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2.1 Introduction

Recent advances in biomolecular modeling have emphasized the

importance of inclusion of explicit electronic polarizabilty, and

a description of electrostatic interactions that includes atomic

multipoles; however, these additional levels of treatment necessarily

increase a model’s computational cost. Ultimately, the decision as to

whether inclusion of these more rigorous levels are justified rests

on the degree to which they impact the specific application areas

of interest, balanced with the overhead of their computational cost.

The purpose of this book is to stimulate the exchange of effective
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strategies used to describe many-body effects and electrostatics

across the quantum, classical, and coarse-grained modeling regimes.

In this chapter, we describe a linear-scaling quantum force

field based on a modified divide-and-conquer (mDC) procedure

and discuss the practical consequence of including (or exclud-

ing) multipolar electrostatic interactions with a few illustrative

examples. These observations are then used to rationalize some

of the hydrogen bond geometries produced by other models,

including the standard DFTB3 semiempirical Hamiltonian, which

include multipoles within its tight-binding matrix elements but

limit the second-order electrostatic interactions to monopoles.

Furthermore, we assess the ability of a recent mDC parametrization

to reproduce nucleobase dimer binding energies relative to high-

level ab initio calculations and we compare nucleobase trimer

formation enthalpies to experimental estimates.

The description of the mDC method in the present work

is supplemented with mathematical details that we Have used

to introduce multipolar densities efficiently into the model. In

particular, we describe the mathematics needed to construct atomic

multipole expansions from atomic orbitals (AOs) and interact the

expansions with point-multipole and Gaussian-multipole functions.

With that goal, we present the key elements required to use the

spherical tensor gradient operator (STGO) and the real-valued

solid harmonics; perform multipole translations for use in the Fast

Multipole Method (FMM); electrostatically interact point-multipole

expansions; interact Gaussian-multipoles in a manner suitable for

real-space Particle Mesh Ewald (PME) corrections; and we list the

relevant real-valued spherical harmonic Gaunt coefficients for the

expansion of AO product densities into atom-centered multipoles.

Section 2.2 discusses the obstacles encountered in producing

a linear-scaling quantum force field and the methods used to

overcome them. The linear-scaling quantum force field energy is

described in Section 2.3. Section 2.4 discusses the consequences

of including higher-order multipoles into the model and assess the

quality of the mDC method in reproducing nucleobase interactions.

The mathematical details used in the mDC model are collected into a

series of small appendices at the end of the chapter (Sections 2.6.1-

2.6.5) to facilitate the narrative.
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2.2 Linear-scaling quantum force fields

Conventional ab initio electronic structure methods have compu-

tational/memory requirements that scale non-linearly (typically

N3/N2 or higher) with number of particles. This restricts the size

of the systems that these methods can be applied. There is a rich

literature associated with the development of electronic structure

methods that scale “linearly” with system size, both at the ab

initio and semiempirical levels, that allow them to be extended to

very large systems [22]. These methods have traditionally involved

introduction of carefully chosen approximations that allow re-

formulation of the equations so that computation can be achieved

with computational cost and memory requirements that increase

in linear proportion to the number of particles and size of the

system. By adjustment of control parameters, these methods can be

made to systematically converge to the full non-linear scaling result.

The simplest and most widely applied linear-scaling electronic

structure methods are based on single-determinant wave function

methods such as Hartree–Fock Kohn–Sham density-functional

theory or semiempirical/tight-binding models. With these classes

of methods, the most critical challenge involves circumventing the

need for a globally orthonormal set of molecular orbitals (MOs) or,

equivalently, an exactly idempotent single-particle density-matrix.

A “linear-scaling quantum force field” is a model that abandons

the goal of being able to recover the full nonlinear quantum result,

but instead takes recourse into additional layers of empiricism to

achieve much greater efficiency and even higher accuracy. Typically,

these force fields invoke a construct whereby a large system is

divided into predetermined localized fragments (or residues), and

different models may be employed for intra- and inter-residue in-

teractions. One strategy has been to develop electron density-based

quantum force fields [8, 34] that do not require the construction or

orthogonalization of molecular orbitals (MOs). While this class of

force fields has demonstrated considerable promise for molecular

simulations, it has limitations in its ability to model reactive

chemical processes involving formation and cleavage of chemical

bonds. A different strategy, which we have taken here, involves using
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localized MOs to describe intra-residue interactions, and empirical

density-based models to describe inter-residue interactions. This

framework borrows ideas from “orbital-free” density-functional

methods [48, 49, 56], but with the added element that non-bonded

inter-residue interactions are much simpler and empirically fine-

tuned to obtain accuracy required for biological applications. There

are a number of recent models that have used this strategy. The X-

Pol method replaces the explicit inter-residue orbital coupling with

empirical Lennard–Jones or Buckingham potentials [9, 14, 26, 45,

50–52, 55] or through perturbative corrections [7, 27]. In Ref. [16],

we used a charge-dependent density-overlap van der Waals model

as means of combining the density- and MO-based quantum force

field strategies.

All quantum force fields, regardless of the specific form of the

intra- and inter-residue interactions, involve long-range electrosta-

tic interactions that must be computed with linear-scaling methods.

The two most common linear-scaling methods for electrostatic

interactions are tree codes and FMMs [2, 20, 23, 46] for non-periodic

systems, and linear-scaling Ewald methods such as PME [10, 12, 36]

for periodic systems. In brief, FMM is founded upon the physical

interpretation of the Laplace expansion of the Coulomb kernel

[Eqs. (2.36)–(2.37)], i.e., the Taylor series expansion of 1/r : If each of

two charge densities are circumscribed by non-intersecting spheres,

then the Coulomb interaction between the two densities can be

computed from a single point-multipole interaction between the

sphere centers. Linear-scaling is achieved by introducing hierarchy,

i.e., the system is recursively divided, the multipole moments of a

region are computed from the moments of its children, and the

electrostatic interaction is performed at the most “ancient level”

possible. Linear-scaling Ewald methods, on the other hand, split

the electrostatic interactions into a short-ranged “direct-space”

[see e.g., Eq. (2.62) and surrounding discussion] and long-ranged

“reciprocal-space” components, the former which can be computed

using a distance cut-off, and the latter computed efficiently with

O[N log(N)] computational scaling using Fast Fourier Transforms.

In the Methods section that follows, we describe an mDC method

that is based on the DFTB3 Hamiltonian [15] and uses a simple

Lennard–Jones model for the non-electrostatic non-bonded inter-
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actions between residues. However, unlike the DFTB3 Hamiltonian,

which uses a monopole approximation in its treatment of second-

order electrostatics, the mDC model employs atomic multipoles to

compute the inter-region interactions. As demonstrated in the Re-

sults and Discussion section, the use of a multipolar representation

for electrostatics is key for obtaining robust, hydrogen bond angles,

and hydrogen bond and base stacking interactions for nucleobase

dimers and trimers. The appendices contain further key technical

details that are needed for implementation of the mDC method with

linear-scaling electrostatic methods such as FMM and PME.

2.3 Methods

2.3.1 The Modified Divide-and-Conquer Method

The mDC total energy is a sum of fragment ab initio energies

E A which we compute using the DFTB3 Hamiltonian [15]; the

inter-fragment multipolar electrostatics (second term); the inter-

fragment Lennard–Jones (LJ) interactions (third term); and MM

bond energies Ebonded (fourth term) for those bonds, angles, and

torsions that cross fragment boundaries

E =
∑

A

E A(Cσ
A ; RA) + 1

2

∑
a

lμ∈a

qlμ plμ

+
∑′

b>a

ELJ(Rab) + Ebonded(R).

(2.1)

Cσ
A are the σ -spin MO coefficients for the A’th fragment, and RA are

the nuclear positions of the atoms in fragment A.

qlμ∈a = Z aδl0δμ0 −
∫

ρa(r)Clμ(r − Ra)d3r (2.2)

are atomic multipole moments on atom a, Clμ(r) is a real regular

solid harmonic [Eq. (2.43)], ρa(r) is an atom-partitioned density, Z a

is a nuclear charge, and

plμ∈a =
∑′

b�=a
jκ∈b

q jκ
Clμ(∇a)

(2l − 1)!!

C jκ(∇b)

(2 j − 1)!!

1

Rab
(2.3)

is a “multipolar potential,” i.e., the derivative of the interaction

with respect to a multipole moment. The primed summations



July 2, 2015 12:10 PSP Book - 9in x 6in 02-Qiang-Cui-c02

60 A Modified Divide-and-Conquer Linear-Scaling Quantum Force Field

indicate that intrafragment electrostatics are excluded because

those Coulomb interactions are already considered in the ab initio

calculation of E A . Clμ(∇a) is a real-valued STGO acting on the

coordinates of atom a (see Sec. 2.6.1). The expressions used to

evaluate Eq. (2.3) are provided in Sec. 2.6.4. Ebonded includes

corrections for those bonds, angles, and dihedrals that cross the

boundary between two covalently bonded fragments; however, the

present work will consider nonbonded interactions exclusively.

As discussed in the previous section, the relaxation of the

orthonormality constraints allows one to solve for the MO coeffi-

cients through a series of small generalized eigenvalue problems

(proportional to the size of a fragment)

Fσ
A · Cσ

A = SA · Cσ
A · Eσ

A . (2.4)

The inter-fragment coupling occurs through the interaction of their

atomic multipoles which are determined from the fragment electron

densities within the self-consistent-field (SCF) procedure. The σ -

spin Fock matrix for region A with inclusion of this coupling is

F σ
A , i j = ∂ E A

∂ P σ
A , i j

∣∣∣∣∣
q, p, R

+
∑

a∈A
lμ∈a

plμ
∂qlμ

∂ P σ
A , i j

∣∣∣∣∣
p, R

, (2.5)

where

P σ
A , i j =

∑
k

nσ
A , kC σ

A , ikC σ
A , jk (2.6)

is the spin-resolved AO density matrix of fragment A, and nσ
A , k is the

occupation number of σ -spin orbital k in fragment A.

The atomic multipoles are computed from the DFTB3 density

matrix

ρa(r) =
∑
i j∈a

PA , i j χi (r)χ j (r)

+
∑
b�=a

fab(bab)
∑

i∈a
j∈b

PA , i j χi (r)χ j (r)
(2.7)

where χi (r) = χi (r)Yli μi (�) is an AO basis function, Ylμ(�) is a real-

valued spherical harmonic [Eq. (2.45)],

fab(bab) = f s
ab + Son

(
bab − bs

ab

bd
ab − bs

ab

)(
f d

ab − f s
ab

)
(2.8)
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is a fraction between 0 and 1 and holding the property fab = 1− fba ,

bab = 2
∑

i∈a
j∈b

PA , i j SA , i j (2.9)

is a Mulliken bond-order, and

Son(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 0

1 if x > 1

10x3 − 15x4 + 6x5 otherwise

(2.10)

is a smooth polynomial used to switch fab from f s
ab to f d

ab as the bond

order increases.

The atomic multipoles are obtained by inserting Eq. (2.7) into

Eq. (2.2). If we restrict the contributions of the two-center densities

to charge only, then the charge on atom a is

q00 = Z a − baa/2 −
∑

b∈A
b�=a

fab(bab)bab (2.11)

and its higher-order multipole moments are

qlm =
∑
i j∈a

P A
i j M(l)

i j

√
4π

2l + 1

∫
Ylμ(�)Yli μi (�)Yl j μ j (�)d�, (2.12)

where the integral is a real-valued spherical harmonic Gaunt

coefficient (Sec. 2.6.5) and the

M(l)
i j =

∫ ∞

0

χi (r)χ j (r)r2+l dr (2.13)

are treated as a parameters. For an sp-basis, there are two

parameters: M(1)
sp and M(2)

pp , which control the magnitude of the

dipole and quadrupole contributions, respectively. We restrict the

M(2)
sd , M(1)

pd , and M(2)
dd parameters encountered in an spd-basis to the

values of M(2)
pp , M(1)

sp , and M(2)
pp , respectively.

2.3.2 Models

The different models compared and discussed in this paper include:

mDC: The method described in the previous section and parame-

trized to the S22 [29], S66 [41], JSCH [28, 29, 43], SCAI [5] databases

and to a database of sulfur containing molecules and water clusters.
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Table 2.1 Average molecular

dipole and quadrupole mo-

ment errors of 10 nucleobase

monomers. All values in a.u..

Dipole Quadrupole

mDC 0.07 1.22

DFTB3 0.21 3.26

GAFF 0.25 2.29

The description of the parametrization procedure and a detailed and

broad analysis of mDC performance are presented in a manuscript

that is, at the time of this writing, in press.

mDC(q): The modified “charge-only” model described in Ref. [16].

This model does not expand the atomic densities to higher-order

multipoles.

DFTB3: The 3ob parametrized version of DFTB3 [15], i.e., DFTB3-

3ob.

GAFF/TIP3P: The general Amber force field [6, 44] and TIP3P water.

PM6: The semiempirical method described in Ref. [38], as

implemented in Gaussian 09 [13].

PM3BP: The semiempirical method described in Ref. [17].

mPWPW91, M062X, and B97D: The mPWPW91/MIDI!, M062X/6-

311++G**, and B97D/6-311++G** density functional methods im-

plemented in Gaussian 09 [13]. The B97D model contains empirical

long-range dispersion corrections [24].

2.3.3 Computational Details

Table 2.1 displays molecular dipole and quadrupole moment errors

averaged over 10 nucleobases. The reference molecular moments

where computed with B3LYP/6-311++G**. An error of these vector

quantities is taken to be the magnitude of the difference vector

between the model and reference moments. The average magnitude

of the reference dipole and quadrupole moment vectors are 1.98 and

14.58 a.u., respectively.

The reference energies and geometries used in Table 2.2 were

computed with counterpoise-corrected

CCSD(T)/CBS//MP2/TZVPP or MP2/CBS//MP2/cc-pVTZ, which

were taken from Refs. [28] and [43], whose naming convention we
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Table 2.2 Nucleobase dimer binding energies (kcal/mol), binding energy

statistics, and a summary of geometrical errors.

Ref. mDC DFTB3 GAFF PM6 M062X B97D

H-bonded dimers

AT wc −16.86 −15.99 −8.90 −13.60 −8.90 −14.87 −15.56

GC wc −32.06 −32.50 −21.92 −26.15 −18.47 −28.22 −28.11

GA 1 −19.40 −18.36 −11.32 −15.70 −10.13 −17.09 −18.14

GA 2 −14.40 −14.11 −5.86 −12.40 −6.45 −11.23 −12.57

GA 3 −18.80 −17.90 −9.60 −15.39 −9.18 −16.09 −16.83

GA 4 −13.50 −14.43 −6.76 −12.85 −7.42 −12.07 −13.48

GA 1 pl −18.90 −17.98 −11.15 −11.20 −10.13 −17.09 −18.14

GA 2 pl −12.80 −13.28 −5.37 −8.20 −6.11 −11.22 −12.58


E mue · · · 0.73 8.23 3.90 8.74 2.36 1.41


E mse · · · 0.27 8.23 3.90 8.74 2.36 1.41

crms (Å) · · · 0.13 0.16 0.36 0.29 0.19 0.18

∠plane (◦) · · · 4.91 13.50 17.48 12.00 10.62 9.66

Stacked dimers

AT S1 −12.30 −13.34 −9.11 −13.20 −5.27 −13.86 −12.25

mAmT S −14.57 −15.29 −9.17 −14.66 −5.99 −16.46 −14.89

GC S −19.02 −18.62 −21.92 −26.15 −18.47 −28.25 −28.11

mGmC S −20.35 −20.02 −21.99 −22.01 −18.28 −27.94 −27.99


E mue · · · 0.62 3.28 2.44 4.56 5.07 4.27


E mse · · · −0.26 1.01 −2.44 4.56 −5.07 −4.25

crms (Å) · · · 0.28 2.70 0.80 1.56 1.41 1.42

∠plane (◦) · · · 8.79 10.29 15.48 10.56 6.38 5.23

Combined statistics


E mue · · · 0.70 6.58 3.42 7.35 3.26 2.37


E mse · · · 0.10 5.83 1.79 7.35 −0.12 −0.47

crms (Å) · · · 0.18 1.00 0.51 0.71 0.60 0.59

∠plane (◦) · · · 6.20 12.43 16.81 11.52 9.21 8.18

adopt. “crms” is the average coordinate root mean square deviation

of the optimized dimer geometry relative to the reference geometry.

All atoms were included in the calculation of the crms. The row of

angle mean signed errors was constructed by comparing the angles

formed between the two planes of the nucleobases relative those in

the reference geometry.

The geometrical errors shown in Table 2.3 include 6 N-H· · · O

bond lengths and angles and 11 N-H· · · N bond lengths and angles.
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Table 2.3 Hydrogen bond length (Å) and angle (◦) errors.

mDC DFTB3 GAFF PM6 M062X B97D

RN(-H)· · · O mse -0.02 0.02 -0.01 0.07 0.04 0.01

R(N-)H· · · O mse -0.01 0.01 -0.00 0.07 0.04 -0.00

∠N-H· · · O mue 1.44 2.17 4.71 3.88 1.75 1.30

RN(-H)· · · N mse -0.10 0.08 -0.00 0.19 0.01 -0.03

R(N-)H· · · N mse -0.10 0.08 0.02 0.21 0.01 -0.04

∠N-H· · · N mue 2.93 1.97 6.69 9.40 1.59 2.20

Table 2.4 Nucleobase trimer formation enthalpies

(kcal/mol). Brackets represent a Boltzmann averag-

ing of the conformations shown above it at 298K.

Expt. mDC DFTB3 mPWPW91 PM3BP

UUA 1 · · · 28.3 15.3 21.0 25.2

UUA 2 · · · 28.0 15.1 21.4 25.1

UUA 3 · · · 24.7 16.1 17.0 20.5

UUA 4 · · · 26.7 17.5 17.4 20.6

〈UUA〉 27−29 28.1 17.3 21.3 25.2

UUU 1 · · · 26.5 16.1 8.5 13.1

UUU 2 · · · 21.6 16.5 11.3 14.6

〈UUU〉 20−22 26.5 16.4 11.3 14.5

UUT 23−25 21.6 15.6 7.1 12.7

CCC 4 33−38 34.0 20.0 22.0 28.9

RX(-H)· · · Y and R(X-)H· · · Y denote the bond length between X-Y and H-Y,

respectively.

The experimental numbers appearing in Table 2.4 are taken from

Ref. [53]. The mPWPW91/MIDI! and PM3BP results are taken from

Ref. [17], whose naming convention we adopt. The mDC, DFTB3, and

mPWPW91 results include zero point and thermal corrections to the

enthalpy at 298K using standard ideal-gas statistical mechanics and

the rigid-rotor harmonic-oscillator approximation. The presence of

two experimental numbers represents the two manners used to

analyze the results in Ref. [53].
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Figure 2.1 Optimized water dimer hydrogen bond angles.

2.4 Results and Discussion

In addition to providing the mathematical details of how atomic

multipoles are incorporated into the mDC model, we wish to explain

with some illustrative examples why we consider them necessary

and then use these examples to interpret some observations made

using the standard DFTB3 semiempirical Hamiltonian.

The DFTB3 Hamiltonian contains four components to the energy:

(1) the MO-computed tight-binding interaction composed of the

electron kinetic energy and the first-order interaction of the

response density with the effective chemical potential caused by

the neutral atom reference density, as modeled by a 1- or 2-

body approximation, (2) the second-order electrostatic interaction

of the response density with itself, which has been parametrized

to experimental hardness so as to effectively include nonclassical

effects, (3) a short-range repulsive function to achieve good covalent

bond lengths, and (4) a third-order response interaction which

attempts to correct the second-order electrostatics to account for

the fact that anionic electron densities should be more diffuse than

the neutrals. The DFTB3 electrostatic interactions are computed

from atomic charges only, even though the orbitals used to compute

the first-order interactions contain higher-order multipoles. When

we built the mDC method upon the DFTB3 Hamiltonian, we

were thus faced with the choice of computing the inter-fragment

interactions using the atomic charges that DFTB3 happens to use

or construct our own representation of the charge density from
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Figure 2.2 Hydrogen bond angle of water to asparagine at N· · · O

separations of 3 and 4 Å.

the DFTB3 density matrix. Preliminary tests of a method using the

DFTB3 charges, mDC(q), proved unsatisfactory upon examining the

geometries of hydrogen bonded (H-bonded) clusters (see Fig. 2.1).

One of our goals was to make sure that the mDC method was

at least as good as DFTB3, but the H-bond angles produced by

mDC(q) model were more similar to the TIP3P model than to

either ab initio calculations or DFTB3. Considering that both DFTB3

and mDC(q) use atomic charges to compute the second-order

electrostatics, we were left to hypothesize that it was the multipolar

character in DFTB3’s tight-binding matrix elements that caused it

to achieve good H-bond angles. The inter-fragment tight-binding

matrix elements are removed in the mDC model, so we chose to

model the behavior by increasing the order of atomic multipoles

used to compute the electrostatics [16]. The resulting method, mDC,

yields water H-bond angles in good agreement with DFTB3.

This hypothesis is further supported upon considering the H-

bond formed between water and the amine group of asparagine (see

Fig. 2.2). Ab initio geometry optimizations produce a water that is

angled relative to the plane of asparagine’s amine group, whereas

TIP3P water is consistently coplanar. We interpret this observation

as resulting from TIP3P’s lack of higher-order multipoles. DFTB3

produces an angled water near the energy minimum, but when the

water is pulled away from the amine group, it reverts to a coplanar

TIP3P-like structure. In other words, the DFTB3 geometries agree

with ab initio when there is significant AO overlap between the
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molecules, but acts like a point-charge model when the overlap is

small. This is consistent with the above hypothesis and suggests

that one could improve DFTB3 by extending its second-order

electrostatic interactions to include higher-order multipoles. The

mDC model uses higher-order multipoles without making intrusive

changes to the underlying DFTB3 Hamiltonian and produces H-bond

angles in better agreement with ab initio for all separations.

The use of atomic multipoles improves mDC’s description of

electrostatic potentials. Upon comparing the electrostatic potentials

generated by mDC and DFTB3, we’ve found that the most significant

improvements occur in molecules containing π -bonds, sp3 oxygen

and sulfur lone pair electrons, and sp2 nitrogen lone pairs. In

comparison to DFTB3 and GAFF, mDC also shows an overall

statistical improvement in the molecular dipole and quadrupole

moments (see e.g., Table 2.1).

The above assessment of mDC focused on examples that highlight

the influence of including higher-order multipoles. We now assess

the quality of mDC H-bonded and stacked nucleobase interactions

and make comparison to other commonly used methods. There

are many small variations and parametrizations of semiempirical

models [1, 3, 17, 18, 30–32, 35, 37, 39, 40, 42, 54], but for brevity

we limit our comparison to those which have seen widespread

use and implementation into common software packages. Firstly,

mDC produces the smallest energetic and geometrical errors of any

method in Table 2.2. Generally speaking, the high-level reference

binding energies are much stronger than those of the predicted by

the standard semiempirical models. The GAFF force field energies

are better than the other semiempirical methods and often prevents

the stacked dimers from devolving into H-bonded complexes. The

DFTB3 method reproduce H-bonded geometries more accurately

than GAFF even though GAFF’s H-bonded energetic errors are nearly

twice as small. The ab initio H-bond interactions are superior to

those of the semiempirical models, but do not show a significant

improvement for stacked interactions. This is, in part, due to the “de-

stacking” of some dimers upon geometry optimization.

Our primary measure of quantifying geometrical errors is

through the coordinate root mean square overlays (crms). The ∠plane

errors measure the angle formed between the vectors normal to
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Figure 2.3 mGmC S stacked dimer (left) and GA 4 hydrogen bonded dimer

(right) coordinate root mean square overlay of the mDC structure (ball-

and-stick, colored) on to the reference structures (lines, black). These two

dimers are the worst mDC structures in the set of molecules listed in

Table 2.2.

the plane of the two bases, which is computed from diagonalizing

their moment of inertia tensors. We place greater meaning to the H-

bonded ∠plane errors than we do for the stacked dimers because the

angle in a stacked dimer is approximately zero, but if the geometry

optimization de-stacks the structure, then the angle within the

resulting (incorrect) H-bonded structure is also approximately zero.

Table 2.3 compares the H-bond distance and angle errors. We

note that the mDC N-N distances are 0.1Å too short, which may

explain why mDC was capable of reproducing the high-level dimer

interaction energies. The mDC errors listed in Table 2.3 and Fig. 2.3

are not disturbing considering that the overall errors in the mDC

geometries are significantly better than the other methods.

Table 2.4 compares the experimental trimer enthalpies of

formation to mDC, mPWPW91, and PM3BP. mDC is in much better

agreement with the experimental results than the other methods,

which underpredict the strength of the H-bonds in the trimer. We

suspect that the added strength afforded by mDC is largely a result

of the slightly reduced N-N distances, as seen in Table 2.3; however,

comparison between the mPWPW91 and mDC geometries show an

overall agreement in geometries (see e.g., Fig. 2.4.)
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Figure 2.4 UUA 1 trimer coordinate root mean square overlay of the mDC

structure (ball-and-stick, colored) on to the mPWPW91 structure (lines,

black). Hydrogen bond lengths are listed in Å.

2.5 Conclusion

This chapter has sought to stimulate the exchange of effective

strategies used to describe many-body effects and electrostatics

within the context of a linear-scaling quantum force field. In

particular, we’ve provided the mathematical details required to

implement the multipolar densities used in the mDC model and

highlighted the importance of using multipoles in our method with

some illustrative examples.

We observe that the water dimer H-bond angles are reproduced

when higher-order multipoles are included, whereas a charge-

only model causes the dimer to revert into a TIP3P-like structure.

Furthermore, we observe that standard DFTB3 H-bond angles are

quite good when there is significant overlap between the AOs of two

molecules, but it too can revert to a TIP3P like structure when the

AO overlap is small. We attribute this phenomenon to DFTB3’s use of

multipoles in the AO tight-binding matrix and not the second-order

electrostatics.

In addition, we provided a brief comparison between nucleobase

dimer and trimer binding energies and geometries as computed

with mDC, other semiempirical models, a molecular mechanical

force field, and several ab initio methods. mDC was shown to
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reproduce the high-level ab initio and experimental results with the

greatest accuracy.

Further tests with the mDC model will be necessary to fully

realize the benefits of a linear-scaling quantum force field. We are

currently implementing a generalized PME method for condensed

phase calculations using our treatment of atomic multipoles (further

details of which are described in the appendices). Incorporation

of mDC and the generalized PME method is ongoing and will be

described in more detail in future work.

2.6 Appendices

2.6.1 Complex Harmonics and the Spherical Tensor
Gradient Operator

The complex spherical harmonic Ylm(�) is related to the associated

Legendre polynomial Plm(x) by

Ylm(�) =(−1)m

√
2l + 1

4π

(l − m)!

(l + m)!
Plm(cos θ)eimφ (2.14)

Plm(x) =(1 − x2)m/2

(
d

dx

)m

Pl (x) (2.15)

Pl (x) = 1

2l l!

(
d

dx

)l

(x2 − 1)l , (2.16)

where Pl (x) is a Legendre polynomial. The complex-valued regular

Clm(r) and irregular Zlm(r) solid harmonics and the complex-valued

scaled regular Rlm(r) and irregular Ilm(r) solid harmonics are

Clm(r) =rl

√
4π

2l + 1
Ylm(�) (2.17)

Zlm(r) =r−l−1

√
4π

2l + 1
Ylm(�) (2.18)

Rlm(r) =Clm(r)/alm (2.19)

Ilm(r) =alm Zlm(r) (2.20)

alm =
√

(l + m)!(l − m)! (2.21)

The spherical tensor gradient operator (STGO) is a solid harmonic

whose Cartesian coordinate arguments have been replaced by
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Cartesian derivatives. Hobson’s theorem [25] is the result of acting a

STGO upon any spherical function f (r2)

Clm(∇) f (r2) =2l Clm(r)

(
d

dr2

)l

f (r2) (2.22)

Rlm(∇) f (r2) =2l Rlm(r)

(
d

dr2

)l

f (r2). (2.23)

The STGO obeys the product rule [11]

Clm(∇) [ f (r)g(r)] =
∑

jk

alm

ajkal− j, m−k

× [
Cl− j, m−k(∇) f (r)

] [
C jk(∇)g(r)

] (2.24)

Rlm(∇) [ f (r)g(r)] =
∑

jk

[
Rl− j, m−k(∇) f (r)

] [
R jk(∇)g(r)

]
(2.25)

And when acted upon another solid harmonic, one obtains the

following STGO differentiation rules [4, 47]

C jk(∇)Clm(r) = (2 j − 1)!!alm

ajkal− j, m+k
(−1)kCl− j, m+k(r) (2.26)

C ∗
jk(∇)Clm(r) = (2 j − 1)!!alm

ajkal− j, m−k
Cl− j, m−k(r) (2.27)

C jk(∇)Zlm(r) = (2 j − 1)!!al+ j, m+k

almajk
(−1) j Z l+ j, m+k(r) (2.28)

C ∗
jk(∇)Zlm(r) = (2 j − 1)!!al+ j, m−k

almajk
(−1) j+k Z l+ j, m−k(r) (2.29)

a2
jk

(2 j − 1)!!
R jk(∇)Rlm(r) = (−1)k Rl− j, m+k(r) (2.30)

a2
jk

(2 j − 1)!!
R∗

jk(∇)Rlm(r) = Rl− j, m−k(r) (2.31)

a2
jk

(2 j − 1)!!
R jk(∇)Ilm(r) = (−1) j Il+ j, m+k(r) (2.32)
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a2
jk

(2 j − 1)!!
R∗

jk(∇)Ilm(r) = (−1) j+k Il+ j, m−k(r)

= (−1) j+m I ∗
l+ j, k−m(r).

(2.33)

The utility of the above rules are numerous; however, the reader may

gain a better appreciation upon considering two brief examples. We

can express the translation of a regular or irregular solid harmonic

with a Taylor series expansion.

Clm(r + a) =ea�·∇Clm(r)

=
∑

jk

C jk(a)

(2 j − 1)!!
C ∗

jk(∇)Clm(r)

=
∑

jk

alm

ajkal− j, m−k
Cl− j, m−k(r)C jk(a)

(2.34)

The second line made use of the fact that ∇2Clm(r) = 0, and the

third line used Eq. (2.27). This result is known as the addition

theorem of solid harmonics. Applying this same procedure to the

other harmonics produces

Rlm(r + a) =
∑

jk

Rl− j, m−k(r)R jk(a) (2.35)

Zlm(r + a) =
∑

jk

al− j, k−m

almajk
(−1) j+mC jk(a)Z ∗

l+ j, k−m(r) (2.36)

Ilm(r + a) =
∑

jk

(−1) j+m R jk(a)I ∗
l+ j, k−m(r). (2.37)

For the special case l = m = 0 and a = −r′, Eqs. (2.36)–(2.37) are

known as the Laplace expansion.

2.6.2 Real-Valued Harmonics

The scaled solid harmonics are decomposed into their real (c) and

imaginary (s) components Rlm(r) = Rc
lm(r) + i Rs

lm(r) from which

one defines the real-valued scaled solid harmonics

Rlμ(r) =
{

Rc
l|m|(r), μ ≥ 0

Rs
l|m|(r), μ < 0,

(2.38)

where a negative μ represents the sine-component of positive m and

is used only to simplify notation where appropriate. When −m’s
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are encountered in formula, the reader is implicitly instructed to

apply the symmetry property Rc/s
l ,−m(r) = ±(−1)m Rc/s

lm (r), which

follows directly from R∗
lm(r) = (−1)m Rl ,−m(r), where the sign ±

corresponds to the cosine/sine designation. The solid harmonics are

efficiently computed from recursion [46]

Rc/s
mm(r) = − x Rc/s

m−1, m−1(r) ∓ y Rs/c
m−1, m−1(r)

2m
(2.39)

Rc/s
lm (r) = (2l − 1)zRc/s

l−1, m(r) − r2 Rc/s
l−2, m(r)

(l + m)(l − m)
(2.40)

I c/s
mm(r) = − (2m − 1)

r2

(
x I c/s

m−1, m−1(r) ∓ yI s/c
m−1, m−1(r)

)
(2.41)

I c/s
lm (r) = (2l − 1)

r2
zI c/s

l−1, m(r) − (l − 1)2 − m2

r2
I c/s

l−2, m(r) (2.42)

which are initiated from Rc
00(r) = 1, Rs

00(r) = 0, I c
00(r) = 1/r , and

I s
00(r) = 0. The real-valued regular and irregular solid harmonics

and real-valued spherical harmonics are then

Clμ(r) =Alμ Rlμ(r) (2.43)

Zlμ(r) =Ilμ(r)/Alμ (2.44)

Ylμ(�) =
√

2l + 1

4π
Clμ(r̂) (2.45)

where

Alμ = (−1)μ
√

(2 − δμ, 0)(l + μ)!(l − μ)!. (2.46)

One can construct a real-valued STGO by replacing the Cartesian

coordinate arguments of Clμ(r) with their Cartesian gradients.

By using the complex-valued STGO differentiation rules and the

relationship between the complex- and real-valued harmonics, one

obtains the gradients [33]

d Rc/s
lm (r)

dx
=1

2

(
Rc/s

l−1, m+1(r) − Rc/s
l−1, m−1(r)

)
(2.47)

d Rc/s
lm (r)

dy
= ± 1

2

(
Rs/c

l−1, m+1(r) + Rs/c
l−1, m−1(r)

)
(2.48)

d Rc/s
lm (r)

dz
=Rc/s

l−1, m(r) (2.49)
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and

d I c/s
lm (r)

dx
=1

2

(
I c/s

l+1, m+1(r) − I c/s
l+1, m−1(r)

)
(2.50)

d I c/s
lm (r)

dy
= ± 1

2

(
I s/c

l+1, m+1(r) + I s/c
l+1, m−1(r)

)
(2.51)

d I c/s
lm (r)

dz
= − I c/s

l+1, m(r). (2.52)

The real solid harmonics obey the translation theorems [19, 46]

Rlμ(r − Rb) =
∑

jκ

Wlμ, jκ(Rab)R jκ(r − Ra) (2.53)

Clμ(r − Rb) =
∑

jκ

W̄lμ, jκ(Rab)C jκ(r − Ra) (2.54)

where

Wc/s, c
lm, jk(r) =

[
Rc/s

l− j, m−k(r) + (−1)k Rc/s
l− j, m+k(r)

]
/2δk, 0 (2.55)

Wc/s, s
lm, jk(r) = ∓Rs/c

l− j, m−k(r) ± (−1)k Rs/c
l− j, m+k(r) (2.56)

and

W̄lμ, jκ(r) = (Alμ/A jκ)Wlμ, jκ(r). (2.57)

Consider a system composed of atomic multipoles, i.e., ρ(r) =∑
a, lμ∈a qlμχlμ(r − Ra), where χlμ(r − Ra) is any function satisfying∫

χlμ(r − Ra)C jκ(r − Ra)d3r = δl j δμκ ; (2.58)

then the multipole moments of ρ(r) evaluated about the origin Ro is

qlμ =
∫

ρ(r)Clμ(r − Ro)d3r

=
∑

a, jκ∈a

W̄lμ, jκ(Rao)q jκ .
(2.59)

The translation of multipoles, as in Eq. (2.59), is a key component to

the Fast Multipole Method [20, 46].

The gradients of W(r) can be expressed in terms of the matrix

elements themselves in a manner analogous to Eq. (2.47)–(2.49), e.g.

d/dzWc/s, c/s
lm, jk (r) = Wc/s, c/s

(l−1, m), jk(r). The translation matrix is efficiently

computed using the identity Wc/s, c/s
(l+1, m), ( j+1, k)(r) = Wc/s, c/s

lm, jk (r).
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2.6.3 Gaussian Multipole Expansions

One deduces the form of a Gaussian multipole upon considering

Eq. (2.58) and the orthogonality of the spherical harmonics [19]

χlμ(r − Ra; ζ ) =
(

ζ

π

) 3
2 (2ζ )l

(2l − 1)!!
e−ζ |r−R|2

Clμ(r − Ra)

= Clμ(∇a)

(2l − 1)!!
χ00(r − Ra; ζ )

(2.60)

The interaction of two Gaussian multipoles via operator Ô(r − r′) is

[19]

E =
∑
lμ∈a
jκ∈b

qlμq jκ Olμ, jκ(Rab), (2.61)

where

Olμ, jκ(Rab) = Clμ(∇a)

(2l − 1)!!

C jκ(∇b)

(2 j − 1)!!

∫ ∫
χ00(r − Ra; ζa)

× Ô(r − r′)χ00(r′ − Rb; ζb)d3rd3r ′

=(−1) j
min(l , j)∑

u=0

Ol+ j−u
2l (2u − 1)!!2 j

(2l − 1)!!2u(2 j − 1)!!

×
u∑

ν=−u

W̄lμ, uν(Rab)W̄jκ, uν(Rab)

(2.62)

and

On =
(

d
d R2

ab

)n

O00, 00(R2
ab) (2.63)

is an “auxiliary vector.” For example, when O0 = erfc(ζ Rab)/Rab,

Eq. (2.62) is the real-space Ewald correction for point-multipole

interactions. The gradients of Eq. (2.62) can be expressed as a linear

combination of auxiliary matrix elements [19], where the auxiliary

matrix is Eq. (2.62) evaluated with one extra derivative applied to

Eq. (2.63). The beauty of Eq. (2.62) is exhibited when contracted

Gaussian functions are used; in which case, only Eq. (2.63) depends

on the contraction coefficients and primitive exponents. This

property was exploited in Ref. [21] which demonstrated how

Eq. (2.62) is used to efficiently rotate the pretabulated overlap and

tight-binding matrix elements encountered in the DFTB2 and DFTB3

semiempirical Hamiltonians.
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2.6.4 Point Multipole Expansions

A point multipole δlμ(r − Ra) is best described as a Gaussian

multipole [Eq. (2.60)] in the limit of infinite exponent [19, 47]

δlμ(r − Ra) = lim
ζ→∞

χlμ(r − Ra; ζ )

= Clμ(∇a)

(2l − 1)!!
lim

ζ→∞

(
ζ

π

) 3
2

e−ζ |r−Ra |2

= Clμ(∇a)

(2l − 1)!!
δ(r − Ra).

(2.64)

By writing the real-valued STGO as a linear combination of the

complex-valued STGO and applying the product and differentiation

rules, one derives the Coulomb interaction energy between two

point multipole expansions [46]

E =
∑
lμ∈a
jκ∈b

qlμq jκ
Clμ(∇a)

(2l − 1)!!

C jκ(∇b)

(2 j − 1)!!

1

Rab

=q�
a · T̄(Rab) · qb

(2.65)

where

T̄lμ, jκ(Rab) = Tlμ, jκ(Rab)/(Alμ A jκ), (2.66)

T c, c/s
lm, jk(r) =

[
I c/s

l+ j, m+k(r) ± (−1)k I c/s
l+ j, m−k(r)

] 2(−1)l

2δm, 0+δk, 0

(2.67)

and

T s, c/s
lm, jk(r) =

[
(−1)k I s/c

l+ j, m−k(r) ± I s/c
l+ j, m+k(r)

] 2(−1)l

2δm, 0+δk, 0
. (2.68)

Eqs. (2.66)–(2.68) are a special case of the more general Eq. (2.62).

The gradients of T(r) can be expressed in terms of the matrix

elements themselves in a manner analogous to Eq. (2.50)–(2.52),

e.g. d/dzT c/s, c/s
lm, jk (r) = −T c/s, c/s

(l+1, m), jk(r). The interaction matrix is ef-

ficiently computed using the identities T jκ, lμ(r) = (−1)l+ j Tlμ, jκ(r)

and T c/s, c/s
(l−1, m), ( j+1, k)(r) = −T c/s, c/s

lm, jk (r).

By having written a point-multipole as the spherical tensor gra-

dients passing through a point, one easily derives the particle mesh

Ewald method for point multipoles. The main differences occur

in the calculation of the structure factor, which requires spherical

tensor gradients of the Cardinal B-spline weight, and the calculation

of the short-range real-space correction (see Section 2.6.3).
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Table 2.5 The unique

nonzero real-valued spherical harmonic Gaunt

coefficients for expanding atomic orbital prod-

ucts to quadrupole. Glμ
(laμa), (lbμb) = s|Glμ

(laμa), (lbμb)|,
where the sign s and the magnitude are listed in

the table.

|Glμ
(laμa ), (lbμb)| s l μ la μa lb μb√

1
4π

+ 1 0 0 0 1 0

+ 1 1 0 0 1 1

+ 1 −1 0 0 1 −1

+ 2 0 0 0 2 0

+ 2 1 0 0 2 1

+ 2 −1 0 0 2 −1

+ 2 2 0 0 2 2

+ 2 −2 0 0 2 −2

√
1

4π
4
5

+ 2 0 1 0 1 0

√
1

4π
1
5

− 2 0 1 1 1 1

− 2 0 1 −1 1 −1

√
1

4π
3
5

+ 2 1 1 0 1 1

+ 2 −1 1 0 1 −1

+ 2 2 1 1 1 1

− 2 2 1 −1 1 −1

+ 2 −2 1 1 1 −1

5
7

√
1

4π
4
5

+ 2 0 2 0 2 0

− 2 0 2 2 2 2

− 2 0 2 −2 2 −2

5
7

√
1

4π
1
5

+ 2 0 2 1 2 1

+ 2 0 2 −1 2 −1

5
7

√
1

4π
3
5

+ 2 2 2 1 2 1

− 2 2 2 −1 2 −1

+ 2 −2 2 1 2 −1

2.6.5 Real-Valued Spherical Harmonic Gaunt Coefficients

A real-valued spherical harmonic Gaunt coefficient corresponds to

the integral

Glμ
(laμa), (lbμb) =

∫
Ylμ(�)Ylaμa (�)Ylbμb (�)d�

=Glμ
(lbμb), (laμa)

=Glaμa
(lμ), (lbμb) = Glaμa

(lbμb), (lμ)

=Glbμb
(lμ), (laμa) = Glbμb

(laμa), (lμ),

(2.69)
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which has a six-fold degeneracy. The values of the these coefficients

are different than those encountered in text books, which tend to list

those for complex-valued harmonics. Most combinations of indices

produce a zero result. The unique nonzero values used to perform

the auxiliary expansion of the DFTB3 density are listed in Table 2.5.
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Wong, K. F., Paesani, F., Vanicek, J., Wolf, R. M., Liu, J., Wu, X., Brozell,

S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui,

G., Roe, D. R., Mathews, D. H., Seetin, M. G., Salomon-Ferrer, C., R. Sagui,



July 2, 2015 12:10 PSP Book - 9in x 6in 02-Qiang-Cui-c02

Appendices 79

Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., and Kollman, P. A. (2012).

AMBER 12, University of California, San Francisco, San Francisco, CA.

7. Cembran, A., Bao, P., Wang, Y., Song, L., Truhlar, D. G., and Gao, J. (2010).

On the interfragment exchange in the X-Pol method, J. Chem. Theory
Comput. 6(8), 2469–2476.

8. Cisneros, G. A., Piquemal, J., and Darden, T. A. (2006). Generalization

of the Gaussian electrostatic model: Extension to arbitrary angular

momentum, distributed multipoles, and speedup with reciprocal space

methods, J. Chem. Phys. 125, 184101.

9. Dahlke, E. E., and Truhlar, D. G. (2007). Electrostatically embedded

many-body correlation energy, with applications to the calculation of

accurate second-order Møller–Plesset perturbation theory energies for

large water clusters, J. Chem. Theory Comput. 3(4), 1342–1348.

10. Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An

N log(N) method for Ewald sums in large systems, J. Chem. Phys. 98,

10089–10092.

11. Dunlap, B. I. (2001). Direct quantum chemical integral evaluation, Int. J.
Quantum Chem. 81, 373–383.

12. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Hsing, L., and

Pedersen, L. G. (1995). A smooth particle mesh Ewald method, J. Chem.
Phys. 103(19), 8577–8593.

13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,

Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A.,

Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino,

J., Zheng, G., Sonnenberg, M., Hada, M., Ehara, M., Toyota, K., Fukuda,

R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai,

H., Vreven, T., Montgomery, J. A., J., Peralta, J. E., Ogliaro, F., Bearpark,

M., Heyd, J. J., Brothers, E., Kudin, K. N., Straverov, V. N., Kobayashi,

R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar,

S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E.,

Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann,

R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W.,

Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P.,

Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B.,

Ortiz, J. V., Cioslowski, J., and Fox, D. J. (2009). Gaussian 09, Revision A.02,

Gaussian, Inc., Wallingford, CT.

14. Gao, J., and Wang, Y. (2012). Communication: Variational many-body

expansion: Accounting for exchange repulsion, charge delocalization,

and dispersion in the fragment-based explicit polarization method, J.



July 2, 2015 12:10 PSP Book - 9in x 6in 02-Qiang-Cui-c02

80 A Modified Divide-and-Conquer Linear-Scaling Quantum Force Field

Chem. Phys. 136, 071101.

15. Gaus, M., Goez, A., and Elstner, M. (2013). Parametrization and

benchmark of DFTB3 for organic molecules, J. Chem. Theory Comput. 9,

338–354.

16. Giese, T. J., Chen, H., Dissanayake, T., Giambaşu, G. M., Heldenbrand, H.,
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29. Jurečka, P., Šponer, J., Černý, J., and Hobza, P. (2006). Benchmark

database of accurate (MP2 and CCSD(T) complete basis set limit)

interaction energies of small model complexes, DNA base pairs, and

amino acid pairs, Phys. Chem. Chem. Phys. 8, 1985–1993.

30. Korth, M. (2010). Third-generation hydrogen-bonding corrections for

semiempirical QM methods and force fields, J. Chem. Theory Comput. 6,

3808–3816.

31. Martin, B., and Clark, T. (2006). Dispersion treatment for NDDO-based

semiempirical MO techniques, Int. J. Quantum Chem. 106, 1208–1216.

32. McNamara, J. P., and Hillier, I. H. (2007). Semi-empirical molecular

orbital methods including dispersion corrections for the accurate pre-

diction of the full range of intermolecular interactions in biomolecules,

Phys. Chem. Chem. Phys. 9, 2362–2370.
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