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ABSTRACT: There has been a resurgence of interest in free energy
methods motivated by the performance enhancements offered by molec-
ular dynamics (MD) software written for specialized hardware, such as
graphics processing units (GPUs). In this work, we exploit the prop-
erties of a parameter-interpolated thermodynamic integration (PI-TI)
method to connect states by their molecular mechanical (MM) param-
eter values. This pathway is shown to be better behaved for Mg2+ →
Ca2+ transformations than traditional linear alchemical pathways (with
and without soft-core potentials). The PI-TI method has the practical
advantage that no modification of the MD code is required to propagate
the dynamics, and unlike with linear alchemical mixing, only one elec-
trostatic evaluation is needed (e.g., single call to particle-mesh Ewald) leading to better performance. In the case of AMBER, this
enables all the performance benefits of GPU-acceleration to be realized, in addition to unlocking the full spectrum of features
available within the MD software, such as Hamiltonian replica exchange (HREM). The TI derivative evaluation can be
accomplished efficiently in a post-processing step by reanalyzing the statistically independent trajectory frames in parallel for high
throughput. We also show how one can evaluate the particle mesh Ewald contribution to the TI derivative evaluation without
needing to perform two reciprocal space calculations. We apply the PI-TI method with HREM on GPUs in AMBER to predict
pKa values in double stranded RNA molecules and make comparison with experiments. Convergence to under 0.25 units for
these systems required 100 ns or more of sampling per window and coupling of windows with HREM. We find that MM charges
derived from ab initio QM/MM fragment calculations improve the agreement between calculation and experimental results.

1. INTRODUCTION

Free energy calculations are powerful tools for the prediction of a
wide range of molecular properties.1−4 Alchemical free energy
methods are free energy techniques used to determine path-
independent properties associated with the relative free energy
values between two well-defined thermodynamic states. The
path-independent nature of the formalism affords the oppor-
tunity to tailor the connection between the states to make the
method more amenable to practical computation.5,6

Two of the commonly applied alchemical free energy methods
are free energy perturbation (FEP) and thermodynamic inte-
gration (TI). The FEP method7 can suffer from hysteresis and
slow statistical convergence due to inadequate overlap between
sampled intermediate states. Advanced analysis techniques such
as the Bennett’s acceptance ratio8 (BAR) or multi-state gener-
alization (MBAR)methods9 can help to improve the reliability of
the calculated free energy, and they have become essential tools
for free energy prediction. The TI method numerically integrates
ensemble-averaged derivatives of the potential energy with respect
to a perturbing parameter that couples the end-state Hamilto-
nians.10−14 Thermodynamic integration has been demonstrated
to be a comparable tool to BAR/MBAR that is also widely used
for free energy prediction.15 The intention of the present manu-
script is not to advocate the use of one method over the other

(FEP with BAR/MBAR versus TI). On the contrary, we find it
useful to analyze our data using both classes of methods to help
gauge the reliability of our calculations and derive meaningful
error estimates. Ideally, we would like to perform MBAR and TI
analysis from simulations performed on Graphics Processing
Unit (GPU) accelerated molecular dynamics (MD) software.
Furthermore, we would like to improve the extent and consis-
tency of sampling by coupling the intermediate alchemical states
via the Hamiltonian replica exchange method (HREM).16−19

Although GPU-accelerated MD has emerged in a wide array of
software packages, including NAMD,20 ACEMD,21 AMBER,22−24

OpenMM,25 GROMACS,26,27 and CHARMM,28 the incorpo-
ration of free energy methods into the GPU-enabled software has
only very recently emerged in a few simulation codes. The result
is that many MD software packages do not currently support
GPU-accelerated TI, and fewer still have access to the full array of
enhanced sampling functionality available to the MD engine.
Recent GPU-enabled free energy simulation developments include
an implementation of FEP with DESMOND,29 a dual-topology
TI method in PMEMD,30 an extensible Python framework for
alchemical free energy calculations with YANK,31 and the porting
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of constant-pH methods to GPUs.28,32 The GROMOS and
GROMACS programs can utilize GPUs for those parts of a sys-
tem not undergoing an alchemical transformation,27 and the
OpenMMprogram can utilize GPUs to perform BAR andMBAR
free energy calculations.33−36 Other programs, like CHARMM,
contain interfaces to OpenMM.28 The incompatibility between
CHARMM’s free energy module and the other internal software
features motivated Boresch and Bruckner to explore alchemical
pathways that can be performed as a series of regular MD simu-
lations.37 Arbitrary software implementation limitations are pres-
ent in AMBER aswell; for example, the current version of AMBER’s
PMEMD program can perform HREM, but not in conjunction
with TI.
In the present work, we seek to perform TI with HREM using

the GPU-accelerated version of PMEMD. We do this by aban-
doning AMBER’s dual-topology TI framework for performing
single-topology transformations. If the two end-states can be
described by the same set of molecular mechanical (MM) param-
eter variables, but different parameter values, then the inter-
mediate alchemical states can be constructed by interpolating
the parameter values. The potential energy surface (PES) of a
parameter-interpolated intermediate state is fully described by
standard MM potential energy functions, so the MD software
does not explicitly require a TI implementation to perform the
dynamics. Parameter-interpolated TI (PI-TI) thus circumvents
arbitrary program incompatibilities that may exist between
the MD program’s native TI implementation and other software
features, such as enhanced sampling methods, so long as those
limitations that are not founded upon a theoretical basis. The
thermodynamic derivatives required for TI can be implemented
in the MD software for on-the-fly evaluation, or they can be eval-
uated in a post-processing stage that reanalyzes the statistically
independent trajectory frames. There is no methodological lim-
itation that prevents PI-TI from being extended to include soft-
core potentials for those applications that demand their use,
although minor modifications to the force field functional form
may then be required.
Parameter-interpolation has previously been used to perform

single-topology alchemical transformations. The parameter-
interpolated free energy perturbation (PI-FEP) method was
pioneered by Jorgensen38 and continues to be used in the BOSS
program.39 The parameter-interpolated BAR and MBAR meth-
ods (PI-BAR and PI-MBAR) have previously been described36

using the OpenMM program,40 and this framework has recently
been extended to the Tinker-OpenMM module41 for applica-
tions using the AMOEBA force field.34,42−44 Application of the
PI-BAR method has been shown to be a practical alternative to
using soft-core potentials.37 In addition to these other methods,
the concept of PI-TI, specifically, is also very old; Mezei and
Beveridge referred to PI-TI as a “nonlinear TI” pathway more
than 30 years ago,45 and exploratory demonstrations suggested
that parameter-interpolation can lead to numerically advanta-
geous TI pathways.11,46 Early versions of AMBER could perform
PI-TI calculations via the GIBBS program,47,48 but the PI-TI
approach in AMBER was abandoned in favor of using a dual-
topology TI framework49 after the introduction of the smooth
particle mesh Ewald (PME) method.50 It was believed that PME
could not be used with PI-TI because PME is not a pairwise
decomposable energy.51 This belief does not appear to have been
limited to AMBER development community. Modern versions
of GROMOS program continue to only support PI-TI with cutoff
or reaction field electrostatics, but not PME electrostatics.52,53

The GROMACS program will use PI-TI for some energy terms,32

but it resorts to a linear-mixing strategy for evaluating the
reciprocal-space PME energy.26,54,55 Similarly, the CHARMM,28

LAMMPS,56 and NAMD20 programs perform two reciprocal-
space PME calculations. The evaluation of two reciprocal-space
PME calculations has been specifically identified as slowing
PMEMD, for example, by 25% relative to non-TI simulations.57

The GPU TI implementation in ref 30 reports a 30% perfor-
mance degradation relative to non-TI simulations. The PI-TI
method described in the present work requires only one PME
calculation per time step to evaluate the energy, forces, and
TI-gradient. That is, we show how one can compute theTI-gradient
of the PME reciprocal-space energy using no more information
than what is normally required to evaluate the energy and forces
in a non-TI simulation.
In this work, we revisit the PI-TI method and implement it

with support for PME electrostatics to leverage the performance
of existing GPU-accelerated MD software and unlock additional
program features, such as HREM.58 Out of convenience, we use a
modified version of the SANDERMDCPU-code to evaluate the
necessary TI derivatives by post-processing trajectories gen-
erated with the GPU-enabled version of PMEMD. The PI-TI is
well suited for certain types of free energy applications, including
point mutations, metal ion solvation and binding, pKa shift pre-
diction, and QM/MM charge-corrections. In the next sections,
we describe the equations necessary to perform the PI-TI
method. We compare the potential energy surface of Mg2+···H2O
as the Mg2+ is transformed to Ca2+ using a standard linear alchem-
ical pathway, soft-core potentials, and PI-TI. We demonstrate that
standard TI and PI-TI methods produce identical free energies
for the transformation of Mg2+ to Ca2+ in solution and further
show how their “TI gradients” differ. We apply the parameter-
interpolated alchemical pathway scheme to predict the pKa of 3
RNA sequences, establish highly converged simulations with
meaningful error estimates, and make comparisons with experi-
ments. In doing so, we compare results between PI-TI, PI-BAR,
and PI-MBAR, and examine the convergence of the results as a
function of simulation time. We rerun the simulations using
several HREM exchange rates to elucidate its advantages. We
compare the pKa results from long MD simulations to a collec-
tion of short MD simulations. Finally, we examine how the pKa
results change if the MM charges are replaced with electrostati-
cally fit charges derived from ab initio QM/MM calculations.

2. METHODS
2.1. Thermodynamic Integration. The free energy

difference between two statesΔG = G(1) − G(0) can be evaluated
using the thermodynamic integration (TI) method:

∫ λ
λ

λΔ = ∂
∂ λ

G
U

d
( )

0

1

(1)

where U(λ) is a λ-dependent potential energy that connects the
potential of the initial stateU(0) to the final stateU(1). Of primary
interest in the present work are those transformations where the
two states differ only by the values of their MM parameters, P, in
which case: U(0) = U(P(0)) and U(1) = U(P(1)). This type of per-
turbation can be classified as a “single-topology” transformation;
however, the free energy of this transformation can also be eval-
uatedwithin a “dual-topology” framework. The distinction between
these classifications is all atoms within a single-topology frame-
work interact with all other atoms in the system, whereas a dual-
topology approach includes two copies of the perturbed atoms
but the two copies do not directly interact with one another.46
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The dual-topology implementation of a single-topology trans-
formation enforces a restriction that the two copies share a com-
mon set of atomic coordinates.59 In this case, the values of U(0)

and U(1) are the total potential energies when one of the two
copies is present and the other is absent.
Linear Alchemical Mixing. Linear mixing of these end-state

potential energies are referred to as the “standard TI” (Std.-TI)
method:

λ λ= + −( )U U U UP P P( ) ( ) ( ) ( )Std.TI
(0) (1) (0)

(2)

The free energy difference is obtained by integrating the
following derivative:

λ
∂

∂
= −

λ λ

U
U UP P( ) ( )Std.TI (1) (0)

(3)

Specifically, a series of simulations are performed to compute
eq 3 at a discrete set of λ values. Equation 1 is then evaluated from
numerical quadrature

∑ λ
λ

Δ = ∂
∂λ

λ
λ

G w
U( )

(4)

or by fitting the ⟨∂U/∂λ⟩λ values to a function, such as a cubic
spline, that can be integrated analytically.60,61 Comparisons
between Clenshaw−Curtis, Simpson’s rule, and trapezoidal rule
integration formulas can be found in ref 62. The Std.-TI method
has the advantage that the thermodynamic derivative is simple,
independent of λ, and only requires computation of the endpoint
potential energy states. In principle, one could numerically dif-
ferentiateU(λ) to approximate ∂U/∂λ; however, the simplicity of
fixed-charge force field functional forms produce equally simple
analytic derivative expressions that can be implemented in an
analysis program without introducing additional numerical error.
Alternative free energy methods have been developed that dynam-
ically change the λ values during the course of dynamics, including
the slow-growth method,47 fast-growth method,63−65 and the
λ-dynamics method.66−71

Nonlinear Alchemical Mixing and “Soft-Core” TI. For com-
pleteness, we note that MD programs often implement a gener-
alization of eq 2, where the endpoint potential energies are
weighted by a nonlinear function of λ: U(λ) = (1 − f(λ))U(0) +
f(λ)U(1). The generalized form U(λ), sometimes called “non-
linear-mixing”,72 is used to improve the behavior of ⟨∂U/∂λ⟩λ in
certain situations.5,73−78 For example, nonlinear-mixing has been
used to reduce integration errors resulting from the “endpoint
singularity effect”73 encountered when a Lennard-Jones (LJ)
particle is removed (“annihilated” or “deleted”) from the system.
The soft-core method78−81 is an alternative to nonlinear-mixing
that replaces the expression for the standard LJ energy with a
modified functional form that smoothly decouples (as λ is goes
from 0 to 1) the interaction of the atoms undergoing annihilation
with the remainder of the system. The pairwise functional form
of soft-core TI (SC-TI) LJ-potential used in the present work is

λ
λ λ

=
ϵ −

+

−
ϵ −

+λ λ
‐ ⎛

⎝⎜
⎞
⎠⎟( ) ( )

U R( ; )
4 (1 )

2

4 (1 )

2
ab ab

ab

R
r

ab

R
r

SC LJ,

2

6 2

2

6
ab ab

abm,ab m,

(5)

where ϵab is the LJ well-depth and rm,ab is the location of the LJ
minimum. A region can be “coupled” to the remainder of the
system with an analogous expression by replacing λ with (1− λ).

Equation 5 is the form used in AMBER, which was developed in
ref 76. The functional form used in other programs, such as
GROMACS,82 are slightly different, and other expressions for
soft-core interactions can be found in the literature.72,83 Further-
more, exploratory investigations suggest that the statistical effi-
ciency of atom insertion/deletion processes can be improved by
using “linear basis functions”,84,85 and other works have avoided
the endpoint singularity by using “exponential-six” potentials.86

The electrostatic coupling between annihilating/inserting atoms
can also be modified with a nonlinear functional form.72,78,83 The
SC-TI free energy calculations performed in the present work do
not use soft-core electrostatics. Instead, the SC-TI simulations
are performed using a 3-step procedure: the selected atoms are
decharged with Std.-TI, the LJ interactions are changed via eq 5,
and the atoms are recharged using Std.-TI.

Parameter Interpolation. Parameter-interpolation methods,
such as PI-FEP, PI-BAR, PI-MBAR, and PI-TI, use a standard
MM potential energy surface,

λ = λU U P( ) ( )PI
( )

(6)

whose parameters are mixed from the endpoint values:

λ= + −λP P P P( )( ) (0) (1) (0) (7)

In other words, onewrites a parameter file for each value of λ (eq 7)
and then performs traditional MD simulations using the poten-
tial shown in eq 6. The PI-TI free energy difference is obtained by
integrating the following derivative:

∑
λ λ

∂
∂

= ∂
∂

∂
∂λ

λ

λ
λ

λ

=

U U
P

PP( )

i

N

i

iPI

1

( )

( )

( )param

(8)

The calculation of ⟨∂U/∂Pi
(λ)⟩λ could either be evaluated during

the course of dynamics or via reprocessing of the saved trajectory
frames. One does not need to record every simulation time step
in the trajectory file to achieve reasonable averages because the
autocorrelation time of eq 8 is oftenmuch longer than aMD time
step. Furthermore, the reprocessing of the trajectories statisti-
cally independent samples is highly parallelizable because each
frame can be examined independently of the others. Our experi-
ence has been that the effort spent reprocessing trajectories is
trivial in comparison to effort spent performing the MD simu-
lations. The method we describe below for calculating the
reciprocal-space PME TI-gradient is computationally advanta-
geous to the Std.-TI method even if the “on-the-fly” calculation
of ∂U/∂λ was preferred to post-processing.
In the present work, we perform transformations that scale the

atomic charges, qa

λ= + −λ ( )q q q qa a a a
( ) (0) (1) (0)

(9)

and/or the two-body Lennard-Jones well-depths, ϵab, and min-
imum energy distances, rm,ab

λϵ = ϵ + ϵ − ϵλ ( )ab ab ab ab
( ) (0) (1) (0)

(10)

λ= + −λ ( )r r r rab ab ab abm,
( )

m,
(0)

m,
(1)

m,
(0)

(11)

The values of the bond and angle force constants, equilibrium
values, and the torsion cosine potentials can be similarly inter-
polated. The implementation of the bonded-energy TI gradient
terms is straightforward, and it has been successfully applied
many times in the past.46−48,87 The TI gradient of the particle
mesh Ewald (PME) electrostatic energy, however, is not widely
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known to the MD development community. Therefore, TI
gradients for the PME electrostatics, as well as the Lennard-Jones
nonbonded terms, are discussed separately below.
PI-TI Gradients for PME Electrostatics. Particle mesh Ewald is

a method for computing the average electrostatic energy per unit
cell of a periodic charge distribution.50,88−90 The electrostatic
energy is a quadratic function of charge, and for periodic point-
charge distributions, it is

∑ ∑ ∑= ′
| + |

λ
λ λ

U
q q

q
R n

( )
1
2 a b

a b

abn
elec

( )
( ) ( )

(12)

where n = n1a1 + n2a2 + n3a3 is a vector to a unit cell; a1, a2, and a3
are real-space lattice vectors; the summation over n considers
each unique replicated cell; and the primed-summation excludes
the situation where the denominator becomes zero. The electro-
static potential experienced by point charge a is

∑ ∑

≡
∂
∂

≡ ′
| + |

λ
λ

λ

p
U

q

q

R n

a
a

b

b

abn

( ) elec
( )

( )

(13)

where the superscript (λ) emphasizes that the electrostatic
potential is caused by the interpolated charges (eq 9). The elec-
trostatic energy can then be concisely written,

∑=λ λ λU q pq( )
1
2 a

a aelec
( ) ( ) ( )

(14)

and the PI-TI gradient is

∑

∑

λ λ
∂

∂
=

∂
∂

∂
∂

= −

λ

λ

λ( )

U U

q

q

q q p

a a

a

a
a a a

elec elec
( )

( )

(1) (0) ( )

(15)

Notice that that eq 15 reuses the same electrostatic potential
required to compute the energy (eq 14); a second PME calcu-
lation is not required. This differs from the Std.-TI method,
which performs two PME calculations:

∑ ∑λ λ λ= − +U q p q p( )
1
2 2a

a a
a

a aelec,Std.TI
(0) (0) (1) (1)

(16)

Equations 14 and 15 are sufficient instruction to understand how
to modify existing PME software implementations. For com-
pleteness, eqs 17−25 provide explicit expressions for the PME
electrostatic potential.89 We drop the superscripts for brevity,
and we decompose the potential into three components:

= + +p p p pa a a arecip, real, charge, (17)

The first term in eq 17 is the reciprocal-space contribution to the
potential,

∑ ∑θ π
θ

= −
β

≠

·
−

p
V

e
S e
k

R R( )
4

a a
i

k

t
t

k

k R k

k
recip,

0

/4

2 2

T
t

2 2

(18)

where the unit cell volume and Ewald coefficient are V and β,
respectively. The plane waves are indexed by their angular
wavenumber,

π= * + * + *k k kk a a a2 ( )1 1 2 2 3 3 (19)

where a1*, a2*, and a3* are the reciprocal space lattice vectors. The
PME method performs fast Fourier transforms on a regular grid
consisting of N points (N = N1N2N3) that are indexed by t and
located at Rt. The B-spline weights used to interpolate from the
grid are

∏θ = · * +
=

M N nr r a( ) ( /2)
d

d
T

d
1

3

n
(20)

and the B-spline weight discrete Fourier transform coefficients
are

∑θ θ= − · Re ( )i
k

t

k R
t

T
t

(21)

The Mn function appearing in eq 20 is an order-n Cardinal
B-spline:

∑= −
− !

−
=

−⎜ ⎟⎛
⎝

⎞
⎠M u

n

n
k

u k( )
( 1)

( 1)
[max( , 0)]

k

n k
n

n
0

1

(22)

The “structure factors” are discrete Fourier transform coefficients
of the B-splined charge density:

∑ ∑ θ= −− ·S q R Re ( )i

a
a ak

t

k R
t

T
t

(23)

The second term in eq 17 is the real-space contribution to the
potential:

∑β
π

β
= − +

≠

p q q
R

R
2 erfc( )

a a
b a

b
ab

ab
real,

(24)

The third term in eq 17 is the uniform background contribution
to the potential for charged systems:

∑π
β

= −p
V

qa
b

bcharge, 2
(25)

PI-TI Gradients for Lennard-Jones Nonbonded Terms. The
Lennard-Jones (LJ) energy used in this work explicitly accounts
for all interactions within the nonbond cutoff, Rcut, and it includes
a tail correction for the long-range attractions beyond the cutoff:

∑= − +λ λ
λ λ

λ

>
<

( )U
A
R

B
R

UA B B, ( )
b a

R R

ab

ab

ab

ab
LJ

( ) ( )
( )

12

( )

6 tail
( )

ab cut (26)

where

= ϵλ λ λA rab ab ab
( ) ( )

m,
( )12

(27)

= ϵλ λ λB r2ab ab ab
( ) ( )

m,
( )6

(28)

∑ π
= −λ

λ

U
B

VR
B( )

2
3ab

ab
tail

( )
( )

cut
3

(29)

Chain-rule differentiation leads to the following expression for
the LJ TI gradient:

∑
λ λ λ

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

λ λ

λ

λ

λU U

A
A U

B
B

u v

N

uv

uv

uv

uvLJ

,

LJ
( )

LJ
( )types

(30)
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λ
∂

∂
= ϵ − ϵ + ϵ −

λ
λ λ λ( ) ( )A

r r r r12ab
ab ab ab ab ab ab ab

( )

m,
( )12 (1) (0) ( )

m,
( )11

m,
(1)

m,
(0)

(31)

λ
∂
∂

= ϵ − ϵ + ϵ −
λ

λ λ λ ( )( )B
r r r r2 12ab

ab ab ab ab ab

( )

m,
( )6 (1) (0) ( )

m,
( )5

m,ab
(1)

m,ab
(0)

(32)

Direct interpolation of the Aab and Bab coefficients is also pos-
sible, and it results in van der Waals transformations that mimic
the Std.-TI pathway. We will show that the interpolation of the
ϵab and rm,ab parameters can produce a more uniform distribution
of alchemical states. Other models for the van der Waals energy
exist, including: Born-Mayer functions,91−93 12−6−4 poten-
tials,94−96 14−7 potentials,97models based on atomic overlap,98−101
and isotropic periodic summation.50,102,103

2.2. Computational Details.General Simulation Protocol.
Unless otherwise explicitly stated, we use the Amber ff14SB force
field parameters,104 the TIP4P/Ew water model,105 and the Li
and Merz TIP4P/Ew 12-6 divalent metal ion parameters.106 All
Std.-TI and SC-TI simulations were performed with the Amber
16 CPU implementation of PMEMD.107 The PI-TI simulations
were performed108 with the Amber 16 GPU implementation of
PMEMD.23,107 The dynamicswere propagatedwith a 1 fs time step.
Bonds involving hydrogen were constrained with SHAKE.109

Nonbond interactions were explicitly computed within a 10 Å
direct-space cutoff, and the LJ interactions beyond the cutoff
were modeled with a long-range tail correction (eq 29). Electro-
static interactions were evaluated with the particle mesh Ewald
method using a 1 point/Å3 fast Fourier transform grid spacing,
fourth-order cubic B-spline interpolation, and tinfoil boundary
conditions.50 A charge-canceling uniform background plasma
correction was applied to those systems with a net charge.89,110 A
constant temperature of 298 K was regulated with the Langevin
thermostat (5 ps collision frequency).111 All production simu-
lations were performed at constant temperature and volume.
The following procedure was used to equilibrate the systems:

1. The density of the λ = 0 state was equilibrated for 20 ns in
the NPT ensemble at 298 K using the Berendsen barostat
to maintain a pressure of 1 atm (1.013 bar).

2. The λ = 0 and λ = 1 states were then equilibrated in the
NVT ensemble for an additional 20 ns, starting from the
final coordinates obtained in step 1.

3. Each λ-window was equilibrated in the NVT ensemble for
an additional 10 ns. The λ < 0.5 and λ ≥ 0.5 simulations
began from the λ = 0 and λ = 1 equilibrations performed in
step 2, respectively.

Production statistics for each λ-window were collected after the
equilibration described in step 3.
Free Energy Calculation and Error Analysis. The value of

∂U/∂λwas output every 5 ps (Std.-TI and SC-TI). Similarly, the PI-
TI simulations wrote the atomic coordinates to a trajectory file
every 5 ps for post-processing. The time-series of ∂U/∂λ values
were extracted (or computed) for each λ-simulation and stored to a
file. The free energy analysis was performed using the ALCHEMICAL-
ANALYSIS program.112 The ALCHEMICAL-ANALYSIS program makes use
of the PYMBAR library, which implements time-series algorithms113

and various free energy analysis methods, including the Bennett
acceptance ratio8,114 (BAR) and multi-state Bennett acceptance
ratio9 (MBAR) methods. The reported TI free energies use the
trapezoidal rule to perform the numerical integration shown in
eq 4, except for those labeled PI-TI3, Std.-TI3, or SC-TI3, which
perform the integration from a natural cubic spline interpolation

of the ⟨∂U/∂λ⟩λ data. Details of the TI3 integration procedure
and error propagation can be found in the appendix of ref 115.
Our best estimate of the mean ⟨∂U/∂λ⟩λ is the time-average

value:
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If the time-series was uncorrelated, then the standard error of the
mean, σ⟨λ⟩, could be computed from the standard deviation of the
∂U/∂λ time-series, σλ:

σ σ=λ λ⟨ ⟩ N/ t (34)
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The standard errors of the ⟨∂U/∂λ⟩λ averages are propagated
through eq 4 to estimate the error of the calculated free energy:

∑σ σ=
λ

λ λΔ ⟨ ⟩wG
2 2

(36)

If the time-series is correlated, then eq 34 underestimates the true
error of the mean. A better estimate of the error is made by
pruning the available data with a stride equal to the statistical
inef f iciency, gλ:

τ ν= +λ λg 1 2 / (37)

where τλ is the autocorrelation time (eq 38), ν is the correlated
sampling rate (5 ps/frame in this work), and gλ is in units of the
sampling interval (the number of frames between uncorrelated
samples). The true autocorrelation time is unknown, but it can be
approximated from the best estimate of the autocorrelation
function (eq 39).
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To account for the correlation within the samples, the error prop-
agation (eq 36) is performed using the standard errors from the
pruned data; that is,
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In summary, we run the ALCHEMICAL-ANALYSIS program112 twice:
the free energy is computed from the correlated data, and the
errors are estimated from the analysis of the pruned/uncorrelated
samples.
It is useful to monitor the free energy (and its error) as a func-

tion of sampling time. For example, by plotting the free energy
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from the analysis of the first 10, 20, 30 ns, etc. of production sta-
tistics; however, we always use our best estimate of the autocor-
relation time (from all of the available production data) when
estimating the errors of petite time-series.
The BAR andMBAR results listed in this manuscript were also

evaluated using the ALCHEMICAL-ANALYSIS program.112 The anal-
ysis required us to recompute the energy U(λ) of each frame
within the trajectory file generated from the U(λ′) simulation.
That is, a matrix of energies Uλ,λ′ is produced at each time step.
The BAR and MBAR free energy errors were evaluated from the
uncorrelated samples using the statistical inefficiency computed
from the correlated ∂U/∂λ values. The labels PI-BAR andPI-MBAR
emphasize that the intermediate states sample the parameter-
interpolated potential energy surfaces. In other words, the PI-BAR
and PI-MBAR results reanalyze the same trajectories that were
used to compute the PI-TI free energies.
We sample the necessary information for performing TI, BAR,

and MBAR analysis once every 5 ps. Some readers may believe
that sampling every frame within the trajectory would lead to
better free energy estimates. This belief fails to recognize that the
trajectory forms a correlated time-series. Although it is not inher-
ently incorrect to average the TI gradient from all samples within
an equilibrium simulation time-series, the correlated samples are
not improving the statistical quality of the estimated average.113

In fact, a careful estimate of an average’s standard error would
have one prune the data to produce a petite set of statistically
independent samples.9,112 Excessive sampling of the TI, BAR, and
MBARdata, therefore, offers little benefit while also decreasing the
performance of the MD software. In this context, it is unfortunate
that dual-topology implementations require two reciprocal-space
PME evaluations simply to propagate the equations of motion.
2.3. Comparisons between TI Methods. In this section,

we examine the transformation: Mg(aq)
2+ → Ca(aq)

2+ to compare the

PI-TI, Std.-TI, and SC-TI alchemical pathways. This test system
is sufficiently simple that we can unambiguously illustrate poten-
tial energy surfaces of the alchemical intermediate states to help
explain the observed differences between their ⟨∂U/∂λ⟩λ profiles.
We show that the alchemical pathways produce different inter-
mediate alchemical states, but reproduce the same net transfor-
mation energy. Furthermore, we examine the sensitivity of the
results with respect to the number of intermediate states.
Figure 1 plots the potential energy surface (PES) of each metal

ion state coordinated with a single water. The metal ion state is
either the Mg2+ or Ca2+ end-state or an intermediate state mix-
ture between the two. The left panels illustrate the transforma-
tion of the LJ potential (the charge of the metal is set to zero),
and the right panels illustrate a 1-step transformation between the
metal ions. The top, middle, and bottom rows show the Std.-TI,
SC-TI, and PI-TI transformations, respectively.
Table 1 compares Std.-TI3, SC-TI3, and PI-TI3 calculations of

the free energy difference between a solvated Mg2+ ion and a
solvated Ca2+ ion. The system is a periodic cube filled with 2000
TIP4P/Ew waters and a single metal ion. The real space lattice
vectors of the simulation cell are 39.13 Å. The “1-step” transfor-
mations change the LJ interactions of the metal; that is, Mg(aq)

2+ →
Ca(aq)

2+ . The “3-step” transformations are a sequence of transfor-
mations:

1. The charge of the Mg is removed (Mg2+ → Mg0).
2. The LJ interactions are scaled (Mg0 → Ca0).
3. The charge of Ca is replaced (Ca0 → Ca2+).

All stages were performed with 32 λ-windows (λ = i/31 for i ∈
[0,31]), and 90 ns of production statistics were simulated for
each λ-window. Therefore, a 1-step calculation of ΔG was per-
formed using 32 simulations, and a 3-step calculation performed
a total of 96 simulations. We do not use soft-core electrostatics,

Figure 1. Potential energy surface of metal−H2O as a function of metal−oxygen distance. Each pane shows the PES for several λ values as the metal is
transformed from Mg2+ (λ = 0) to Ca2+ (λ = 1). The left and right columns illustrate Mg0 → Ca0 and Mg2+ → Ca2+ transformations, respectively.
The rows differ by the choice of TI algorithm. The 1-step SC-TI Mg2+ → Ca2+ transformation uses both soft-core electrostatic and soft-core LJ
potentials.
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so the SC-TI3 decharge and recharge stages appearing in Table 1
are taken from the Std.-TI3 calculation. Figure 2 compares the
behavior of ⟨∂U/∂λ⟩λ as a function of λ for each stage appearing
in Table 1. We chose to use 32 λ-values to make the plots in
Figure 2 look smooth, thus improving the quality of the presen-
tation. This data also serves as a benchmark for comparison in
Table 1 when fewer λ-values are used. Figure 3 compares theΔG
values of each stage as a function of production simulation time.
The vertical bars are 95% confidence intervals (1.96 σΔG). For
example, the value ofΔG at 40 ns is computed from the first 40 ns
of production data, and the σΔG value is evaluated from the
uncorrelated samples within the first 40 ns of production data,
based on the best estimate of the autocorrelation times from the
full, 90 ns of production. The σΔG value is then scaled by 1.96 to
draw the vertical bar in the figure.
The Nλ column in Table 1 lists the number of λ-states used

while performing the analysis. The Nλ = 32 rows integrate ⟨∂U/
∂λ⟩λ from all simulated intermediate states. The Nλ = 17 row
excludes several of the simulations from the analysis; only the λ =
0 and λ = 1 endpoints and every-other-λ between them are
included in the analysis. The Nλ = 12 row includes every third
simulation between the endpoints, and the Nλ = 9 and Nλ = 7
similarly exclude additional interior λ-state simulations.

2.4. Double-Stranded RNA pKa Benchmark Simula-
tions. Wilcox and Bevilacqua have used 31P NMR to
experimentally determine the pKa of the A+·C mismatch base
pair within double-stranded RNA (dsRNA) sequences.116 In the
present work, we re-examine the three sequences shown in
Figure 4. The protonation site is the N1 position of residue A4.
The only differences between the three sequences are the base
pairs immediately adjacent to A4-C17. The WW, SW, and SS
notation refers to relative hydrogen bond strength of the two
base pairs immediately flanking A4-C17. The WW sequence
places A-U base pairs above and below A4-C17, the SS sequence
flanks A4-C17 with G-C base pairs, and the SW sequence
substitutes a G-C and A-U base pairs below and above A4-C17,
respectively. In other words, the hydrogen bond strength
between A-U bases are weak (W) relative to the strong (S)
hydrogen bonds between G-C, and this difference causes the pKa
of A4-C17 to shift when the sequence is modified. The
geometries of the native and protonated A4-C17 base pairs
observed in the dsRNA systems are shown in Figure 5.
To make comparison with the experimental data, we compute

the free energy change of the transformation AH+→ A of residue
A4 within dsRNA, ΔGdsRNA, and of an isolated 5′-adenosine
monophosphate (AMP) in solution, ΔGAMP. The acidic proton

Figure 2. Comparison of ⟨dU/dλ ⟩λ between PI-TI and SC-TI for the transformation Mg2+ → Ca2+.

Table 1. Free Energy Change of Transformation Mg2+→ Ca2+ in Solutiona

Std.-TI3 Std.-TI3 SC-TI3 PI-TI3 PI-TI3

Nλ Stage 1-step 3-step 3-step 1-step 3-step

32 Decharge − 398.90 ± 0.03 (398.90 ± 0.03) − 398.93 ± 0.03
32 LJ − 0.28 ± 0.00 0.28 ± 0.01 − 0.28 ± 0.00
32 Recharge − −321.55 ± 0.03 (−321.55 ± 0.03) − −321.58 ± 0.02
32 Net 77.60 ± 0.02 77.63 ± 0.04 77.63 ± 0.04 77.63 ± 0.02 77.63 ± 0.04
17 Net 77.77 ± 0.02 77.69 ± 0.05 77.70 ± 0.05 77.63 ± 0.02 77.66 ± 0.05
12 Net 78.19 ± 0.03 77.67 ± 0.06 77.66 ± 0.06 77.58 ± 0.03 77.70 ± 0.06
9 Net 78.63 ± 0.03 77.68 ± 0.07 77.68 ± 0.07 77.60 ± 0.03 77.61 ± 0.07
7 Net 80.64 ± 0.04 78.11 ± 0.09 78.11 ± 0.09 77.48 ± 0.04 78.00 ± 0.09

aValues are in kcal/mol. The ± values are standard errors. Nλ is the number of λ-states (out of 32) used to perform the analysis.
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(the H1 proton) atom-type does not contribute to the LJ energy;
only the nucleobase atomic charges differ between the neutral and
protonated forms of the adenine. Therefore, each transformation is
performed in a single stage that interpolates between the end-state
atomic charge vectors of the adenine nucleobase. These charges are
provided in the Supporting Information. The calculated pKa shift
of adenine in dsRNA relative to AMP in solution is

Δ =
Δ − Δ

→K
G G

RT
p

ln(10)a,AMP dsRNA
dsRNA AMP

(42)

The absolute pKa value in the dsRNA environment is estimated
from the experimental pKa value of AMP in solution (3.80, ref
117) and the calculated shift:

= + Δ →K K Kp p pa a,AMP
Expt.

a,AMP dsRNA (43)

The pKa error values are propagated from the free energy
calculations:

σ
σ σ

=
+Δ Δ

RT ln(10)K
G G

p

2 2

a

dsRNA AMP

(44)

The pKa calculation is repeated for each of the three sequences.
The pKa shift associated with the mutation of the WW sequence
to SS is given by eq 45, and the error is shown in eq 46.

Δ = −K K Kp (SS) p (SS) p (WW)a a a (45)

σ σ σ= +Δ K K Kp (SS) p (SS)
2

p (WW)
2

a a a (46)

The expressions for ΔpKa(SW) and σΔpKa(SW) are analogous.
The dsRNA calculations were performed in a truncated octa-

hedron (58.54 Å lattice vector lengths) containing either the SS,
SW, or WW sequence and filled with 4967 waters, 19 Na+ ions,
and 10 Cl− ions to yield a 0.14 M NaCl approximate bulk ion
concentration. Each free energy calculation used 12 λ-windows,
and 160 ns of production statistics were produced for each sim-
ulation. The free energy calculation was repeated four times: once
without using HREM and then using 2.5, 5.0, or 10.0 ps/attempt
HREM exchange attempt rates, τHREM. The pKa andΔpKa values
from the long, 160 ns simulations are summarized in Table 2. The
± values are the errors from eqs 44 and 46. The ΔGAMP values
appearing in eqs 42 and 43 are the 0.14 M NaCl and Nsolv = 5579
results shown inTable 3. The convergence of the PI-TI3 pKa values
with respect to the amount of production sampling is illustrated in
Figure 6. The vertical bars are 95% confidence limits (1.96 σpKa

).
The ∂U/∂λ autocorrelation times, τcor, observed in the 160 ns

simulations of ΔGdsRNA are summarized in Table 4. Each trans-
formation was performed with 12 λ-windows; therefore, there are
12 values of τcor. Table 4 lists the average and maximum values
from the set of 12 autocorrelation times. We ran our simulations

Figure 4. Secondary structures of the three RNA sequences examined in
this work. The pKa values refer to the N1 position of residue A4.

Figure 3. Average ΔG as a function of production time for the transformation Mg2+ → Ca2+. The vertical bars are 95% confidence intervals.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01175
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b01175/suppl_file/ct7b01175_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.7b01175


for 160 ns because some of the autocorrelation times shown in
Table 4 are nearly 3 ns, and the production statistics must be
extended to 50τcor to obtain a reliable estimate of the autocor-
relation time.112 Failure to obtain sufficient production sampling
would underestimate τcor and, therefore, the error estimate (eq 40).
The long autocorrelation times in this application are produced
from infrequent changes to the hydrogen-bond pattern between
the A4-C17 base pair as the protonation state of A4 is modified.
This insight is gleaned from Figure 7, described below. The infre-
quent transitions between hydrogen-bond patterns highlights the
difficulty that one can encounter in obtaining a concise trajectory
that is also a confident representation of an equilibrium simula-
tion; it thus motivates the use of HREM.
Both base pair orientations shown in Figure 5 are accessible

when the adenine is neutral (or near neutrality), although the
preferred geometrical orientation is the one where |RA:N1−RC:N4|

< |RA:N6 − RC:N3|. One can define a generalized coordinate to
track the orientation of the A4-C17 base pair:

= | − | − | − |R R R R RA:N6 C:N3 A:N1 C:N4 (47)

Figure 7a and b plotR as a function of time using the SS-sequence
λ = 0.91 simulation. Figure 7c and d plot the time-averaged value
of R for each λ simulation. Figure 7e and f show that the ∂U/∂λ
autocorrelation time is largest for the intermediate λ simula-
tions that contain a very small partial charge on the acidic proton
(λ≈ 1). The λ = 0.91 simulation yields the largest autocorrelation
time.

2.5. Validation of Benchmark pKa Calculations. The
benchmark dsRNA pKa calculations are not in good agreement
with experiment. It is prudent, therefore, to explore the conver-
gence of our calculatedΔG values with respect to the number of λ-
states. Furthermore, some readersmay question the appropriateness

Figure 5.Top and side views of the native and protonated A4-C17 base pair geometries found in the dsRNA simulations. The native base pair prefers the
orientation with a small |RA:N1 − RC:N4| distance and a larger |RA:N6 − RC:N3| distance. The protonated structure prefers the opposite case.

Table 2. Comparison of pKa Values from 160 ns Production Simulations

τHREM PI-TI PI-TI3 PI-BAR PI-MBAR Expt.

pKa(SS) 8.10 ± 0.06

NA 6.86 ± 0.17 6.85 ± 0.18 6.85 ± 0.10 6.87 ± 0.11

2.5 ps 6.80 ± 0.07 6.78 ± 0.07 6.80 ± 0.05 6.81 ± 0.06

5 ps 6.80 ± 0.07 6.80 ± 0.07 6.81 ± 0.05 6.82 ± 0.07

10 ps 6.95 ± 0.05 6.94 ± 0.05 6.95 ± 0.04 6.97 ± 0.05

pKa(SW) 7.28 ± 0.08

NA 5.92 ± 0.09 5.91 ± 0.09 5.92 ± 0.07 5.93 ± 0.09

2.5 ps 5.96 ± 0.04 5.94 ± 0.04 5.95 ± 0.03 5.97 ± 0.03

5 ps 5.84 ± 0.04 5.82 ± 0.04 5.84 ± 0.03 5.86 ± 0.04

10 ps 5.93 ± 0.04 5.91 ± 0.04 5.93 ± 0.03 5.95 ± 0.03

pKa(WW) 6.51 ± 0.04

NA 5.41 ± 0.09 5.40 ± 0.09 5.41 ± 0.07 5.42 ± 0.09

2.5 ps 5.52 ± 0.04 5.51 ± 0.04 5.52 ± 0.03 5.53 ± 0.04

5 ps 5.51 ± 0.04 5.51 ± 0.04 5.51 ± 0.03 5.52 ± 0.04

10 ps 5.54 ± 0.04 5.55 ± 0.04 5.54 ± 0.03 5.54 ± 0.04

ΔpKa(SS) = pKa(SS) − pKa(WW) 1.59 ± 0.07

NA 1.44 ± 0.19 1.45 ± 0.20 1.44 ± 0.13 1.44 ± 0.14

2.5 ps 1.28 ± 0.08 1.27 ± 0.08 1.28 ± 0.06 1.29 ± 0.07

5 ps 1.29 ± 0.08 1.29 ± 0.08 1.30 ± 0.06 1.31 ± 0.08

10 ps 1.41 ± 0.06 1.39 ± 0.07 1.41 ± 0.05 1.42 ± 0.06

ΔpKa(SW) = pKa(SW) − pKa(WW) 0.77 ± 0.09

NA 0.51 ± 0.12 0.51 ± 0.12 0.51 ± 0.10 0.50 ± 0.13

2.5 ps 0.44 ± 0.05 0.42 ± 0.05 0.44 ± 0.04 0.45 ± 0.05

5 ps 0.33 ± 0.06 0.31 ± 0.06 0.33 ± 0.04 0.34 ± 0.06
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of using the Ewald background plasma correction for charged
systems.1,118−120 Previous works have suggested that one should
perform many, short simulations to obtain an average ΔG from
independent estimates rather than from running a few, long
simulations.121−124 The error estimation described in the
Computational Details section accounts for correlation within
a simulation, but it does not attempt to estimate the error
incurred from finite sampling. We show that the discrepancy

between calculation and experiment is not an error caused by
using too few λ-states. Nor does the Ewald background plasma
correction significantly affect the ΔG values. Finally, we show
that although independent simulations yield a large range of pKa

estimates the resulting error estimate of the average is not
significantly altered, and no estimate within the set of inde-
pendent simulations lie within the experimental uncertainty.

Free Energy Dependence on Simulation Cell Size and Ion-
Environment. Table 3 examines the convergence of the mono-
nucleotide reference ΔGAMP with respect to system size, and it
compares the sensitivity of the result to NaCl concentration. The
simulations were performed in a truncated octahedron filled with
a single adenine mononucleotide. The 0 M NaCl simulations do
not contain NaCl counterions; therefore, the protonated state
has a neutral charge and the native state has a net (1−) charge
that is balanced by the Ewald background plasma correction
as described in ref 89. Nsolv is the number of water molecules.

Figure 6. Average pKa, computed from the PI-TI3 method, as a function of production time. The vertical bars are 95% confidence intervals.

Table 3. Size and Ion Concentration Dependence of 5′-Adenosine Monophosphate N1 Deprotonation Free Energy: AH+→ Aa

0.14 M NaCl 0 M NaCl

Nsolv L (Å) PI-TI PI-TI3 PI-BAR PI-MBAR PI-TI PI-TI3 PI-BAR PI-MBAR

1853 41.8 −77.46 −77.37 −77.45 −77.52 −77.44 −77.35 −77.42 −77.49
2752 47.6 −77.53 −77.45 −77.52 −77.58 −77.43 −77.34 −77.42 −77.49
3651 52.3 −77.53 −77.44 −77.51 −77.58 −77.42 −77.33 −77.40 −77.48
5579 60.3 −77.53 −77.44 −77.52 −77.59 −77.44 −77.36 −77.43 −77.50

aValues are in kcal/mol. L is the length of the truncated octahedron lattice vectors. Nsolv is the number of solvent water molecules and ions present in
the simulation. The standard error of each TI and MBAR result is ±0.02. The standard error of each BAR result is ±0.01.

Table 4. ∂U/∂λ Autocorrelation Times (ps) from dsRNA
Simulations

τcor(SS) τcor(SW) τcor(WW)

τHREM Avg. Max. Avg. Max. Avg. Max.

NA 414 2772 199 876 176 732
2.5 ps 85 507 21 104 21 98
5 ps 126 910 39 198 25 104
10 ps 44 239 23 99 22 86
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The 0.14 M NaCl simulations differ only by substituting enough
Na+ and Cl− ions in the place of water molecules to achieve a
physiological ion concentration. The λ = 0 and λ = 1 states con-
tain the same number of Na+ and Cl− ions. Each transformation
was performed with 12 λ-windows (λ = i/11 for i ∈ [0,11]), and
100 ns of production statistics were produced for each simula-
tion. The convergence ofΔGAMP with respect to the number of λ
windows is shown in Table 5.
Comparison between Long MD Runs and Many Short MD

Runs. The pKa values shown in Table 6 are averages from 16
independent estimates of ΔGdsRNA. Unlike the pKa values shown
in 2, the results shown in Table 6 are produced from a series of
short simulations. Each estimate re-equilibrates every λ-window
for 10 ns in the NVT ensemble, starting from either the λ = 0 or
λ = 1 state. After equilibration, 10 ns of NVT production statistics

are performed for analysis, and the pKa is calculated from eq 43.
The listed pKa value is the average of the 16 estimates:

∑⟨ ⟩ =
=

K Kp
1
16

p
i

ia
1

16

a,
(48)

The ± values in Table 6 are standard errors of the mean:

σ
σ σ

=
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⟨ ⟩
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16K
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2

1
16

p
2

i i

a

a, a,

(49)

where σ{pKa,i} is the standard deviation of the 16 estimates, and the
summation accounts for the error of each estimate (eq 44). Table 6
also lists the maximum and minimum pKa,i values from the 16
estimates. The ⟨ΔpKa⟩ values and errors are analogous to eqs 45

Figure 7.Generalized coordinate isR = |RA:N6− RC:N3|− |RA:N1− RC:N4|. The native and protonated geometries shown in Figure 5 are approximately R =
2 Å and R =−2 Å, respectively. All plots analyze the SS sequence. The simulations summarized in panels a, c, and e do not use HREM. The simulations in
panels b, d, and f use an HREM exchange attempt rate of 10 ps. Panels a and b show how R varies with time in the λ = 0.91 simulation. Panels c and d are
the average value of R in each λ simulation. The vertical bars are 95% confidence intervals of the average. Panels e and f show the ∂U/∂λ autocorrelation
time for each λ simulation.

Table 5. Convergence of 5′-Adenosine Monophosphate N1 Deprotonation Free Energy with Respect to the Number of λWindow
Simulationsa

Nλ PI-TI PI-TI3 PI-BAR PI-MBAR

10 −77.46 ± 0.02 −77.34 ± 0.02 −77.44 ± 0.02 −77.49 ± 0.02
12 −77.44 ± 0.02 −77.36 ± 0.02 −77.43 ± 0.01 −77.50 ± 0.02
16 −77.40 ± 0.01 −77.36 ± 0.01 −77.40 ± 0.01 −77.47 ± 0.01
24 −77.36 ± 0.01 −77.33 ± 0.01 −77.35 ± 0.01 −77.42 ± 0.01
32 −77.33 ± 0.01 −77.32 ± 0.01 −77.33 ± 0.01 −77.38 ± 0.01

aValues are in kcal/mol. There are 5579 water molecules and no NaCl counterions.
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and 46. The pKa,i and σpKa,i
values summarized in Table 6 can be

found in the Supporting Information.
2.6. Improving pKa Prediction with QM/MM Charge

Fitting. The calculated A4 pKa values shown in Tables 2 and 6
are about 1.2 pKa units smaller than the experimental data. Table 7

summarizes how the pKa values change when differentMMcharge
sets are used. Our intention is to examine how sensitive the pKa
values are to the local charge environment by using different
charges for the A4 nucleobase, the A4-C17 base pair, and the
surrounding bases to gain an understanding of the degree to
which one might expect the pKa values to shift as a result.

Table 6. Distribution of pKa Values from 16 Simulations, Each Providing 10 ns of Production Statistics

τHREM PI-TI PI-TI3 PI-BAR PI-MBAR

pKa(SS)
NA Avg. 6.71 ± 0.17 6.67 ± 0.17 6.70 ± 0.11 6.73 ± 0.11

Min. 6.11 6.07 6.10 6.15
Max. 7.19 7.12 7.19 7.24

5 ps Avg. 6.86 ± 0.14 6.85 ± 0.14 6.86 ± 0.10 6.88 ± 0.11
Min. 6.22 6.18 6.21 6.24
Max. 7.34 7.39 7.35 7.32

pKa(SW)
NA Avg. 5.92 ± 0.21 5.88 ± 0.21 5.91 ± 0.13 5.93 ± 0.14

Min. 5.20 5.18 5.20 5.22
Max. 6.37 6.32 6.37 6.39

5 ps Avg. 6.04 ± 0.12 6.02 ± 0.12 6.04 ± 0.09 6.06 ± 0.10
Min. 5.60 5.56 5.59 5.63
Max. 6.37 6.37 6.37 6.38

pKa(WW)
NA Avg. 5.56 ± 0.18 5.54 ± 0.19 5.56 ± 0.11 5.57 ± 0.11

Min. 5.12 5.11 5.11 5.13
Max. 5.96 5.98 5.96 5.93

5 ps Avg. 5.53 ± 0.12 5.53 ± 0.13 5.53 ± 0.09 5.53 ± 0.10
Min. 5.10 5.05 5.09 5.12
Max. 5.91 5.91 5.90 5.90

⟨ΔpKa(SS)⟩ = ⟨pKa(SS)⟩ − ⟨pKa(WW)⟩
NA Avg. 1.14 ± 0.25 1.13 ± 0.25 1.14 ± 0.15 1.16 ± 0.16
5 ps Avg. 1.34 ± 0.18 1.32 ± 0.19 1.34 ± 0.14 1.35 ± 0.15

⟨ΔpKa(SW)⟩= ⟨pKa(SW)⟩ − ⟨pKa(WW)⟩
NA Avg. 0.35 ± 0.28 0.34 ± 0.28 0.35 ± 0.17 0.36 ± 0.18
5 ps Avg. 0.51 ± 0.17 0.49 ± 0.17 0.51 ± 0.13 0.53 ± 0.14

Table 7. Effect of Polarized MM Charges on pKa Values

pKa ΔpKa

Model Residues SS SW WW SS-WW SW-WW

Expt. 8.10 ± 0.06 7.28 ± 0.08 6.51 ± 0.04 1.59 ± 0.07 0.77 ± 0.09
ff14SB 6.84 ± 0.11 5.90 ± 0.06 5.49 ± 0.07 1.35 ± 0.13 0.40 ± 0.09

Shifted pKa values
ref 125 4+ 6.87 ± 0.11 5.97 ± 0.06 5.50 ± 0.07 1.37 ± 0.13 0.47 ± 0.09
15% 4 7.49 ± 0.11 6.70 ± 0.06 6.25 ± 0.07 1.24 ± 0.13 0.46 ± 0.09
15% 4,17 8.40 ± 0.11 7.56 ± 0.06 7.03 ± 0.07 1.37 ± 0.13 0.53 ± 0.09
15% 3−5,16−18 8.23 ± 0.11 7.29 ± 0.06 6.58 ± 0.07 1.65 ± 0.13 0.71 ± 0.09
15% 1−20 7.84 ± 0.12 7.03 ± 0.08 6.50 ± 0.08 1.34 ± 0.14 0.53 ± 0.11
LDA 3−5,16−18 8.58 ± 0.11 7.30 ± 0.06 6.63 ± 0.07 1.96 ± 0.13 0.67 ± 0.09
GGA 3−5,16−18 8.29 ± 0.11 7.12 ± 0.06 6.35 ± 0.07 1.94 ± 0.13 0.77 ± 0.09
Hyb 3−5,16−18 8.62 ± 0.11 7.42 ± 0.06 6.64 ± 0.07 1.98 ± 0.13 0.78 ± 0.09
HF 3−5,16−18 8.77 ± 0.12 7.77 ± 0.07 7.01 ± 0.07 1.76 ± 0.14 0.76 ± 0.10

pKa shifts relative to ff14SB
ref 125 4+ 0.03 ± 0.00 0.08 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.07 ± 0.01
15% 4 0.65 ± 0.01 0.81 ± 0.01 0.75 ± 0.01 −0.10 ± 0.01 0.05 ± 0.01
15% 4,17 1.55 ± 0.01 1.66 ± 0.01 1.53 ± 0.01 0.02 ± 0.02 0.13 ± 0.02
15% 3−5,16−18 1.39 ± 0.02 1.40 ± 0.02 1.09 ± 0.02 0.30 ± 0.03 0.31 ± 0.02
15% 1−20 1.00 ± 0.04 1.14 ± 0.04 1.01 ± 0.04 −0.01 ± 0.05 0.13 ± 0.06
LDA 3−5,16−18 1.74 ± 0.02 1.40 ± 0.02 1.14 ± 0.02 0.61 ± 0.02 0.27 ± 0.02
GGA 3−5,16−18 1.45 ± 0.02 1.23 ± 0.01 0.86 ± 0.01 0.59 ± 0.02 0.37 ± 0.02
Hyb 3−5,16−18 1.78 ± 0.02 1.53 ± 0.02 1.15 ± 0.02 0.63 ± 0.02 0.38 ± 0.02
HF 3−5,16−18 1.93 ± 0.03 1.87 ± 0.03 1.52 ± 0.02 0.41 ± 0.04 0.36 ± 0.04
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If alternate charge sets do not significantly shift the pKa values
toward the experimental values, then some other explanation
would be needed to rationalize the discrepancy between ourMM
results and the experimental data. Given this context, we are not
advocating for general use any particular charge set based on the
limited amount of data explored in this work.
The “Model” column in Table 7 labels the charge set. All charge

sets used in Table 7 are provided in the Supporting Information.
For example, the “ff14SB” charges are the force field parameters
used in Table 2, and the listed pKa values are the average PI-TI3
results from the four simulations listed in Table 2. The “Residues”
column lists the nucleobase residue indices to which the model
charges are applied. In other words, all atoms use ff14SB charges
except for the explicitly listed nucleobases. The rows marked “4+”
use the model charges for the protonated A4 nucleobase, but not
the native A4 nucleobase. The rows marked “4” use the model
charges for both the protonated and neutral A4 nucleobases. The
rowsmarked “4,17” use themodel charges for the A4-C17 basepair.
The rows marked “3−5,16−18” include the bases immediately
above and below A4-C17. The rows marked “1−20” include all
nucleobases in the dsRNA.
The “ref 125” charge set uses the protonated adenine nucleobase

charges developed in ref 125. The “15%” charge set uniformly
polarizes the ff14SB nucleobase charges by a factor of 1.15, that is,

= ⟨ ⟩ + − ⟨ ⟩q q q q1.15( )a a,15% ,ff14SB (50)

where qa,ff14SB is the ff14SB charge of nucleobase atom a, ⟨q⟩ is
the average atomic nucleobase charge, and qa,15% is the “15%” polar-
ized charge of atom a. Equation 50 merely increases the magnitude
of each nucleobase chargewithout having changed the nucleobase’s
net charge. The “LDA” (SVWN3/6-31G*), “GGA” (PBE/6-
31G*), “Hyb” (PBE0/6-31G*), and “HF” (HF/6-31G*) charges
are Restrained Electrostatic Potential (RESP) fits126 to ab initio
QM/MM calculations. RESP fits are normally performed from
gas phase calculations using HF/6-31G* because Hartree−Fock
theory tends to “over-polarize” molecules and coincidentally
happens to provide charges that mimic the polarization found in
solution. The RESP fits performed in this work are not based
upon gas phase calculations. Instead, we perform QM/MM cal-
culations of the dsRNA molecule and perform RESP fits of the
QM region using the density matrix that has been polarized by
the MM environment. One should, therefore, expect HF/6-31G*
to yield charges that are far too polarized because not only does
HF overpolarize the charges in the gas-phase, the density matrix
is explicitly polarized by the MM environment as well. In total,
we performed 2880 RESP fits. RESP fits were performed for
residues 3, 4, 5, 16, 17, and 18 in each of the six sequences (native
and protonated-A4 SS, SW, WW sequences). Each RESP fit was
performed with 80 snapshots taken from the 160 ns of MM pro-
duction simulations. The nucleobase atomic charges were then
averaged to yield a single set of U, G, C, A, and protonated-A
charges. To perform one RESP fit, we selected a nucleobase as
the QM region. Because the MM nucleobase charges do not sum
to an integer value, the excess nucleobase charge was uniformly
distributed to the nucleotide sugar ring while performing the QM
calculation. Similarly, after performing the RESP fit, the link atom
charge was summed in to the heavy-atom charge, and the RESP
charges were uniformly shifted to preserve the original MM net
nucleobase charge.
To obtain the pKa values with the alternate set of model charges,

we do not use the procedure described by eqs 42 and 43. Instead,
we calculate the (PI-TI3) free energy change of transforming the

ff14SB charges (the MM charges) to the alternate model charges
(the MM′ charges) for the dsRNA and AMP protonated and
deprotonated states. The pKa shift associated with polarizing the
charges is given by eq 51, and the pKa estimate using the polar-
ized charges is given by eq 52.

Δ = × Δ

− Δ +Δ − Δ

→ ′
−

→ ′

→ ′ → ′ → ′

(
)

p RT G

G G G

K [ ln(10)]a,MM MM
1

dsRNA,MM MM
protonated

dsRNA,MM MM
native

AMP,MM MM
native

AMP,MM MM
protonated

(51)

= + Δ′ → ′pK pK pKa,MM a,MM a,MM MM (52)

The free energy of the MM→ MM′ transformations converge
rapidly with time because the proton is neither appearing nor disap-
pearing.We found it sufficient to perform eachMM→MM′ calcu-
lation from 40 ns of production statistics using 12 λ-windows.

3. RESULTS AND DISCUSSION
3.1. ComparisonsbetweenTIMethods.TheMg2+→Ca2+

transformations shown in Figures 1−3 and Table 1 are used to
compare 1-step and 3-step PI-TI methods to Std.-TI and SC-TI.
Specifically, Table 1 and Figure 3 demonstrate that the PI-TI free
energy difference between the two states agrees with the Std.-TI
and SC-TI calculations; however, Figures 1 and 2 illustrate that
the methods differ by the behavior of their intermediate λ-paths.
The Std.-TI method linearly mixes the end-state potential

energies, so the neutral Mg0 → Ca0 Std.-TI potential energies
shown in Figure 1a are stationary with respect to λ wherever the
LJ potentials of the two end-states intersect. As one proceeds
from λ = 0 to λ = 0.17, the repulsive wall of the Std.-TI LJ poten-
tial quickly approaches that of the larger Ca2+ ion. Consequently,
the potentials shown in Figure 1d do not uniformly transform
between the end-states.
Within the scale from −0.2 to 0.2 kcal/mol, the neutral atom

SC-TI (Figure 1b) and PI-TI (Figure 1c) potentials behave simi-
larly; however, when viewed on a larger scale, one finds that the
repulsive wall of the intermediate SC-TI λ-potentials are not as
steep as those produced by PI-TI. The steepness of the LJ poten-
tials account for the dramatic difference between the potentials
shown in Figure 1e and f. The Std.-TI and PI-TI methods pro-
duce the same decharge and recharge free energies (Table 1);
however, the slope of their ⟨∂U/∂λ⟩λ profiles differ in Figure 2a
and b becauseUStd.‑TI(λ) is a linear function of λ, whereasUPI‑TI(λ)
is a quadratic function of charge (and thus λ). In this particular
example, where only 1 atom is changing its charge, the energy’s
quadratic behavior is exhibited by the charge-neutralizing back-
ground plasma correction. That is, the electrostatic potential is
linearly shifted by the system’s net charge, which is changing as a
function of λ (eq 25). The observed shape of the ⟨∂U/∂λ⟩λ
profiles also depends on the ensemble distribution. For example,
the derivative ∂UStd.‑TI/∂λ is a constant with respect to λ, but the
ensemble average ⟨∂UStd.‑TI/∂λ⟩λ has a significant nonzero slope.
The ensemble distributions produced by charge-changing per-
turbations dominate the overall shape of the profiles, so the
Std.-TI and PI-TI profiles both appear to be relatively linear.
The PI-TI 3-step LJ transformation displays a near-linear

⟨∂U/∂λ⟩λ profile in Figure 2c because the PI-TI intermediate
potentials uniformly shift and scale the end-state potentials
(Figure 1c). In contrast, the Std.-TI method is better described as
showing exponential behavior due to the sudden change in the
position of the repulsive wall (Figure 1a). The behavior of the
SC-TI method in Figure 1c is more complicated because the
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SC-TI method does not attempt to directly transform the Mg2+

to a Ca2+. Instead, Mg2+ is effectively transformed to “nothing”,
while Ca2+ is “grown” into the system from a vacuum.
Table 1 shows how the net free energies vary as a function of the

number of λ-states, Nλ. Previous work has noted that parameter-
interpolated alchemical pathways can lead to ⟨∂U/∂λ⟩λ profiles
that are more linear than those produced from Std.-TI.11 If the
profiles were sufficiently linear, then it may be possible to per-
form PI-TI transformations with fewer intermediate λ-states than
what Std.-TI would require to achieve the same accuracy. The
1-step PI-TI3 results are nearly independent of Nλ, whereas the
1-step Std.-TI3 results are themost sensitive. The 3-step variants of
Std.-TI3, SC-TI3, and PI-TI3 methods display similar sensitivities
to one another because their dominant sources of error occur in
the decharge and recharge steps, which produce ⟨∂U/∂λ⟩λ pro-
files that are approximately linear for all three methods. In other
words, parameter-interpolated pathways can certainly lead to
⟨∂U/∂λ⟩λ profiles that are more linear; however, the benefit of the
improved linearity is diminished if the transformation is divided
into three steps: decharge, LJ change, and recharge. If the trans-
formation is divided into steps, then the improved linearity is
largely confined to the uncharged LJ change, which oftenmakes a
relatively small contribution to the net free energy.
3.2. Double-Stranded RNA pKa Benchmark Simula-

tions. Comparison between TI, BAR, andMBAR. In Table 5, we
observed differences in the TI, BAR, and MBAR calculations of
the AMP reference systemparticularly when few λ-windows
are used. The simulation results summarized in Table 2 were
evaluated with Nλ = 12; however, the pKa and ΔpKa values com-
puted from the various methods are in close agreement because
the transformations in the dsRNA and AMP systems are suffi-
ciently similar that systematic errors are likely canceled. The larg-
est pKa difference between PI-TI, PI-TI3, PI-BAR, and PI-MBAR
in Table 2 is only 0.04, which is within the standard error of the
calculations.
The calculated pKa values are approximately from 1.0 to 1.3 units

smaller than the experiment values. In contrast, the calculated
ΔpKa values differ from experiments only by 0.2 to 0.3 units.
Comparison between HREM and Standard MD Results.

Figure 6 shows that the standardMD simulations have larger error
estimates than theHREMsimulations. Furthermore, the errors are
not particularly sensitive to the chosen time-interval between
Hamiltonian exchange attempts. By exchanging λ-window Ham-
iltonians, one reduces the ∂U/∂λ autocorrelation times (Table 4).
This increases the number of statistically independent samples
and reduces the estimated error. Specifically, HREM reduces the
maximum autocorrelation time by a factor of 1/3 or less.
Figure 7 illustrates that the large autocorrelation times observed

in the non-HREMsimulations is due to infrequent flipping between
the two A4-C17 base pair orientations shown in Figure 5. The
largest non-HREM τcor value occurs in the λ = 0.91 simulation
(Figure 7e). The λ = 0.91 simulation also has the largest uncer-
tainty in the average value of R (Figure 7c). The large uncertainty
is produced from the infrequent transition between the two ori-
entations (Figure 7a). The use of HREM (Figure 7b, d, and f)
increases the frequency of the transitions, lowers the uncertainty
in ⟨R⟩, and decreases the ∂U/∂λ τcor value.
3.3. Validation of Benchmark pKa Calculations. Free

Energy Dependence on Simulation Cell Size and Ion-
Environment.The best strategy for calculating free energy differ-
ences in periodic, condensed phase systems is a subject of debate
when the transformation involves a change in net charge.1,118−120

For example, the excess charge in one end-state can be accounted

for through the Ewald uniform background correction (as is done
in the present work) or by distributing a neutralizing charge to
other atoms to mimic a changed ion atmosphere. The pKa calcu-
lations performed in the present work are made relative to a
reference system (AMP), which should act to cancel systematic
errors from the final result.127 Our main concern is to verify that
the computed free energies are converged with respect to system
size because the Ewald uniform background plasma correction
has a volume dependence. Table 3 shows that the AMP free ener-
gies converge to within 0.02 kcal/mol once the lattice vectors are
larger than 47.6 Å. We completely removed the NaCl salt envi-
ronment to further test the sensitivity of the result on ion atmo-
sphere, and the free energy change differs only by 0.09 kcal/mol.
We conclude that the discrepancy between our benchmark pKa
calculations and experiment values are not due to our strategy of
using the Ewald uniform background correction to model sys-
tems with a net charge.
Table 5 tests the convergence of the AMP free energy with

respect to the number of simulated λ-windows, Nλ. The PI-TI3
method is nearly independent of Nλ. The PI-TI and PI-BAR
methods converge to the PI-TI3 value forNλ ≳ 24. The PI-MBAR
method is shifted fromPI-BARby approximately 0.05 kcal/mol but
approaches the PI-TI3 result. The variations observed in Table 5
are an order of magnitude smaller than the differences between
our benchmark pKa calculations and the experiment values.

Comparison between Long MD Runs and Many Short MD
Runs. The standard error estimate described by eq 40 assumes
that the simulations have sampled all relevant areas of phase
space. That is, eq 40 does not account for the error associated
with the simulation’s finite sampling.128 For this reason, the simu-
lations summarized in Figure 6 were run for 160 ns, which is more
than 50 times longer than the maximum ∂U/∂λ autocorrelation
time found in any λ-window simulation. Indeed, the simulation
profiles shown in Figure 6 reasonably agree with one another
after 100 ns. An alternative approach for estimating free energy
averages and errors is to obtain a set of estimates from a series of
short simulations starting from different initial conditions.129

It has been suggested that this “ensemble average approach”121−124

may enhance reproducibility of equilibrium thermodynamic prop-
erties relative to single, long simulations, although this result is
likely case dependent. Table 6 summarizes the distribution of pKa
values obtained from 16 independent TI calculations, each sim-
ulation providing 10 ns of production statistics. The initial con-
ditions differ by having re-equilibrated each simulation for 10 ns
with a different thermostat random number seed. We used 16
estimates so that the aggregate amount of production statistics
(160 ns) matched our long simulations.
The pKa averages shown in Table 6 agree with the long simula-

tions within the reported errors. The minimum and maximum
pKa values span a range of 1 pKa unit, which should make the
reader skeptical of any single result obtained from a 10 ns sim-
ulation. Furthermore, the short simulations do not appear to
significantly benefit from using HREM in the present example.
We suspect that this is due, in part, to the fact that the short
simulations severely underestimate the true ∂U/∂λ autocorrela-
tion time. Moreover, it should be emphasized that the double-
stranded RNA construct surrounding the mismatched A·C base
pair is relatively stable and thus might not be reflective of RNA
molecules with more complex tertiary structure. The maximum
pKa values shown in Table 6 are from 0.6 to 0.9 pKa units smaller
than the experiment values.

3.4. Improving pKa Prediction with QM/MM Charge
Fitting. Table 7 suggests that the 1.0 to 1.3 pKa unit discrepancy
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between our ff14SBMM results and the experiment values is due
to the nearby nucleobase atomic charge values. If we merely
replace the protonated-A4 atomic charges with an alternative
charge set developed in ref 125, we obtain ostensibly similar pKa
results. The series of 15% polarized charges shown in Table 7
indicate that enhancing the polarization of the A4-C17 base pair
and the immediately surrounding bases causes from a 1.1 to 1.4 pKa
unit shift toward the experiment values. Polarizing all other bases
by 15% has much less of an effect by comparison.
All ab initio derived charges are applied to the residues 3−5,16−18

in Table 7 because the surrounding residues have the greatest
effect on the pKa value. Furthermore, we wanted to limit the size
of the “TI region” to prevent our pKa predictions from becoming
infected by subtle changes that may occur in distant, irrelevant
areas of the dsRNA which would need to be canceled in both the
native and protonated dsRNA transformations. The HF charges
yield pKa values that are larger than the experimental results, which
we expected because the HF charges should be overpolarized by
having performed the RESP fit in the dsRNA environment. The
GGA (PBE/6-31G*) charges match experiments better than the
LDA (SVWN3/6-31G*) or hybrid (PBE0/6-31G*) charges. To
get a more general feel for how well the DFT-derived charge sets
perform, we average the LDA, GGA, and hybrid-DFT pKa values:
8.50± 0.14 (SS), 7.29± 0.09 (SW), and 6.54± 0.10 (WW). The
averages are in good agreement with the experimental values.
This suggests that emerging fragment-based ab initio methods
may be useful for deriving MM charges for improved pKa pre-
diction.130−133 Furthermore, it may be beneficial to performmul-
tiple pKa calculations using several charge sets to incorporate the
uncertainty of the model charges within the final result.

4. CONCLUSIONS
We develop and test a PI-TI method for thermodynamic integra-
tion free energy simulations on GPUs. The primary motivation
for using the parameter-interpolated thermodynamic integration
method is to allow propagation of the dynamics of a system with
a standard MM potential energy, as opposed to the conventional
linear alchemical interpolated potential energy. By doing so, one
can immediately take advantage of GPU-accelerated MD soft-
ware for performing the dynamics. Furthermore, additional pro-
gram functionality may then become available for use, such as
Hamiltonian replica exchange MD algorithms in AMBER. The
TI gradient and MBAR energy analysis of the statistically inde-
pendent trajectory frames can be efficiently post-processed in
parallel with minimal overhead relative to the evaluation of the
MD simulations themselves. Our ability to perform the dynamics
with standardMMpotential energy surfaces and then post-process
the trajectories is made possible by having reformulated the
reciprocal-space PME contribution to the TI gradient through
differential chain-rule relationships. This approach differs from
previous single-topology implementations which either do not
support PME electrostatics with TI, e.g., GROMOS,52,53 or
resort to a dual-topology-like Hamiltonian-mixing of two PME
reciprocal-space calculations, e.g., GROMACS.26,54,55 As a con-
sequence, the PI-TI algorithm does not require a specific single-
topology TI implementation to propagate the dynamics, and it
affords the opportunity to use GPU-accelerated software without
interfering with sophisticated hardware optimizations that have
been tuned to improve standard MD simulation performance.
Furthermore, the AMBER community has established literature
indicating that the use of two PME calculations for performing
dual-topology TI slows the CPU simulation performance by 25%
relative to standardMD simulations57 and slows the GPU perfor-

mance by 30%.30 Thus, the PI-TI algorithm described in the pres-
ent work offers a massive performance improvement relative to
the approach implemented within AMBER. The PI-TI method is
suitable for transformations that involve a change in parameters,
such as metal ion transformations, pKa calculations, but it is not a
general replacement for using soft-core TI to decouple or
exchange whole ligands. Nonetheless, the PI-TI method may be
generalized so as to be used with soft-core potentials and GPU-
accelerated capability as implementations of those potentials
become available.
In this work, we have found that parameter-interpolated path-

ways can lead to TI gradient profiles that are significantly more
linear than those produced by the standard TI method.
Therefore, fewer intermediate λ-states may be required to obtain
accurate free energy predictions, depending on the transformation.
The PI-TI method afforded us the opportunity to use HREM

to perform Monte Carlo exchanges between the λ-states during
dynamics. We found that HREM reduces the ∂U/∂λ autocorre-
lation times and leads to smaller free energy error estimates.
We calculated the pKa values of small double stranded RNA

sequences and made comparison with experimental values. We
performed our simulations with the GPU-accelerated version of
PMEMD to extend our production to 160 ns, and we found that
approximately 100 ns of statistics were necessary to obtain con-
verged, reproducible results to within 0.25 pKa units. The calcu-
lated pKa shifts between the sequences reasonably agree with the
experimental results; however, the absolute pKa calculations are
all too small by about 1.2 units. Furthermore, we examined how
various MM charge sets affect the pKa values and found good
agreement with experiments when the surrounding nucleobase
charges are replaced with DFT-derived RESP charges, where the
DFT density matrix is polarized in a QM/MM environment.
This result suggests that fragment-based ab initio methods may
play a useful role in refining the quality of the electrostatic envi-
ronment and lead to improved pKa prediction.
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