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ABSTRACT: Linear-scaling electronic structure calculations of solvated
biomolecules have been carried out using a semiempirical Hamiltonian and a
new smooth solvation potential. These methods afford a new way of generating
macromolecular properties that include quantum electronic structure. In addition
to the widely used classical electrostatic potential maps based on empirically
derived static point charges, now fully quantum mechanical electrostatic
potentials that include electronic polarization are possible. Linear-scaling
electronic structure methods provide a host of response properties of the electron
density such as linear response functions, local hardness functions, and Fukui
functions. It is the hope that these indices will extend insight into problems of
biological macromolecular characterization. c© 2000 John Wiley & Sons, Inc.
J Comput Chem 21: 1562–1571, 2000
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Introduction

T he overall accuracy and predictive capability
of computational models for biological sys-

tems are limited by (1) the accuracy to which inter-
molecular forces are described, (2) the adequacy to
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which relevant phase space is sampled, and (3) the
degree to which the microscopic system on the com-
puter reflects the (typically) macroscopic system in
nature. (For molecular simulations, there are issues
with regard to the classical vs. quantum mechani-
cal treatment of nuclear motion, and for electronic
structure methods, issues with regard to the validity
of the Born–Oppenheimer approximation and the
importance of relativistic effects.)

Applications targeted at the study of chemical
reactions that take place in complex chemical en-
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vironments are of great importance in many dis-
ciplines. Often the environment has a tremendous
effect on the nature of the chemistry of the inter-
acting species relative to that which would occur in
vacuum. An important and illustrative example is
that of enzyme catalysis where a protein, polynu-
cleotide, or macromolecular complex along with
associated bound metals and solvent provide the
catalytic environment.

“Multilevel” methods allow the use of a hierar-
chy of theoretical models that balance accuracy and
computational efficiency. The goal, then, is to de-
termine the weakest link in the model with respect
to the particular properties of interest in the appli-
cation, and design a multilevel scheme within the
constraints of available computational resources to
best achieve reliable, predictive answers. As an ex-
ample, the diverse behavior of water molecules at
the atomic level is amazingly complex, and remains
an area of active research by both experimental and
theoretical methods. However, to a reasonable ap-
proximation, the effect of bulk water far enough
away from the active site of a biomolecule can
be treated as a dielectric continuum with a set of
equations that can be readily solved.1 Similarly,
hybrid quantum mechanical/molecular mechanical
(QM/MM) methods are examples of a particular
class of multilevel quantum models that have re-
ceived a tremendous amount of attention in the past
several years.2

In this article, linear-scaling electronic structure
methods are combined with a smooth solvation
potential and applied to the determination of use-
ful properties for macromolecular characterization.
These include quantum mechanical electrostatic po-
tential surfaces, polarization response densities, sol-
vation energies, and electronic density of states.

Scaling

A key issue in the development of models de-
signed for very large systems is scaling: the rate at
which the computational effort increases as the sys-
tem size is increased (in some systematic way) while
maintaining a fixed level of overall accuracy. For
the purposes of discussion, the formal scaling (as
described above) of computational effort is termed
“linear scaling” if the computational effort scales
more favorably than Nα where α is any real number
greater than 1; i.e.,

lim
N→∞

CPU(N)
Nα

= 0 ∀ α > 1

where CPU(N) represents the computational effort
as a function of “system size” N. This definition of
linear scaling thus encompasses the class of meth-
ods that scale formally as O(N log N).

Methods for Classical Electrostatics
and Solvation

Classical electrostatic interactions play a key role
in almost all chemical models from purely em-
pirical force fields to ab initio electronic structure
methods. Of prime importance to large-scale mod-
eling applications are methods to efficiently cal-
culate long-range Coulomb interactions and that
have favorable scaling properties in the limit of
large number of particles. A tremendous amount of
work and progress has been made in the develop-
ment of linear-scaling methods to solve the Poisson
equation for the classical electrostatic potential for
systems of point charges or smooth charge den-
sities under periodic and nonperiodic boundary
conditions.3, 4 The most common modern strate-
gies can be broadly categorized into methods based
on multipole expansions of the potential such as
tree codes and fast-multipole methods5 – 7 and meth-
ods based on plane-wave expansions of the poten-
tial such as linear-scaling Ewald methods.3, 8 These
methods can be viewed as Green’s function expan-
sions of the Laplacian operator in real and reciprocal
space, respectively. (Although it may be argued that
methods based on spherical harmonic multipole ex-
pansions are most natural for nonperiodic systems
and plane wave expansions are most natural for pe-
riodic systems, there have been generalizations of
both techniques: fast-multipole methods for peri-
odic systems, and Fourier methods for nonperiodic
systems.)

For large biological applications, inclusion of the
solvent environment is critical. Frequently an im-
plicit solvation model1, 9, 10 can be employed to re-
move the explicit solvent degrees of freedom that
would otherwise dominate the calculation. It is of-
ten not clear how appropriate these models are
for treatment of the first solvation layers around a
biological macromolecule; however, it is generally
believed that they have a useful place within the
hierarchy of multilevel models (e.g., outside some
domain where the effect of the bulk solvent on the
region of interest can be sufficiently approximated
by a continuum model). For these reasons, it is of
significant importance to develop a linear-scaling
solvation potential that is numerically stable and
sufficiently smooth for biological applications.
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The model outlined here is based on a recent
general formulation of a smooth analytic solvent
potential11 based on the conductor-like screening
model.12 The method is a type of boundary-element
method that uses a variational principle for the
electrostatic energy appropriate for a conductor,
and employs a correction factor for finite dielectric
medium. A computational advantage of the method
is that it utilizes a discretized 2D surface instead
of a 3D grid; however, for more complicated spa-
tially varying dielectric functions or nonlinear (e.g.,
ionic) terms, grid-based methods have some nat-
ural advantages. Although the COSMO method is
an exact solution to the electrostatic problem only
in the limit of infinite external dielectric, it has been
shown to be very accurate for a high dielectric
medium such as water. (Even an exact solution of
the electrostatic problem for finite external dielec-
tric is an approximation for only one component
of the solvation energy.) More recently, a COSMO-
RS model (conductor-like screening model for real
solvents) has been developed and parameterized to
improve finite dielectric screening in other organic
solvents.13, 14

The equation for the induced solvent polarization
energy is

Epol = 1
2
σT

pol ·A · σpol + σT
pol · B · ρ0 (1)

where σpol is a M× 1 vector representing the polar-
ization surface charge density, ρ0 is a N × 1 vector
representing the solute charge density (here treated
as fixed), and A and B are M ×M and M × N ma-
trices representing the self-interaction of the surface
charge vectors and the interaction of the surface
charge and solute charge density, respectively. For
a conducting medium (infinite dielectric), the A
matrix is just an electrostatic interaction matrix be-
tween surface elements. In the present model, if
there is an internal dielectric ε1 and external dielec-
tric ε2, the electrostatic interaction matrix is scaled
by a factor 1/f (ε1, ε2), where

f (ε1, ε2) = ε2 − ε1

ε1ε2
(2)

This scale factor is in accord with Gauss’ law for
the total surface charge density. The polarization
surface charge density is obtained by a minimiza-
tion procedure written in the general form

δ
{
Epol − λT · (DT · σpol − y

)} = 0 (3)

where λ is a vector of Lagrange multipliers on Nc

constraint conditions

DT · σpol = Z · ρ0 = y (4)

where D is a Nc×M matrix representing Ncon linear
constraint equations and the vector Z·ρ0 = y are the
constraint values. It is assumed that the constraint
values are linear functions of the static density ρ0.
For example, the Gauss’ law constraint on the to-
tal surface charge for ε = ∞, assuming the surface
and static charge densities are expanded in a basis
of L1 normalized functions, corresponds to Nc = 1,
Di,1 = 1, and Z1,i = −1 (which implies y1 = −Q0).
Although the scale factor f (ε1, ε2) is consistent with
the Gauss law, it does not guarantee the exact sur-
face charge in a numerical calculation. (There is
also the issue of charge penetration that has been
discussed extensively elsewhere.15) The use of con-
straints on the surface charge and the mechanisms
for enforcing them are still topics of interest and dis-
cussion.

The variational solution for the surface charge
vector is

σ ∗pol(λ) = −A−1(B · ρ0 −D · λ)

= σ ∗pol(0)+ δσ ∗pol(λ) (5)

and

λ = Q−1 · R · ρ0 (6)

where the matrices Q = DT · A−1 ·D and R = (Z +
DT · A−1 · B) have been introduced, σ ∗(0) = −A−1 ·
B ·ρ0 is the unconstrained surface charge vector and
δσ ∗pol(λ) = A−1 ·D ·λ is the constraint correction. The
resulting energy expression is

Epol(λ) = 1
2
σ ∗pol(0)T · B · ρ0

+ 1
2
δσ ∗pol(λ)T ·A · δσ ∗pol(λ)

= 1
2
ρT

0 ·
[
Gpol(0)+ δGpol(λ)

] · ρ0

= 1
2
ρT

0 ·Gpol(λ) · ρ0 (7)

where Gpol(λ) = Gpol(0) + δGpol(λ) is the Green’s
function of the constrained variational procedure,
Gpol(0) = −BT ·A−1 ·B is the unconstrained Green’s
function, and δGpol(λ) = RT ·Q−1 ·R is the constraint
correction.

The key feature in the new model is that the
solvation potential is a numerically stable and rig-
orously smooth function of the atomic positions
(Fig. 1). This derives from the definition of the
A and B matrix elements that can change dimen-
sion as the conformation of the molecule changes,
but do so smoothly with respect to variations in
the energy.11 This is accommodated by model-
ing surface elements associated with the polariza-
tron surface charge density as three-dimensional
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FIGURE 1. Smoothness of the solvation potential.
Curves are shown at several atomic sphere discretization
levels for two ions with unit radii and oppositely signed
unit charges as they separate along the z axis.
(a) Point-charge model: interactions between surface
elements were modeled by point-charge interactions.
(b) Gaussian/smooth model: interactions between
surface elements were modeled by Gaussian Coulomb
interactions that occur smoothly as they become
exposed or buried. The top row shows the relative
solvation energy E (kcal/mol, shifted for clarity) as a
function of separation distance R, and the middle and
bottom rows include the corresponding gradient curves
(kcal/mol-Å) below the horizontal zero axis. Gradients
were computed by finite differences (dE/dR = 1E/1R
with 1R = 0.01 Å) to graphically depict the relative area
associated with each singularity.

Gaussian functions distributed on spheres accord-
ing to the rules of high-order numerical quadra-
ture schemes for spherical harmonics. The surface
elements are smoothly “switched on” when they
become exposed on the solvent accessible surface
and “switched off” when they become buried. The
smoothness of the solvation potential is problematic
for many boundary element methods,1, 9 and is an
important factor when performing gradient-based
geometry optimizations, transition state searches,
and molecular dynamics simulations. Figure 2
shows the effect of using the smooth solvation
model without smoothing (γ = 0) and with smooth-
ing (γ = 1) for OH− attack on ethylene sulfate.

FIGURE 2. Potential energy surfaces for OH− attack
on ethylene sulfate at different levels of smoothing.
Curves at several discretization levels (14, 26, 50, and
110 points/atomic sphere, corresponding to dotted,
solid, dashed, and thick solid lines, respectively) are
shown for smoothing levels γ = 0 (no smoothing, top),
and γ = 1 (full smoothing, bottom). See ref. 11.

The conventional conductor-like screening
model has been made into a linear-scaling algo-
rithm,10 and this technique can be extended to
the Gaussian solvation model described here. The
key features needed to linearize the computational
effort are to (1) circumvent the O(M2) and O(M×N)
computational and memory requirements to
construct the A and B matrices, and (2) avoid the
formal O(M3) matrix inversion procedure. These
problems can be overcome by minimizing directly
the energy functional of eq. (1) and recognizing
that the matrix operations are essentially the
evaluation of Coulomb’s law. (Any deviation from
Coulomb’s law, such as the diagonal elements of the
A matrix, can be included as an O(M) short-ranged
correction.) The minimization procedure can be
greatly sped up using a preconditioned conjugate
gradient method,10 combined with an adaptive
recursive bisection method for linear-scaling
evaluation of the electrostatic potential and field.16

The method is applied in the following section for
the linear-scaling electronic structure calculation of
biological macromolecules in solution.
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Application of Linear-Scaling
Electronic Structure Methods
to Biomolecules

Linear-scaling electronic structure methods17 – 19

(or so-called “order-N” methods) are beginning
to find wide-spread application to macromolecu-
lar problems. In the near future, these methods
will begin to be applied at the ab initio level using
quality basis sets; however, it is currently a con-
siderably strenuous computationally task to reach
the size limit where the orthogonality/idempotency
condition becomes a truly dominating factor super-
seding matrix element construction. On the other
hand, for quantum methods that employ a semiem-
pirical Hamiltonian model, linear-scaling electronic
structure methods10, 20 – 22 have allowed access to
a host of new large-scale problems. These include
the calculation of solvation and polarization ener-
gies of biomolecules,23 – 25 solute to solvent charge
transfer,26, 27 electronic density of states,28 enzyme
active site structure,29, 30 reaction energy profiles,31

and the polarization of ligands.32

Semiempirical methods,33, 34 by virtue of their ef-
ficiency and flexibility, are likely to make a major
impact in biomolecular modeling over the next few
years. This is largely because the complexity of bi-
ological systems requires high accuracy combined
with extensive configurational sampling. Semiem-
pirical methods are typically two orders of mag-
nitude faster than ab initio methods, and offer the
added flexibility of parameters that can be adjusted
to obtain very high accuracy within a relatively
narrow range of chemistry. Certainly ab initio tech-
niques will play an increasingly important role;
nonetheless, semiempirical methods have a useful
place in the construction of multilevel quantum
models for biological applications.

In this section, a survey of linear-scaling quan-
tum calculations on biological macromolecules in
solution is presented to illustrate some of the types
of information that these calculations can provide.
The field is rapidly advancing, and new insights
continue to emerge through ongoing applications.
The focus here is on the effect of solute polarizabil-
ity in the process of solvation.

With linear-scaling electronic structure methods,
one can directly access the many-body contribution
of solute polarization in the process of solvation.
Consider, for example, the thermodynamic cycle de-

picted by:

[ρgas]gas
1Gint

1Gel,gas

[ρsol]gas

1Gel,sol

[ρgas]sol
1Gpol

[ρsol]sol

where the quantities in brackets, ρgas and ρsol, rep-
resent the relaxed electron density in the gas phase
and in solution, respectively. The subscript on the
outside of the brackets indicates the environment
(gas phase or solution). The solvation energy is
the energy associated with going from [ρgas]gas →
[ρsol]sol; thus 1Gsol = 1Gel,gas + 1Gpol = 1Gint +
1Gel,sol.

Table I shows the solvation free-energy compo-
nents estimated from linear-scaling electronic struc-
ture calculations of an ensemble of structures de-
rived from solution NMR data of ovomucoid turkey
third domain.35 The mean solvation free energy of
the 12 NMR structures is−32.5 eV, and the mean po-
larization contribution is −4.3 eV (13.2% of 1Gsol),
ranging from −3.7 eV (12.2%) to −4.7 eV (14.6%).
The solvation free energy of the crystallographic
structure is −24.9 eV, about 23% less than the av-
erage NMR value, with a polarization contribution
of −3.1 eV (12.4%). This is not surprising, because
the solution structure is expected to be more flex-
ible and have increased interaction with solvent.
The contribution of 1Gpol has been estimated with
semiempirical methods to range typically between
5–15% for proteins and around 2% for DNA (the lat-
ter resulting from the large overall solvation effect
for highly charged systems).

A useful macromolecular index in molecular bi-
ology is the electrostatic potential φ(r). If the electro-
static component of the solvation energy is modeled

TABLE I.
Solvation Free-Energy Components for OMTKY 3rd
Domain.a

1Gsol 1Gel,gas 1Gpol 1Gint 1Gel,sol

X-ray −24.9 −21.8 −3.1 3.7 −28.6
〈NMR〉 −32.5 −28.2 −4.3 5.2 −37.3
std. dev. 1.3 1.0 0.4 0.5 1.7

a “X-ray” indicates that the X-ray crystallographic structure
was used with hydrogens added and the structure refined
with molecular mechanics minimization. 〈NMR〉 indicates the
calculation average over the 12 NMR structures.35 All elec-
tronic structure calculations were performed on a single pro-
tein (814 atoms) using the linear-scaling electronic structure
and solvation methods described previously10, 11, 36 with the
AM1 Hamiltonian.37 All units are in eV.
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as a uniform isotropic polarizable medium, the total
electrostatic potential φ(r) is a solution of the Pois-
son equation

∇ · ε(r)∇φ(r) = −4πρ(r) (8)

where ρ(r) is the solute charge distribution. The
conductor-like screening model described previ-
ously provides an efficient means for the approxi-
mate solution of the Poisson equation. Frequently
φ(r) provides quantitative insight into the electro-
static features at the molecular surface, and is used
as a measure of molecular similarity.38 Electrostatic
properties have proven useful for the identifica-
tion of functional homology of proteins, prediction
of counterion binding sites in proteins and nucleic
acids, and explanation of hydrophobic interactions
and electron-transfer rates.39 – 43 More recently, a
study of electrostatics of RNA, based on numeri-
cal solutions to the nonlinear Poisson–Boltzmann
equation using force field-derived point charge pa-
rameters has further revealed the significance of
electrostatic complementarity in RNA recognition
and stabilization.44 Another molecular descriptor
to measure electrostatic complementary that may
prove useful in biological applications is the pro-

file of induced charge density on the dielectric
boundary.14 This quantity is readily available from
boundary element methods.

Typically, classical treatments of the electrostatic
potential are based on a static point charge repre-
sentation of the macromolecular solute constructed
from an assembly of fixed charge fragments. This
type of representation neglects (1) the contribution
of atomic multipoles to the electrostatic potential,
(2) explicit electronic relaxation of the fragments in
the macromolecular environment, and (3) polariza-
tion of the solute by the induced solvent reaction
field.

Linear-scaling electronic structure methods can
be used as an explicit quantum model for the elec-
tronic polarization of biological macromolecules.
The method is applied here to the determination of
quantum mechanical electrostatic potential surfaces
calculated in the gas phase and self-consistently in
the reaction field of a dielectric continuum. A more
detailed study of the method and application to bio-
molecules is forthcoming. The focus here is on the
effect of solute electronic polarization in the process
of solvation. Consider the solvation process:

(ρgas)gas → (ρgas)sol→ (ρsol)sol (9)

FIGURE 3. The electrostatic potential surface of the electronic response density δρ(r) = ρsol(r)− ρgas(r) (note: this
density is neutral). Units are in kT/e (T = 300 K). Calculations were performed using the PM3 Hamiltonian50 and a
buffer/matrix cutoff of 8/9 Å.
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The electronic polarization response density of this
process is defined as the difference density ρpol =
ρsol − ρgas. Figure 3 shows the electrostatic potential
difference map of the solvated densities ρsol and ρgas

(i.e., 8sol − 8gas). The solvation potential used is a
linear equation in the density; hence, the potential
in Figure 3 is equivalent to the electrostatic poten-
tial of the solvated electronic polarization response
density ρpol. Henceforth, this type of potential map
is referred to simply as an electronic polarization map.
Regions colored in red show areas of increased elec-
tronegative potential, and regions colored in blue
show regions of decreased electronegative potential.
The local features of the electronic polarization map
are affected by the polarizability of residues near
the region, and by the magnitude of the solvent re-
action field potential. In A- and Z-form DNA, the
major grooves become more negatively polarized,
whereas in B-form DNA the minor grove is more
negatively polarized. In all cases, the phosphates be-
come more electronegative due to the solvent stabi-
lization of the negative charges, and the ends of the
helices are slightly electropositively polarized, most
likely due to the net charge stabilization by the sol-

vent. (One might expect that charge distribution in
the “gas phase” to be as delocalized as possible be-
cause of the net−30 charge of the DNA. The solvent
reaction field tends to stabilize localized net charge,
leading to a slight buildup of charge in the middle
of the helix relative to the gas-phase charge distrib-
ution. It should be pointed out that the “gas-phase”
DNA is an artificial state, and not meant to be in-
terpreted as a stable species, although it is useful
as a reference in discussion of the effects of solvent
stabilization.) Recent experiments have shown that
monovalent cations selectively partition into the mi-
nor groove of B-DNA.45 A- and Z-forms of DNA are
not the forms normally found under physiological
conditions; however, double helices of RNA are typ-
ically A-form. It has been suggested that the A-DNA
and A-RNA are very similar in their electrostatic
features.44 The negatively polarized major groove
in the A-DNA calculation is, therefore, consistent
with experimental observations46, 47 and theoretical
studies44, 48 that divalent metal ions tend to bind to
the major groove of A-RNA.

Figure 4 shows the solvated electronic polar-
ization map of the Mg2+-bound hammerhead ri-

FIGURE 4. The electronic polarization response density of the hammerhead ribozyme in solution. Units are in kT/e
(T = 300 K). Calculations were performed using the PM3 Hamiltonian50 and a buffer/matrix cutoff of 8/9 Å.
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FIGURE 5. The relaxed Myb–DNA complex in solution.51

bozyme.49 The groove becomes considerably more
electronegative in potential. The Mg2+ binding sites
are relatively unaffected in terms of polarization
from the gas-phase calculation. Future work will be
concentrated on the prediction of metal ion binding
sites in RNA.

Another useful property used to characterize
macromolecular electronic structure is the electronic
density of states. As an example, consider the ionic
binding of the Myb DNA binding domain with
DNA (Fig. 5). The electronic density of states of the
isolated domains and the complex are compared in
Figure 6. The states at the edges of the energy gap
are most perturbed upon ionic binding of DNA. The
DOS immediately below the Fermi level increase,
and a slight overall shift of the DOS towards the
edge of the gap occurs. The spatial resolution of the
molecular orbitals as a function of orbital energy
can provide additional insight into the reactivity of
macromolecules, and is a focus of future work.

Conclusion

A survey of linear-scaling electronic structure
applications to solvated biological macromolecules

has been presented. Solvation energies, electrostatic
potential surfaces, and electronic density of states
have been calculated to assess the role of electronic
polarization that occurs in the process of solva-
tion and substrate binding (in the case of the DNA
binding domain of Myb). The methods presented
here provide a new approach to the calculation
of macromolecular electronic properties that will
hopefully extend the insight and predictive capa-
bility of the more widely used classical methods.
In addition to the electrostatic potential, other use-
ful quantities used to characterize macromolecular
electronic structure are being pursued including
response properties of the density such as linear re-
sponse functions, local hardness and softness func-
tions, and Fukui functions. It is the hope that further
application of these techniques to real biological
problems will help to uncover new molecular in-
dices correlated to activity and guide future direc-
tions in methodological development.

Acknowledgment

Acknowledgment is made to the Donors of the
Petroleum Research Fund, administered by the

JOURNAL OF COMPUTATIONAL CHEMISTRY 1569



KHANDOGIN, HU, AND YORK

FIGURE 6. The electronic density of states for the
complex of Myb with DNA: (1) the isolated molecules
(top: Myb solid line, DNA dotted line); (2) complex and
superposition of states of the isolated species (middle);
and (3) a difference map between the complex and
superposition of states (bottom) showing how they are
perturbed upon complexation. Calculations were
performed using the AM1 Hamiltonian37 and a
buffer/matrix cutoff of 8/9 Å.

American Chemical Society, for partial support of
this research. Computational resources were pro-
vided by the Minnesota Supercomputing Institute.

References

1. Cramer, C. J.; Truhlar, D. G. Chem Rev 1999, 99, 2161.

2. Gao, J. Rev Comput Chem 1995, 7, 119.

3. Sagui, C.; Darden, T. A. Annu Rev Biophys Biomol Struct
1999, 28, 115.

4. Grengard, L. Science 1994, 265, 909.

5. Grengard, L.; Rokhlin, V. J Comput Phys 1997, 135, 280.

6. Challacombe, M.; White, C.; Head–Gordon, M. J Chem Phys
1997, 107, 10131.

7. Strain, M. C.; Scuseria, G. E.; Frisch, M. J. Science 1996, 271,
51.

8. Hockney, R. W.; Eastwood, J. W. Computer Simulation Us-
ing Particles; A. Hilger: New York, 1988.

9. Tomasi, J.; Persico, M. Chem Rev 1994, 94, 2027.

10. York, D. M.; Lee, T.-S.; Yang, W. Chem Phys Lett 1996, 263,
297.

11. York, D. M.; Karplus, M. J Phys Chem A 1999, 103, 11060.

12. Klamt, A.; Schüurmann, G. J Chem Soc Perkin Trans 1993, 2,
799.

13. Klamt, A. J Phys Chem 1995, 99, 2224.

14. Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. J Phys
Chem A 1998, 102, 5074.

15. Chipman, D. M. J Chem Phys 1997, 106, 10194.

16. Perez–Jordá, J. M.; Yang, W. J Chem Phys 1997, 107, 1218.

17. Goedecker, S. Rev Mod Phys 1999, 71, 1085.

18. Scuseria, G. E. J Phys Chem A 1999, 103, 4782.

19. Head–Gordon, M. J Phys Chem 1996, 100, 13213.

20. Yang, W.; Lee, T.-S. J Chem Phys 1995, 163, 5674.

21. Dixon, S. L.; Merz, K. M., Jr. J Chem Phys 1996, 104, 6643.

22. Stewart, J. J. P. Inf J Quant Chem 1996, 58, 133.

23. York, D.; Lee, T.-S.; Yang, W. J Am Chem Soc 1996, 118,
10940.

24. York, D. M. In Combined Quantum Mechanical and Molec-
ular Mechanical Methods; Gao, J.; Thompson, M., Eds.; ACS
Symposium Series 712; Oxford University Press: New York,
1998, p. 275, chapt. 18.

25. Gogonea, V.; Merz, K. M., Jr. J Phys Chem A 1999, 103, 5171.

26. Nadig, G.; Zant, L. C. V.; Dixon, S. L.; Merz, K. M., Jr. J Am
Chem Soc 1998, 120, 5593.

27. Gogonea, V.; Merz, K. M., Jr. J Chem Phys 2000, 112, 3227.

28. York, D. M.; Lee, T.-S.; Yang, W. Phys Rev Lett 1998, 80, 5011.

29. Lewis, J. P.; Carter, C. W., Jr.; Hermans, J.; Pan, W.; Lee, T.-S.;
Yang, W. J Am Chem Soc 1998, 120, 5407.

30. Lewis, J.; Liu, S.; Lee, T.-S.; Yang, W. J Comput Phys 1999,
151, 242.

31. Titmuss, S. J.; Cummins, P. L.; Bliznyuk, A. A.; Rendell, A.
P.; Gready, J. E. Chem Phys Lett 2000, 320, 169.

32. Greatbanks, S. P.; Gready, J. E.; Limaye, A. C.; Rendell, A. P.
J Comput Chem 2000, 21, 788.

33. Stewart, J. J. P. Rev Comput Chem 1990, 1, 45.

34. Thiel, W. In Advances in Chemistry Physics; Prigogine, I.;
Rice, S. A., Eds.; John Wiley and Sons: New York, 1996,
p. 703, vol. 93.

35. Krezel, A. M.; Darba, P.; Robertson, A. J Mol Biol 1994, 242,
203.

36. Lee, T.-S.; York, D. M.; Yang, W. J Chem Phys 1996, 105, 2744.

37. Dewar, M. J. S.; Zoebisch, E.; Healy, E. F.; Stewart, J. J. P. J Am
Chem Soc 1985, 107, 3902.

38. Bagdassarian, C. K.; Schramm, V. L.; Schwartz, S. D. J Am
Chem Soc 1996, 118, 8825.

39. Sharp, K. A.; Honig, B. Annu Rev Biophys Chem 1990, 19,
301.

40. Honig, B.; Nicholls, A. Science 1995, 268, 1144.

41. Gunner, M. R.; Nicholls, A.; Honig, B. J Phys Chem 1996,
100, 4277.

42. Ullmann, G. M.; Hauswald, M.; Jensen, A.; Kostić, N. M.;
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