data {xn}: {θm} → {xn}.

• Likelihood: ({θm}|{xn}) is the likelihood that the
observed data set {xn} was generated by the probability
distribution model defined by the set of parameters {θm};
i.e., ({θm}|{xn}), for a given set of observed data {xn},
provides an assessment of the goodness of the model
parameters: {xn} → {θm}.

The maximum likelihood method, or maximum likelihood
estimation (MLE),49,50 is the procedure of finding the optimal
set of parameters that maximize the likelihood of the model
probability distribution function to represent a given set of
observed data.
MLE begins with the definition of the likelihood function of

the sample data. The likelihood function of a set of data is the
probability of obtaining that particular set of data, given the
probability distribution model function defined by a chosen
functional form along with a set of trial model parameters.
Here, we consider the probability, p(x), of observing a
molecular system at a particular value of a single generalized
coordinate x (the extension to multiple dimensions is
straightforward). This probability is given by

∫
=

′ ′

−

−p x
x

( )
e

e d

F x

F x

( )

( )
(1)

where F(x) ≡ (x)/(kBT) is the unitless scaled free energy
profile, (x) is the free energy profile, kB is the Boltzmann
constant, and T is the absolute temperature. Consider now a
parametric model for the scaled free energy profile F(x|{θm})
where {θm} is the set of parameters. The probability
distribution model, p(x|{θm}), also contains the set of
parameters, due to its relation to F(x|{θm}). Now considering
the probability, p({xn}|{θm}), of a sampled data set {xn}, if the
sampling data points are independent of each other, then
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The likelihood of the trial free energy profile F{θm} with
the given observed data set {xn} is
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In the present work, instead of dealing with individual windows,
we attempt to find the optimal solution of the above equation
by defining a global function F(x) with a set of defined
parameters {θm}. It is practical to use the logarithm of the
likelihood function, called the log-likelihood :̂

∑θ θ̂ | = = |
=

x x
N N

p x({ } , ..., )
1

ln
1

ln ( { })m N
n

N

n m1
1 (4)

Since the likelihood is always positive and the logarithmic
function is monotonic, there is no loss of generality in
formulating a variational principle based on the log-likelihood,
which offers some advantages in terms of numerical stability
and is conventional in the literature. Hereafter, we use the term
“likelihood” generically to refer to both the likelihood or the
log-likelihood and will reference specific equations when the
mathematical distinction is necessary. The MLE method
estimates {θm} by finding the values of {θm} that maximize :̂
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where Θ defines the space that {θm} can span. If a biasing
potential Wα(x) is applied in the αth window in a set of
umbrella sampling simulations, the probability of finding the
system with a certain coordinate value x is
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Suppose that for the simulation of the αth window, there are
Nα points observed with coordinate values {xi

α}. Since they are
observed points, the probability of each point is equal with
value 1/Nα. The likelihood of the whole system with an overall
free energy profile F(x) can be expressed as the combination of
the likelihood of individual windows obtained from eq 4 and eq
6 as
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where {cα} are the combination weights defining the relative
contribution of likelihood from different windows when
combining the local likelihood into a global likelihood. When
assuming all windows contribute equally, the cα can simply be
set to be equal, i.e., cα = 1. It can also be shown that, in the
exact sampling limit, the global optimal F is also the optimal F
for each individual window; i.e., the choice of {cα} does not
affect the resulting optimal F(x) (see Supporting Information).
In practice, for finite sampling, we observe that the overall
result is largely insensitive to the choice of cα, and for the
present work, we choose cα = 1 for all windows (also see

Supporting Information). In the above equation for the global
likelihood function, we have used F as the argument to
emphasize that optimization of the likelihood function is with
respect to the free energy profile F (by varying the {θm}
parameters).
There remains the task of finding the F that maximizes l(̂F).

Note that in the above equation, the term Wα(xi
α) is constant

and does not need to be evaluated if the goal is to maximize the
likelihood. Also, the term −ln Zα is equivalent to the relative
free energies (or free energy shifts) between windows in other
reweighting schemes. In the present VFEP approach, the “re-
weighting” procedure is implicitly accomplished through the
normalization against the global trial function F.
An alternate strategy is to model F(x) locally in the region of

each window, Fα(x), and construct the global F(x) using the
Fα(x) with the observed data density as weighting. The only
variable parameters in this approach are the relative free energy
shifts between every window {fα} (the reference free energy
being arbitrary) that establish the relative weights for each
window. Thus, the global F(x) is defined by the parameter set
{fα} and a set of fixed local free energy profiles Fα(x). Applying
the MLE procedure to F(x) with respect to the parameter {fα}
leads to the WHAM and the MBAR equations.31−33,51 Note
that within such a context, MBAR is also a parametric
procedure where the relative free energy shifts of windows
are the MLE parameters and local free energy profiles are
predefined in data fitting procedures, whereas the proposed
VFEP uses MLE parameters to construct the detailed overall
free energy profiles. In summary, the WHAM and MBAR
formula are equivalent to the MLE results when the global free
energy profile is constructed from the local free energy profiles
and the relative free energies are used as the parameters to
optimize the likelihood.
In the present work, instead of dealing with individual

windows, we attempt to find the optimal solution of eq 7 by
defining a global function F(x) with a set of defined parameters
{θm} (i.e., F(x) ≡ F(x|{θm})). The procedure is as follows:

1. Choose a trial function F(x) with a initial parameter set
{θm}.

2. Evaluate the likelihood (̂F) of the trial function F(x)
according to eq 7.

3. Vary the parameter set {θm} until the maximum of (̂F)
is reached.

4. The trial F(x) with the maximal (̂F) is the desired
overall free energy profile.

Two types of analytic functions were selected to model the
overall free energy profile: a cubic spline function52 and a
rational interpolation function.53 Both were originally designed
for interpolation usage. Nevertheless, one could treat the
interpolation input data as the variable parameters; for example,
a cubic spline function needs to have the {xi, yi} data nodes
defined in order to build the desired cubic spline interpolation,
where xi is the independent variable and yi is the corresponding
observed function value. In this work, we select fixed xi and
treat yi as the MLE parameters to be optimized. For example, a
cubic spline function defined by {xi, yi} will be the trial free
energy function in eq 7, and the optimal free energy profile is
reached through changing {yi}. This is equivalent to assuming
that the free energy profile varies slower than a cubic
polynomial between windows or that the first and second
derivatives of free energy profile are continuous between
windows.
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■ RESULTS

A C++ program was built to test the proposed method. Two
interpolation subroutines in the AlgLib (v3.5, http://www.
alglib.net) package were used: The Akima spline algorithm52

was employed for cubic spline interpolation, and the Floater−
Hormann53 algorithm for rational interpolation. Both the
number of spline function nodes and the number of the rational
interpolation poles are set to 2 times the number of windows
minus one. There is one node located at the average data
position of each window and one node located at the average
position of two nodes of two adjacent windows. The results of
WHAM were calculated by the program from Grossfield54

(v2.0.4, http://membrane.urmc.rochester.edu/content/wham).
The results of MBAR were calculated using the pymbar library
of Shirts and Chodera32 (v2.0b, http://simtk.org/home/
pymbar). The UI algorithm38−40 was implemented as part of
the VFEP program.
In order to cover a wide range of common free energy profile

problems, tests were performed with a benchmark molecular
dynamics simulation of a Na+:Cl− pair in a water box, two
combined quantum mechanical/molecular mechanical (QM/
MM) simulations of chemical reactions, and the C−C−C−C
torsion rotation of butane. These test cases represent
nonbonding interactions, chemical reactions, and conforma-
tional transitions. The results for these systems are listed/
described in the subsequent sections.
Na+:Cl− Pair. A Na+:Cl− pair was put in a TIP3P water

box55 (20 Å × 20 Å × 20 Å) with the CHARMM27 force
field.56 The distance between Na+ and Cl−, defined as the
relevant coordinate, was scanned from 2.4 to 7.4 Å with 21
windows separated by 0.25 Å. A biasing potential of either 5 or
100 kcal/mol/Å 2 was applied to each window. The NAMD
package (v 2.7)57 was used, and simulations were performed
under periodic boundary conditions in the NpT ensemble at
300 K and 1 atm (NAMD uses a modified Nose−́Hoover
method58,59 in which Langevin dynamics is used to control
fluctuations in the barostat). Each window was simulated for 1
ns of equilibration and 1 ns of data collection (10 000 data
points per window).
Weak Biasing Potential. In the first set of simulations, a

biasing potential of 5 kcal/mol/Å2 was applied to every
umbrella sampling window, which is relatively weak, affording
considerable overlap between windows. This allows fewer
windows to be required to construct the overall profile than if a
larger umbrella potential were used. However, in the case of
weak umbrella biasing, one would expect a quadratic
approximation of the local (biased) free energy profile within
any given window not to be ideal.
The results with the weak biasing potential of 5 kcal/mol/Å2

are shown in Figure 1. The upper left panel shows the results
from all methods with 21 windows. Other panels show the
results from different methods with different numbers of
windows (11 and 6). While all other methods converge with 21
windows (with statistic errors less than 0.05 kcal/mol, see
Table 1) and give similar results with 11 or even six windows,
UI, using a quadratic approximation, delivers a quantitatively
incorrect free energy profile.
Strong Biasing Potential. In the second set of simulations, a

relatively strong biasing potential with a strength of 100 kcal/
mol/Å2 was applied to every window. Contrary to the weak
potential set of simulations, one would expect that a quadratic
approximation of the local free energy profile would perform

well, but the requirement of the numbers of windows will
increase since the overlap between windows will be diminished.
The results with the strong biasing potential of 100 kcal/

mol/Å2 are shown in Figure 2. The upper left panel again
shows the results from all methods with 21 windows, and other
panels show the results from individual methods with different
numbers of windows (11 and 6). All methods, including UI,
converge with 21 windows and give similar results. With 11
windows, however, WHAM and MBAR fail to produce correct
results, while with six windows, WHAM, UI, and MBAR all fail
to converge due to the lack of sufficient overlap between
windows. On the other hand, the VFEP approach, with both
the spline function (MLE-S) and rational interpolation function
(MLE-R), gives very good results for 11 windows compared to
the 21 window results and gives qualitatively correct results
with only six windows.

Reduced Data Set. In the case of a weak biasing potential,
WHAM gives good results with only six windows. One would
expect, however, that many data points would be necessary to
model individual windows well. Figure 3 shows the results with
six windows from WHAM and the proposed VFEP methods
using the weak biasing potential of 5 kcal/mol/Å2, the same as
the above results (Figure 1), but the data points are stripped
out when performing analysis. The upper panel and middle
panel show the VFEP results with spline function (MLE-S) and
rational interpolation function (MLE-R), respectively, while the
WHAM results are shown in the bottom panel. WHAM fails to
converge with 100 data points or less per window, and MBAR
gives similar results, both due to insufficient data points in the
histograms. Hence only WHAM results are shown. VFEP still
delivers qualitatively correct results with only 20 data points per
window where the statistical error (by bootstrapping) is less
than 1 kcal/mol (see Table 2).

QM/MM Phosphoryl Transfer Reactions. The phosphate
2′-O-transesterification reaction for two model compounds
were simulated by QM/MM umbrella sampling using the
AMBER12 simulation package60 (Figure 4). The first model, 2-
(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP), contains

Figure 1. The free energy profiles calculated with different methods
for the Na+:Cl− pair from a 21-window umbrella sampling simulation
with a weak biasing potential of 5 kcal/mol Å2. The upper left panel
shows the results from all methods with 21 windows. Other panels
show the results from individual methods with different numbers of
windows: six (red), 11 (blue), and 21 (black) windows. While all
methods converge with 21 windows and give similar results with 11 or
even six windows, UI yields an incorrect free energy profile, as
expected.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300703z | J. Chem. Theory Comput. 2013, 9, 153−164156

http://www.alglib.net
http://www.alglib.net
http://membrane.urmc.rochester.edu/content/wham
http://simtk.org/home/pymbar
http://simtk.org/home/pymbar


an enhanced leaving group and is therefore expected to have a
free energy profile with a significantly different shape. The
second is an abasic RNA dinucleotide which has been studied
previously in our group. Both sets of simulations used the
AM1/d-PhoT QM/MM Hamiltonian,61 which has been
verified and demonstrated to able to reproduce high-level
DFT results within chemical accuracy in describing phosphate
chemistry by our group62−65,87 and others,66,67 under periodic
boundary conditions using QM/MM Ewald summations as
implemented in AMBER12.68 The QM region was defined as
the entire solute. The reaction coordinate is defined as the
difference between the nucleophile to phosphorus distance (r1)
and the phosphorus to leaving group distance (r2). For
umbrella sampling simulations, a harmonic biasing potential
was applied to this reaction coordinate, r1 − r2.
HpPNP. HpPNP was solvated in a box of TIP4P-Ew water69

at 300 K using the NVT ensemble with an Andersen
thermostat.70 Twenty-five short (100 ps) umbrella sampling
simulations were performed with a biasing potential strength of
60 kcal/mol/Å2. The QM/MM free energy profile results for
HpPNP are shown in Figure 5. Similar to Figure 1, The upper
left panel shows the results from all methods with 25 windows.
Other panels show the results from individual methods with

different numbers of windows (15 and five). While all methods
converge with 25 windows, only the VFEP method, both with a
spline function (MLE-S) and a rational interpolation function
(MLE-R), still gives good results for five windows.

Table 1. Estimated Errors for the Free Energy Profile of the
Na+:Cl− System from VFEP and MBARa

window
(α) x ̅

α Δ α̂(s,g) Δ α̂(s,m)
stat error
(N = 50)

stat error
(N = 100) MBAR

1 2.629 0.022 0.060 0.018 0.018 0.043
2 2.655 0.040 0.015 0.018 0.018 0.042
3 2.686 0.125 −0.001 0.018 0.018 0.049
4 2.754 0.421 −0.034 0.018 0.018 0.070
5 3.113 0.555 −0.071 0.018 0.015 0.086
6 3.945 0.304 −0.034 0.018 0.010 0.073
7 4.275 0.160 −0.113 0.010 0.010 0.052
8 4.460 0.016 0.013 0.010 0.010 0.042
9 4.638 0.002 −0.025 0.010 0.010 0.040
10 4.797 0.002 0.007 0.009 0.009 0.040
11 4.964 0.002 0.012 0.008 0.008 0.039
12 5.127 0.003 −0.034 0.008 0.008 0.038
13 5.334 0.016 −0.008 0.009 0.008 0.039
14 5.588 0.015 −0.006 0.009 0.009 0.041
15 5.863 0.006 0.001 0.010 0.010 0.041
16 6.188 0.006 −0.012 0.010 0.011 0.038
17 6.500 0.002 −0.007 0.012 0.012 0.037
18 6.719 0.002 −0.012 0.013 0.014 0.036
19 6.955 0.000 0.010 0.015 0.015 0.035
20 7.194 0.000 −0.014 0.016 0.017 0.035
21 7.413 0.000 −0.004 0.017 0.018 0.000
RMS 0.172 0.036 0.013 0.013 0.048

aThe numbers here are derived from a 21-window umbrella sampling
simulation on a Na+:Cl− pair in a TIP3P water box with a biasing
potential of 5 kcal/mol/ Å2 (see the Results section, also Figure 1). x ̅

α

is the average of the sampled coordinates of the αth window. Δ α̂(s,m)
and Δ α̂(s,g) are likelihood errors defined in eqs 8 and 9, respectively.
The “stat error” is the statistical error estimated by performing
bootstrap error analysis on the free energy shift term, −ln Zα, with the
same calculations performed on 50 or 100 randomly chosen data sets.
The numbers reported are the standard deviations of −ln Zα from
different sets of data. MBAR errors are from the MBAR output. The
last row (RMS) is the root-mean-square values of the corresponding
column. All values are in units of kBT, except for x ̅

α, which is in units of
Å.

Figure 2. The free energy profiles calculated with different methods
for the Na+:Cl− pair from a 21-window umbrella sampling simulation
with a strong biasing potential of 100 kcal/mol Å2. The upper left
panel shows the results from all methods with 21 windows. Other
panels show the results from individual methods with different
numbers of windows: six (red), 11 (blue), and 21 (black) windows. All
methods, including UI, converge with 21 windows and give similar
results. With 11 windows, however, MBAR fails to produce correct
results, while with six windows, WHAM, UI, and MBAR all fail to
converge due to the lack of sufficient overlap between windows. On
the other hand, the VFEP approach, both with spline (MLE-S) and
rational interpolation (MLE-R) functions, gives very good results for
11 windows compared to the 21 window results and gives qualitatively
correct results with only six windows.

Figure 3. The free energy profiles calculated with WHAM and VFEP
for the Na+:Cl− pair from a six-window umbrella sampling simulation
with a weak biasing potential of 5 kcal/mol Å2. The data points are
reduced at different levels: 10 000 pt/w (black), 1000 pt/w (red), 100
pt/w (blue), and 20 pt/w (green). The error bars are bootstrap errors
calculated from 100 random data sets with the same size. The upper
panel and middle panel show the VFEP results with spline (MLE-S)
and rational interpolation (MLE-R) functions, respectively, while the
WHAM results are shown in the bottom panel. WHAM fails to
converge with 100 or fewer data points per window, while VFEP still
delivers qualitatively correct results with only 10 data points per
window.
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Reduced Data Set. The QM/MM free energy profile results
for HpPNP with reduced numbers of data points are shown in
Figure 6. Similar to Figure 3, VFEP, both with a spline function

(MLE-S) and a rational interpolation function (MLE-R), still
delivers qualitatively correct results with only 20 data points per
window (with five windows) where the bootstrapping errors
are around 3 kcal/mol.

Abasic Dinucleotide. Mimicking the experimental con-
ditions of Harris et al.71 for a UpG dinucleotide, the system was
solvated in a rhombic dodecahedron of TIP3P water55 with
sodium chloride72 under physiological conditions (310 K) in

Table 2. Estimated Bootstrap Errors (50 and 100
Calculations with Random Data Sets) of Free Energy Shifts
Calculated by the VFEP Methoda

N = 50 N = 100

window average SD average SD

10000 pt/w 1 0.758 0.032 0.760 0.033
2 2.139 0.026 2.141 0.026
3 −0.153 0.017 −0.152 0.018
4 −0.776 0.014 −0.777 0.017
5 −0.720 0.028 −0.722 0.026
6 −1.249 0.033 −1.250 0.032

RMS 0.026 0.026
window average SD average SD

1000 pt/w 1 0.763 0.118 0.761 0.119
2 2.146 0.101 2.142 0.091
3 −0.153 0.057 −0.151 0.053
4 −0.763 0.066 −0.771 0.065
5 −0.722 0.093 −0.721 0.089
6 −1.270 0.111 −1.260 0.105

RMS 0.094 0.088
window average SD average SD

100 pt/w 1 0.752 0.219 0.715 0.254
2 2.135 0.189 2.087 0.206
3 −0.149 0.185 −0.138 0.175
4 −0.770 0.214 −0.761 0.181
5 −0.685 0.236 −0.664 0.246
6 −1.283 0.299 −1.239 0.301

RMS 0.227 0.232
window average SD average SD

20 pt/w 1 0.679 0.819 0.633 0.902
2 2.028 0.734 1.965 0.855
3 −0.118 0.474 −0.097 0.586
4 −0.772 0.483 −0.728 0.54
5 −0.654 0.652 −0.647 0.653
6 −1.162 0.775 −1.126 0.781

RMS 0.670 0.732
aThe system is the Na+:Cl− system with six windows. The numbers
here are derived from a six-window umbrella sampling simulation on a
Na+:Cl− pair in a TIP3P water box with a biasing potential of 5 kcal/
mol/Å2 (see the Results section, also Figure 3). The results are
estimated by performing bootstrap type error analysis on the free
energy shift term, −ln Zα, with the same calculations performed on 50
or 100 randomly chosen data sets. “SD” is the standard deviation,
while “RMS” is the root-mean-square value of the corresponding
column. Results from different numbers of data points used in a
window (10 000 pt/w, 1000 pt/w, 100 pt/w, and 20 pt/w) are shown.
All values are in units of kBT.

Figure 4. Reaction schemes for QM/MM phosphoryl transfer
reactions of an abasic RNA dinucleotide and 2-(hydroxypropyl)-4-
nitrophenyl phosphate (HpPNP), a model compound with an
enhanced leaving group.

Figure 5. The QM/MM free energy profile results for HpPNP. Similar
to Figure 1, the upper left panel shows the results from all methods
with 25 windows. Other panels show the results from individual
methods with different numbers of windows: five (red), 15 (blue), and
25 (black) windows. For the case of 15 and five windows, MBAR fails
due to a lack of overlap between windows when 75 bins are used (no
data in certain bins). While all methods converge with 25 windows,
only the VFEP method, with spline (MLE-S) and rational
interpolation (MLE-R) functions, still gives good results for five
windows.

Figure 6. The QM/MM free energy profile results for HpPNP with
reduced numbers of data points (2000 pt/w (black), 400 pt/w (red),
200 pt/w (blue), and 20 pt/w (green)). The error bars are bootstrap
errors calculated from 100 random data sets with the same size. VFEP,
with both spline (MLE-S) and rational interpolation (MLE-R)
functions, still delivers qualitatively correct results with only 20 data
points in each of five windows. Note that all other methods fail with
only five windows and hence cannot be compared here.
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the NVT ensemble with an Andersen thermostat.70 Data from
24 long (1.75 ns each) umbrella sampling simulations were
used.
The QM/MM free energy profile results for the abasic

dinucleotide are shown in Figure 7. Similar to Figure 5, the

upper left panel shows the results from all methods with 24
windows. Other panels show the results from individual
methods with different numbers of windows (24, seven, and
four windows). While all methods converge with 24 windows,
both WHAM and MBAR fail with four windows. The UI and
VFEP methods, both with a spline function (MLE-S) and a
rational interpolation function (MLE-R), still give good results
for four windows. When they succeed, all of the methods
produce a free energy barrier comparable to the experimental
value of 19.9 kcal/mol, as inferred from the rate constant
extrapolated to “infinite” pH71 and transition state theory.
Reduced Data Set. The QM/MM free energy profile results

for the abasic dinucleotide with reduced numbers of data points
are shown in Figure 8. VFEP, both with spline (MLE-S) and
rational interpolation (MLE-R) functions, still delivers
qualitatively correct results with only 35 data points in each
of four windows. However, the quantitative inaccuracy is readily
apparent in the bootstrapping errors around 3 kcal/mol.
Torsion Rotation of Butane. A butane molecule was

modeled using the AMBER ff99 force field in a generalized
Born solvent at 300 K using Langevin dynamics as
implemented in the AMBER12 simulation package.60 The
umbrella sampling simulations were performed by applying
harmonic restraints on the C−C−C−C torsion with a force
constant of 32.83 kcal/mol/rad2 (0.02 kcal/mol/degree2). The
equilibrium position of the torsion angle ran from −180 to
+180° in increments of 15, resulting in 25 windows. Each
window was simulated for 0.5 ns of equilibration and 1 ns of
data collection (10 000 data points per window).
The free energy profile results for the C−C−C−C torsion of

butane are shown in Figure 9. Similar to Figure 1, The upper
left panel shows the results from all methods with 25 windows.

Other panels show the results from individual methods with
different numbers of windows (13 and 7). While all methods
converge with 25 windows, only the VFEP method, both with
spline (MLE-S) and rational interpolation (MLE-R) functions,
still gives good results for seven windows.

Reduced Data Set. The free energy profile results for butane
with reduced numbers of data points are shown in Figure 10.
Similar to Figure 3, VFEP, both with spline (MLE-S) and
rational interpolation (MLE-R) functions, still delivers
qualitatively correct results with only 20 data points in each

Figure 7. The QM/MM free energy profile results for an abasic RNA
dinucleotide (Figure 4). Similar to Figure 5, the upper left panel shows
the results from all methods with 24 windows. Other panels show the
results from individual methods with different numbers of windows:
four (red), seven (blue), and 24 (black) windows. While all methods
converge with 24 windows, both WHAM and MBAR fail to converge
with four windows. UI and VFEP, both with spline (MLE-S) and
rational interpolation (MLE-R) functions, still gives good result for
four windows.

Figure 8. The QM/MM free energy profile results for an abasic RNA
dinucleotide with reduced numbers of data points: 3500 pt/w (black),
350 pt/w (red), 70 pt/w (blue), and 35 pt/w (green). The error bars
are bootstrap errors calculated from 100 random data sets with the
same size. VFEP, both with spline (MLE-S) and rational interpolation
(MLE-R) functions, still delivers qualitatively correct results with only
seven data points in each of four windows.

Figure 9. The free energy profile of C−C rotation of butane. Similar
to Figure 5, the upper left panel shows the results from all methods
with 25 windows (15° spacing). Other panels show the results from
individual methods with different numbers of windows: seven (red),
13 (blue), and 25 (black) windows. While all methods converge with
25 windows (MBAR and UI have some deviation due to lack of
periodic constraint), both WHAM and MBAR fail to converge with
seven windows. UI and VFEP, both with spline (MLE-S) and rational
interpolation (MLE-R) functions, still give good results for seven
windows.
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of 13 windows. Statistical errors from bootstrapping are around
1 kcal/mol.
Error Analysis. Likelihood Error. The likelihood of a set of

trial probability {p(xi)} with given observed probability set
{pobs(xi)} can be written as

∑̂ = p x p x( ) ln ( )
i

i iobs

Assuming that the trial probability is a Boltzmann distribution
due to the trial effective potential Feff and the observed data
points are unbiased, then the corresponding observed like-
lihood function is

∑̂ = −{ }F
N Z

( )
1

ln
1

e
i

F x
eff

( )ieff

where the normalization factor Z is defined as Z ≡ ∫ e−Feff(x) dx.
For the αth umbrella sampling simulation window, the trial
effective potential is the combination of the trial free energy
profile F(x) and the added biasing potential Wα(x). Hence

∑̂ = ̂ = − − +

= − − ⟨ + ⟩

α α α α α α

α α

F F Z
N

F x W x

Z F x W x
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Note that the above equation is exactly the same as eq 7.
α̂
s can

be expressed as a functional of either Feff or F since they only
differ by a known function Wα. The subscript “s” denotes that
the likelihood is calculated based on the sampling data, and
⟨...⟩sample indicates that the average is calculated using the

observed sample probability distribution.
α̂
s (F) is the functional

to be optimized in the present work as described in the Theory
section. If the trial free energy profile is the true system free
energy profile and the sampling is exact and infinite, then the
“ideal” likelihood is now

∫̂ = − − +

= − − ⟨ + ⟩

α α α

α α

− + α
F Z F x W x x

Z F x W x

( ) ln e { ( ) ( )} d

ln ( ) ( )
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m
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The subscript “m” denotes that the likelihood is calculated
based on the modeled free energy profile function, and ⟨...⟩model

indicates that the average is calculated using the modeled

probability distribution. In the present work, since
α̂
s (F) is the

functional to be optimized and
α̂
m(F) is the “ideal” target

likelihood, the difference between them, denoted as Δlα̂(s,m),
can be viewed as the limit that the optimization process can
reach, or equivalently, the lower bound error of the proposed
method. That is

Δ ̂ ≡ ̂ − ̂

= ⟨ + ⟩
− ⟨ + ⟩

α α α

α

α

F F

F x W x
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Apparently, Δ α̂
(s, m) is just the difference in the expectation

values computed with the effective potentials from the sampling
data and from the optimized free energy profile.

Error Due to Gaussian Distribution Approximation. The
same concept can be applied to Gaussian distributions, as many
approaches use Gaussian distributions to model the probability
distribution for individual windows. The likelihood of a perfect
Gaussian probability distribution is

∑
π σ

̂ =α
α

σ− − ̅
α α⎧⎨⎩
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1

ln
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2
e
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x x
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2 2

where x ̅
α is the average of the sample data {xi

α} and σ2 is the
unbiased variance defined as σ2 = ∑i(xi

α − x ̅
α)2/(Nα − 1). The

likelihood can be expressed analytically as

π σ̂ = − − −α

αF
N

N
( ) ln( 2 )

1
2g

The difference Δ α̂
(s, g), defined as

π σ

Δ ̂ ≡ ̂ − ̂
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(9)

can be viewed as the likelihood of the sampling data set of the
αth window being Gaussian distributed.

Sampling Error. As already mentioned in the Results
section, simple bootstrapping methods73 were utilized to
estimate the statistical sampling errors in the present work.
The error of a target observable is estimated by calculating the
standard deviation between randomly chosen data sets with the
same data size.

Optimum of the Trial Free Energy. For the entire set of
umbrella sampling simulations, the likelihood is eq 7

Figure 10. The free energy profile of C−C rotation of butane with
reduced numbers of data points: 10 000 pt/w (black), 1000 pt/w
(red), 100 pt/w (blue), and 20 pt/w (green). The error bars are
bootstrap errors calculated from 100 random data sets with the same
size. VFEP, both with spline (MLE-S) and rational interpolation
(MLE-R) functions, still delivers qualitatively correct results with only
20 data points in each of 13 windows.
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The variation of (̂F), Δ (̂F), due to a variation of F, ΔF, can
be expressed as
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where δ (̂F(x))/δF(x) is the functional derivative of (̂F(x))
with respect to F(x). Explicitly taking the functional derivative
on eq 7, we get
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where δ(x − xi
α) is the Dirac delta function. Assuming cα = 1 for

all α’s and plugging the above equations into eq 10, the
likelihood variation becomes (note that F can be chosen
relative to an arbitrary constant; hence, ΔF can simply be
replaced by F):
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At the optimal F, δ (̂F(x))/δF(x) is zero at all x, thus

∑α
windows{⟨F(x)⟩model

α − ⟨F(x)⟩samplepoints
α } = 0 (or Δ (̂F) = 0).

Hence Δ (̂F) = 0 can be a simple criterion of judging optimal
F. The above derivation is not limited to the VFEP mehod. Any
free energy profile should hold this criterion if the optimization
is based on the entire system likelihood. In all simulations

reported in this paper, the magnitude of Δ (̂F) is 3.0 × 10−5 or
less, which indicates that the optimal (in terms of likelihood) F
is reached in all of our simulations.

Free Energy Shifts. While in our VFEP method there is no
explicit reweighting procedure involved, the term −ln Zα is the
relative free energy shifts, Δfα, defined in MBAR or WHAM. In
VFEP, they are obtained implicitly through global optimization
of the free energy profile, while in the MBAR and WHAM
approaches they are calculated as the results of the reweighting
procedure. Calculated Δfα’s from VFEP, MBAR, and WHAM
are listed in Table 3, for the Na:Cl system with 21 windows and
with a biasing potential of 5 kcal/mol/Å2 (Figure 1). The
relative free energy shift ΔfMLE

α from VFEP is similar to ΔfMBAR
α

from MBAR (RMS = 0.00199), which suggests that VFEP is
able to implicitly reweight windows just as MBAR. The larger
differences between ΔfMLE

α and ΔfWHAM
α (RMS = 0.18273) may

suggest that the number of data points is still not sufficient from
the WHAM approach, especially for x > 6.7. For VFEP, cubic

Table 3. Estimated Free Energy Shifts of the Na+:Cl− System from VFEP, MBAR, and WHAMa

window (α) x ̅
α Δf VFEPα ΔfMBAR

α ΔfWHAM
α ΔΔf VFEP/MBAR

α (x103) ΔΔf VFEP/WHAM
α (x103)

1 2.629
2 2.655 −0.241 −0.240 −0.240 −0.840 −0.900
3 2.686 −0.021 −0.017 −0.017 −3.340 −3.350
4 2.754 0.629 0.633 0.633 −4.060 −4.030
5 3.113 1.476 1.477 1.479 −1.140 −3.010
6 3.945 1.512 1.511 1.519 0.790 −7.150
7 4.275 0.694 0.694 0.705 −0.410 −11.070
8 4.460 −0.084 −0.083 −0.071 −1.100 −13.410
9 4.638 −0.662 −0.660 −0.646 −1.520 −15.450
10 4.797 −1.048 −1.047 −1.031 −1.840 −17.370
11 4.964 −1.264 −1.262 −1.245 −2.050 −19.250
12 5.127 −1.317 −1.315 −1.297 −2.120 −20.870
13 5.334 −1.225 −1.223 −1.204 −2.040 −21.840
14 5.588 −1.056 −1.054 −1.033 −1.860 −22.610
15 5.863 −0.938 −0.937 −0.914 −1.720 −24.320
16 6.188 −0.970 −0.968 −0.943 −1.770 −26.700
17 6.500 −1.114 −1.112 −1.083 −1.930 −30.880
18 6.719 −1.285 −1.283 −1.235 −2.110 −49.640
19 6.955 −1.431 −1.429 −1.308 −2.130 −122.670
20 7.194 −1.532 −1.530 −1.206 −2.050 −325.970
21 7.413 −1.588 −1.586 −0.832 −2.500 −756.610
RMS 1.990 182.73

aThe numbers here are derived from the same set of simulation as in Table 1. x ̅
α is the average of the sampled coordinates of the αth window. For

the VFEP approach, the Δf VFEPα ’s are calculated from −ln Zα, and the values relative to the first window are listed. ΔfMBAR
α and ΔfWHAM

α values were
taken directly from the MBAR and WHAM output, respectively. The last two columns are differences (multiplied by 103) between these three types
of Δf ’s. The last row (RMS) is the root-mean-square values of the corresponding column. All values are in units of kBT, except for x ̅

α, which is in
units of Å.
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spline functions are used for the above error analysis. Using
rational interpolation functions gives virtually identical results.
Calculated Errors. The likelihood error estimator functions

mentioned above represent the lower bound of the errors due
to the usage of model functions, while the statistical sampling
errors can be obtained from the bootstrapping analysis.
Table 1 lists these error estimators, Δ α̂(s,g) and Δ α̂(s,m),

the bootstrapping errors of the free energy shifts based on 50
and 100 random data sets, as well as the errors reported from
MBAR. The likelihood error estimator Δ α̂(s,m) for this system
is 0.0356 kBT (RMS value), which suggests that the model
functions employed here are adequate. The Gaussian likelihood
error estimator Δ α̂(s,g) is quite small for most of the windows.
The exceptions are windows #3 to #7, which suggest that
Gaussian approximation may be not ideal between x = 2.5 and
x = 4.2. The corresponding accumulated error from this region
is around 1.6 kBT, or 1.0 kcal/mol, which qualitatively agrees
with the fact that the converged UI result is off by about 1.0
kcal/mol when compared to other methods (Figure 1). The
bootstrapping errors of the free energy shifts are 0.013 kBT
(RMS value) for VFEP. The combined errors for VFEP
(likelihood errors plus sampling errors) are roughly the same as
the reported MBAR errors.
Reduce Data Set. Table 2 lists the bootstrapping errors for

different sizes of data sets for the Na:Cl system with six
windows and with a biasing potential of 5 kcal/mol/Å2 (Figure
3). The calculated average values of free energy shifts of
different windows are consistent using different numbers of
data points, which indicates the reliability of the calculations.
The standard deviations, seen as the sampling errors, are
around 0.03 kcal/mol for 10 000 pt/w, 0.1 kcal/mol for 1000
pt/w, 0.2 kcal/mol for 100 pt/w, and 0.7 kcal/mol for 20 pt/w.

■ DISCUSSIONS

Traditional methods for estimating free energy differences or
free energy profiles from umbrella sampling simulations usually
consist of two steps. The first step is to model the free energy
profile of each window and the second step is to merge/
combine the free energy profiles from individual windows into
a global free energy profile. As already mentioned earlier in the
Introduction, two major types of problems are inevitably
associated with these traditional methods: the reweighting
(combination) problem and the data representation problem.
On the other hand, instead of dealing with individual windows,
the proposed VFEP approach finds the global free energy
profile that gives an optimal likelihood based on the entire set
of simulation data that spans the free energy surface. In other
words, VFEP looks for a global free energy profile that every
data point is consistent with, while traditional methods look for
a global free energy profile that is the best combination of local
free energy profiles of individual windows. In this section, we
discuss the results presented in the last section in a broader
context with regard to the reweighting and data fitting
problems and their relation with other methods.
The Need of Overlap in the Reweighting Procedure.

In traditional methods, it is necessary to have overlap
information between sampling windows; otherwise it is
impossible to reasonably combine the free energy profiles of
individual windows. Consequently, when the number of
windows is not adequate and/or individual window sampling
regions are too small to overlap with neighboring windows, the
reweighting problem becomes intractable. In Figure 2, a strong

biasing potential leads to a small window region, and UI/
MBAR/WHAM all fail to converge with six windows. The same
situation happens in the two QM/MM cases as well (shown in
Figures 5 and 7). Although UI evades the need of overlap in
data reweighting by assuming continuous first derivatives of the
free energy profile between windows, UI would fail due to
numerical instability in some cases. On the other hand, the
proposed VFEP approach searches for the optimal global
function based on all available data and, through the usage of
cubic functions, implicitly assumes continuous first and second
derivatives of the free energy profile between windows; hence
the lack of overlap between windows is much less severe of a
problem. In all test cases, the VFEP approach gives plausible
results even with very few windows, although one clearly should
not expect quantitatively correct results with such sparse data.
Nevertheless, the VFEP delivers a reasonable, rough estimate in
these more extreme limits compared to the other methods that
have been tested here.

The Data Representation Problem. In the traditional
methods mentioned, it is desirable for the local free energy
profiles of individual windows to be modeled with a stable
analytic function. The quadratic approximation used in UI is
often a good choice, particularly when strong biasing potentials
are used, as shown in Figures 2, 5, and 7. However, this
approach also leads to the need for a large number of windows,
each of which is strongly localized by a harmonic biasing
potential. Conversely, when weak biasing potentials are used,
the quadratic approximation will begin to break down as shown
in Figure 1 (the UI case). Using histograms, as in the cases of
WHAM and (most commonly) MBAR, will avoid this problem
but will suffer from the requirement of dense sampling in each
bin in order to be numerically stable. As shown in Figure 3,
WHAM will fail when the number of data points for a given
window is not enough to provide sufficient sampling density.
The VFEP method utilizes higher order functions to model the
local free energy profiles (third order in the case of cubic spline
functions) and performs very well in all test cases. Using
analytic functions, VFEP also requires many fewer independent
data points as shown in Figures 3, 6, and 8. Note that these
reduced data sets are obtained by subsampling the original data
and hence represent sparse independent data points. The
results could be very different from those obtained using
shorter simulation data sets possibly with higher correlations.
On the basis of the test results presented here, the proposed

VFEP approach outperforms all listed methods in dealing with
the above two major types of problems in estimating free
energy when the overlap or the data points are not sufficient. As
a result, the following potential advantages of VFEP could
significantly advance the current free energy estimation
techniques:

Fast Estimate of Rough Biasing Potentials. In recent
years, much effort has been devoted to the field of adaptive
approaches for free energy simulations.6,74−77 In order to
obtain optimal sampling, instead of fixed biasing potentials, the
biasing potentials are modified adaptively according to
knowledge obtained from the available simulation results.
Nevertheless, adaptive approaches require at least some
knowledge of the target free energy profile before any sensible
modification of the biasing potentials can be made. Due to the
two major problems of free energy estimation discussed above,
the very first round of estimating the target free energy profile
already requires significant computational resources. Test
results here suggest that the VFEP is capable of delivering a
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qualitatively correct free energy profile with only about five
windows and ∼20 to 35 independent data points per window
for typical chemical reactions. With help from the VFEP
approach, one may be able to establish a very quick coarse-
grained picture of the free energy profile and apply an adaptive
biasing potential approach to build the best biasing potentials
for the next iteration of free energy estimation.
Free Energy Profiles in Multiple Dimensions. Theoret-

ically it is possible to calculate the free energy profiles in
multiple dimensions by slight modification of the WHAM, UI,
and MBAR approaches.40,43,78−80 However, in practice, it is not
always feasible to do so since numerous data points are needed
in order to construct a multidimensional free energy profile.
The GAMUS approach43,44 uses a global Gaussian fit to reduce
the data points needed and can be practically used in
multidimensional free energy profiles. However, the authors
pointed out that the GAMUS approach was designed to explore
free energy basins and is not necessarily appropriate to describe
the location and magnitude of barriers along a minimum free
energy pathway, possibly due to the limitation of the Gaussian
approximation in providing sufficient resolution of the local free
energy profiles. Nevertheless, the VFEP approach can easily be
extended to multidimensional cases as eq 7 is not limited to the
one-dimensional case. VFEP provides a way of constructing
free energy profiles in multiple dimensions since it only needs a
very small number of data points when only a qualitatively
correct free energy profile is needed. As a result, one could be
able to identify free energy basins quickly and focus only on
important regions instead of performing simulations in all
regions. Furthermore, the VFEP approach can be used
iteratively with more data points to generate the quantitatively
detailed free energy profile when more data are available.
Analytic Forms of Biasing Potentials. Another poten-

tially significant advantage of VFEP over other methods is that
the resulting free energy profiles are in analytic forms. Hence it
would be straightforward to calculate the free energy derivatives
with respect to the relevant coordinates. The availability of free
energy derivatives will be particularly useful in the multidimen-
sional case, in which the minimal free energy paths between
two basins could be easily calculated. Such an approach has
already been advocated in conjunction with the UI method.81

Further, these derivatives would provide biasing forces from a
global biasing potential in order to smooth out the free energy
landscape for improved sampling such as in metadynamics and
adaptive biasing potential methods.5−8,74−77,82−86

■ CONCLUSION
In the present work, we demonstrate that the two major
problems in estimating free energy profiles from umbrella
sampling data can be addressed through modeling the overall
free energy profile based on the whole set of simulation data.
The VFEP method presented here is a variational approach
based on the maximum likelihood principle and is demon-
strated to generally outperform other methods for a variety of
test cases in terms of the number of required windows and data
points needed to construct the overall free energy profile.
Whereas several other existing methods all converge to the
correct free energy profile in the limit that there is sufficiently
rich, well-distributed data, the VFEP method is shown to offer
clear advantages in delivering stable, analytic free energy
profiles under circumstances in which the data are more sparse,
as are often encountered in practice. Test cases demonstrate
that, for typical chemical reactions, only about five windows and

∼20 to 35 data points per window are sufficient to obtain a
qualitatively correct course-grained free energy profile that can
be used to focus sampling in the most relevant regions of the
surface, for example, in adaptive asynchronous Hamiltonian
replica exchange simulations. The VFEP-modeled free energy
profile behaves significant better than the quadratic function-
based approaches, or methods that require significant overlap
between windows. Hence, VFEP provides a potentially
powerful tool in the arsenal of methods used to attack the
problem of free energy estimation from computer simulations
of chemical reactions and processes.
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