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ABSTRACT: We introduce a new hybrid molecular orbital/density-functional modified .~ Y 3D
divide-and-conquer (mDC) approach that allows the linear-scaling calculation of very large .3
quantum systems. The method provides a powerful framework from which linear-scaling force
fields for molecular simulations can be developed. The method is variational in the energy and
has simple, analytic gradients and essentially no break-even point with respect to the
corresponding full electronic structure calculation. Furthermore, the new approach allows =
intermolecular forces to be properly balanced such that nonbonded interactions can be treated,
in some cases, to much higher accuracy than the full calculation. The approach is illustrated o

using the second-order self-consistent charge density-functional tight-binding model

(DFTB2). Using this model as a base Hamiltonian, the new mDC approach is applied to a

series of water systems, where results show that geometries and interaction energies between water molecules are greatly
improved relative to full DFTB2. In order to achieve substantial improvement in the accuracy of intermolecular binding energies
and hydrogen bonded cluster geometries, it was necessary to extend the DFTB2 model to higher-order atom-centered multipoles
for the second-order self-consistent intermolecular electrostatic term. Using generalized, linear-scaling electrostatic methods,
timings demonstrate that the method is able to calculate a water system of 3000 atoms in less than half of a second, and systems
of up to 1 million atoms in only a few minutes using a conventional desktop workstation.

1. INTRODUCTION

There is great interest in the scientific community in developing
molecular simulation force fields that are able to explicitly treat
electronic degrees of freedom in order to model chemical and
biochemical phenomena that are inherently related to electronic
structure. Example applications include simulations of reactive
chemical events such as catalysis," photochemistry, and electron
transfer processes,” " as well as the calculation of spectroscopic
observables to aid in the interpretation of experiments.>® Toward
that end, quantum chemical methods are required that are fast
and accurate and can scale to the large system sizes and long time
scales required by the applications. The scaling requirement has
been a long-standing arena of active research effort in the develop-
ment of so-called “linear-scaling”—O(N) or O(N log N)—
electronic structure methods, for which much success has been
achieved.” "

Nonetheless, there remain challenges that prevent these established
linear-scaling electronic structure methods from being used as
practical tools, and having broad impact, in truly large-scale
molecular dynamics simulations. First, despite having favorable
scaling properties, the computational cost of conventional linear-
scaling methods is typically still prohibitive for long-time
simulations of large systems, although some applications are
beginning to emerge.'* ' This is related to the fact that these
methods typically have break-even points of a few hundred
atoms, only after which do the methods have any computational
advantage relative to their full nonlinear-scaling counterparts.”*
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Second, for condensed phase simulations, methods need to
accurately treat both strong intramolecular (i.e,, bonding) inter-
actions and subtle, typically weak intermolecular (ie., non-
bonding) interactions. The latter needs to be delicately balanced
such that bulk properties, binding affinities, and solvation free
energies are treated accurately and consistently. This balance
remains a challenge for modern density-functional methods,
even without consideration of extension to linear-scaling.”®
Third, to make these methods practical for molecular dynamics
simulations, rigorous analytic gradients are needed that require
only relatively minor overhead relative to the calculation of the
energy itself.”"**

In this work, we introduce a new modified divide-and-conquer
(mDC) approach that allows the linear-scaling calculation of very
large quantum systems, including analytic gradients, with
essentially no break-even point. The extended atomic orbital
(AO) buffer space used in traditional divide-and-conquer (DC)
is replaced by a density-overlap intermolecular interaction model*®
that is treated self-consistently and can be tuned for high
accuracy. The approach is illustrated using the second-order self-
consistent field density-functional tight-binding (SCC-DFTB or
DFTB2) model.*® Using DFTB2 as a base Hamiltonian, the new
mDC approach is applied to a series of water systems, where
results show that geometries and interaction energies between
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water molecules are greatly improved relative to full DFTB2,
whereas timings demonstrate that the method may be practical
for large-scale molecular dynamics (MD) simulations. The
method is demonstrated to be highly scalable and able to
calculate systems of up to 1 million atoms in only a few minutes
using a conventional desktop workstation.

2. METHODS

2.1. Essential Background. Next generation MO-based
force fields are founded upon linear-scaling electronic structure
theory to reduce the scaling bottlenecks associated with the
underlying ab initio model; however, unlike traditional linear-
scaling electronic structure methods, the Hamiltonian form is
modified with empirical potentials and parameters to increase
performance and make the resulting method more accurate. The
concept of using electronic structure theory explicitly as a “next
generation quantum force field” was introduced by Gao,”” who
demonstrated its accuracy for liquid simulations®® and explored
its feasibility for use in treating biological molecules.” There are
other approaches, such as SIBFA*>*! and GEM,****~** that may
also be considered quantum force fields but do not explicitly use
MOs. These density-based models approximate the exchange-
repulsion between fragments using a density-overlap model.*®
The present work makes explicit use of MOs, like those models
described by Gao, and treats the inter-region coupling with a
density-overlap model that is influenced by the SIBFA and GEM
methods.

Consider the case of a quantum mechanical method based on a
single determinant wave function that is variationally optimized
to minimize the total electronic energy (e.g.,, Hartree—Fock and
most modern density-functional or semiempirical quantum
methods fit this category). The two most expensive mathematical
operations performed during the self-consistent field (SCF)
procedure on large systems are the construction of the Fock
matrix elements and its diagonalization. Several methods have
been introduced for computing the Fock matrix with O(Nlog N)
effort.>*~*° The dominant part of this effort is spent performing
the electrostatic interactions®” *® because of their significance
even between well-separated atoms. Most methods for over-
coming the O(N?®)-scaling of the Fock matrix diagonalization are
exploitations of the sparse matrices that arise due to the
negligible overlap between well-separated atoms. As a simple
illustration of how this property reduces the scaling of the
diagonalization, consider a system composed of two regions A
and B. When the two regions are sufficiently separated, their
inter-region overlap is negligibly small, and the inter-region Fock
matrix elements necessarily vanish. In this case, the wave function
of the system can then be accurately approximated by a Hartree
product of antisymmetrized determinants of molecular frag-
ments.”” The eigenvalues E and eigenvectors C of the system
then satisfy

T

o c®) \o F*)J\lo C® o E° (1)
where FA.CA = $4.CAE4, §% is the intraregion overlap, and region
B diagonalizes analogously. In other words, diagonalization of the
full system is equivalent to the diagonalization of the smaller
systems. The scaling thus reduces to O(NK®), where K is the size
of a single region. This does not imply that the systems are

isolated, however. F* and F® are the nonzero diagonal blocks of
the Fock matrix, and these include the potentials arising from
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both regions, which is longer-ranged than the inter-region
overlap.

When the two regions above are not well-separated, they
remain coupled by inter-region overlap, and one must concoct a
scheme to account for it. For example, the method used in the
X-Pol model is to replace the explicit couglin with empirical
Lennard-Jones or Buckingham potentials***"~>* or through
perturbative corrections.””>> The Fragment Molecular Orbital
(FMO) method®*™¢? computes the variational energy of
decoupled regions and then reintroduces the inter-region
coupling via many-body expansion corrections solved in the
presence of the fixed electrostatic potential of the other regions as
determined from the decoupled calculation. This makes the
FMO total energy nonvariational and thus complicates the
implementation of its analytic gradients.”” Other fragment-based
methods exist that treat the coupling with many-body
perturbative expansions.”*"® The divide-and-conquer (DC)
scheme'®'719222496782 4 ccounts for the coupling by explicitly
extending the AO space of the region to include its near-neighbor
regions, called its “buffer.” The resulting molecular orbitals
(MOs) extend beyond the region and into its buffer. Special care
must then be taken to partition the resulting electron density to
avoid its double counting when the region is treated as its
neighbor’s buffer. The fragment density functional method is
similar to DC: each region is surrounded by a buffer, and the
system outside of the buffer is treated by empirical point
charges.>"®

Rigorous analytic gradients of buffered DC require the
solution of the coupled perturbed Hartree—Fock/Kohn—Sham
equations of the entire system.>* The solution of these equations
is difficult to achieve in a linear-scaling fashion. Fortunately, the
approximate analytic formulas for the buffered DC method are
sufficient so as long as the buffer is large (% 4 to S A) but pro-
duce unacceptably large errors when the size of the buffer is
small. The mDC method described in the present work
circumvents the need to solve the coupled-perturbed equations
by replacing the explicit buffer space with a density-overlap
intermolecular interaction model. Without an explicit buffer, the
gradient expressions for each region are no more difficult than
those encountered in traditional single-determinant methods.

2.2. The mDC Energy. In the context of mDC, we consider a
“region” to be a fragment of the system whose AOs are chosen to
be completely localized on that fragment. In this manner, the
Fock matrix for a fragment can be diagonalized to produce its
own set of local MOs. The mDC total energy is then described as
the sum of the energy of each region E* and the inter-region
interactions.

E= Y EA(P™, PP, g4 RY) + J(g; R)

Z Z Einter,ah(qa) ‘lbi Rab)

B#A €A
beB

A
~ D@ RY +
A

)

where A and B index regions, a and b index atoms, @ and ff denote
electron spin, R is the full set of atomic coordinates, q is the full
set atomic multipole moments, and q, and q* are the multipole
moments of atom a and the collection of atomic multipole
moments in region A, respectively.
Pyt = Y niicgict
keA
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is the single-particle spin-resolved density matrix of region A; nf*
is the spin-resolved occupation number of orbital k in region A;
C7* is the ith MO coeflicient of orbital k in region A, which
satisfies

F()—’A'C(;’A — SA.CG,A.EG,A (4)
The multipole moments of atom a are
4, = Z0,n0— [Alr=RIC,(=R)&Er

where Z, is the core nuclear charge of atom a, C,,(r) is a real
regular solid harmonic, and p,(r) is the partitioned atomic
density of atom g, which shall be discussed in more detail later.

R) = LqT'y.
](‘l; R)—Z‘l Jq (6)

is the Coulomb electrostatic energy between point-multipoles,
ie.,

Ra)élbmb(r/ - Rb)

8y (r — 3. 13
](lumu)r(lbmb) - // [r — 'l drdr
(7)
where
c, (V
5, (r—R)=Lﬂ)5(l‘—R)
A CYRT : (8)

is a point-multipole function, C,,(V,) is a spherical tensor
gradient operator™* acting on the coordinates of atom a, and 5(r)
is a Dirac-delta function.

EA(P™A, P4, qA; R%) is the quantum energy of region A, which
for this work is the DFTB2 model described in numerous
articles.>%%57%8 In brief,

A A pA
Eperp(P?, ¢ RY)

= 2 Efep(Rab) + Z P;‘Hl.j +
b>a ij

1
2 zb qouoaqo,,obyab(Rab)

9)

where P4 = P%* + PP is the total density matrix, H is the tight-
binding matrix constructed from two-center splines and one-
center parameters, E,eP(Rab) is a pairwise repulsive potential
stored on splines, and

&r &'

7p(Rayp) = //q);(r —
(10)

is the Coulomb interaction between the auxiliary Slater
monopole representation of the response density, i.e.,

53

=&
e
8 (11)

In this work, E;; e 1 (4, 945 R,) is chosen to be the OPNQ van
der Waals (vdW) model described in ref 25, where

R; &)o,(r — Ry &)

[r — r'l

(r; &) =

Evdw(qaf q, Rah) = Eexch(qoaoa’ qobob’ Rub)

+ Edisp(qou()ul qobob’ Rab) (12)

The exchange energy
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Eexch(qa’ 9, Rub) = %5 /%S(r - Ru; ga(qa))
X g, (r = Ry; ¢(q,)) dr (13)

is the overlap of Slater monopoles with a charge-dependent
exponent

cu(q,) = ¢,(0) &7 (14)

where s,, £,(0), and h, are parameters. The dispersion energy is

Csla, 9,)
Edis (q » 4y Rab) =-=S (babl Rab) v
P ‘ RS, (15)
Where bah = bub(qm th Rab)
d
ba( ’ ;Ra)=_—lnEexc( ’ )Ra)
w4, 9, b dRab w\4, 4, b (16)
is the Tang and Toennies (TT) damping exponent,
3 7,(q,)m(q,)
Colq, q,) = =———""—a(q )a(q,)
2n,(q,) + n,(q,) (17)
is a charge-dependent dispersion coeflicient,
Ni.(q,)
n(q,) = |———
(q,) (18)
Nval,a(qa)l\reff,a(o)/Nval,u(o)) ivaal,a(qu) >0
Neff,u(qu) =
0, otherwise
(19)
is the effective number of valence electrons,
Nval,a(qa) = Nval,u(o) - qa (20)

is the number of valence electrons and N,,;,(0) is the number of
valence electrons in the neutral atom,

a(q,) = a,(0) e el (21)

is the charge-dependent dipole polarizability, where a,(0) and £,
are treated as parameters and the N,g,(0) parameters are taken
from ref 89. The TT damping function is
6 k
_ —byR, (babRab)
Se(q,) g, Ry) =1 — e 0 z a

k=0 (22)

2.3. The mDC Fock Matrix and SCF Procedure. The spin-
resolved Fock matrix of region A is

oE* dq,
oA _ ala
i ()P-C-F'A + Z Z plama dP-(-j’A
y aR a€A Im€a iy (23)
where P is a vector of “multipolar potentials”, i.e.,
_ OE
P, d 1
% Ip,R (24)

The dependence of the inter-region interactions on the density
matrices occurs entirely through the atomic multipole moments,
and therefore the Fock matrix need only be corrected by reverse-
mapping the multipolar potentials. The mapping of the density
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1. Construct initial guess orbitals.

. Compute the density matrix of each region.

w»oA W

inter-region interactor.

8. Compute new orbitals and go to (2).

. Collect eigenvalues from regions, populate, and send occupation numbers.

. Collect multipole moments of each atom from each region.

. Transform multipole moments to multipolar potentials from global electrostatics and short-range empirical

6. Compute the Fock matrix for each region and return the intra-region energy.

7. Compute the error matrix of each region. If the error is small, then exit.

Figure 1. The mDC SCF procedure.

matrices to the multipole moments is a choice. In this work, we
suppose

pa-R) =) Z
b;éa i€a
j€b

+ X Ply(r - R)y(r - R,)
ij€a (25)

Py, (r — R)x(r — R,)

where ,(r) = 7,(r)Y,,,(Q) is an atomic orbital basis function and

Y,,,(Q) is a real spherical harmonic. Furthermore, we limit the
multipole expansion of the two-center densities to monopole so
that the resulting multipole expansions consist of Mulliken
charges and the high-order moments of the one-center densities.
Inserting eq 25 into eq S with this constraint produces

AgA AgA
q00=Za—ZP,S, ‘ZZPan/Z
ij€a b#a i€a
jeb (26)

B Um) gl
2P Wims, (M

ii€a (27)

=
3
Il

for I, > 0, where

w e
Wi = |51 S Y @ (@Y(@) a0

are tabulated constants and

Migl) = / )(i(r))(j(r)rpr2 dr
0

(28)

(29)

is dependent on the radial behavior of the AOs. In the present
work, there are only two cases to consider:

825)02}, = A‘ OZS(V)OZp(r)rQ’ d1" (30)

and

IYIC N A 4
Opozp ‘/O' Ozp(r)OZp(r)r dr (31)

where O,(r) and O,,(r) are the radial-components of the 2s and
2p AOs of oxygen. These integrals are readily computed from
quadrature using the AOs resulting from atomic calculations;
however, we treat the value of these integrals as parameters to
tune the accuracy of the intermolecular interactions, which leads
to significant improvement.

The derivatives required for mapping the multipolar potentials
into the Fock matrix are then

dq, -s;  ifij€a

W - —S,-JA/Z ifi €aandj & a orvice versa (32)
and

Wi, _ ) g

et = =W, )My )

forl,>0and jj € a.

The Fock matrix is used within the SCF procedure to generate
new guess orbitals as described in Figure 1.

The above mapping of the density matrix to the auxiliary basis
representation is simple in the present demonstration. None-
theless, more sophisticated and r1§0rous procedures have been
described in our previous works,””" which also mapped the two-
center density components to high-order Gaussian multipoles.””
These methods may provide tools that extend the current work
and enable the development of other linear-scaling quantum
methods to be developed using higher-level quantum base
models with less parameters.

2.4. The mDC Gradients. As described above, the total
mDC energy is variationally minimized, and thus the analytic
gradient formulas are no more complicated than those
encountered in traditional single-determinant methods. Suppose
atom c is in region A; then its gradient in the X direction is

dE J0E
%o 2 X
¢ clpgq o€(a,p) ijEA P 4R

44, |dp}"

OF
+Za

A
Imec Im dPi;; ch
" Ip R
(rA
J0E o, A
A
aXC P.q o€(a,p) ijEA
J0E
-2 -
thhg e (34)
where
A (rA 6,A~0,A
Q; = Z 2 “EgACTAC
o€(a,p) k (35)
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2.5. Computational Details. We examine the binding
energies and geometries of small water clusters and measure wall-
clock timings of large “water spheres,” like those used in stochastic
boundary simulations. The spheres were constructed from an
equilibrated 216 TIP3P water box (18.86 A cube) which was
replicated periodically and cut to the desired size. The water
cluster reference binding energies result from unconstrained
geometry optimization with MP2(FULL)/6-311++G** (referred
to as “MP2” henceforth) using the Gaussian 09 (revision A.02)
software package.”® These energies are adiabatic MP2 electronic
energies; i.e., vibrational corrections are not applied. The MP2
water dimer interaction energy is —6.13 kcal/mol, which is in
reasonable agreement with the experimental estimate® of
—5.4 + 0.7 kcal/mol; however, counterpoise-corrected CCSD(T)
in the complete basis set limit predicts” an interaction energy
of —5.0 kcal/mol. One might therefore consider the MP2
value to be too attractive. We’ve chosen to parametrize the model
against the MP2 data to compensate for DFTB2’s under-
prediction of the water polarizability. For comparison, the TIP3P
water model produces a dimer interaction energy of —6.59 kcal/mol
while still being considered useful for condensed phase
simulations. The tables and figures of this manuscript will
compare results to MP2, MP2+CP, and (MP2), where MP2+CP
is the counterpoise corrected MP2(FULL)/6-311++G** energes
and (MP2) is the average between the MP2 and MP2+CP
energies. MP2+CP and (MP2) produce dimer interaction
energies of —4.47 and —5.30 kcal/mol, respectively. On the
basis of the water dimer interaction energy of —5.0 kcal/mol, the
MP2 results are too attractive, and the MP2+CP results are not
attractive enough. We demonstrate that the parametrized model

6_ —
L — MP2
-- MP2+CP
4r | - <MP2> 7
Lk — DFTB2 1
¥ — mDC

DE (kcal/mol)

agrees more closely with the reference results than does standard
DFTB?2 regardless of which of these ab initio results is used as a
reference.

To determine the parameters in the mDC model, we
constructed a water dimer MP2 binding energy curve as a
function of oxygen separation (see Figure 2) and adjusted the
M(olz)sozp parameter so that the long-range tail was reproduced. The

M(ozz)pozl, parameter was adjusted so that the “wag angle” (angle b

in Figure 3 and Table 1) of the water dimer was reproduced. The

Table 1. Water Dimer Geometry and Interaction Energies

method AE, kcal/mol Ro_oy A a, deg b, deg
MP2 —6.13 291 2.1 44.1
MP2+CP —4.47

(MP2) -530

DFTB2 -3.32 2.86 3.6 65.5
mDC —-5.83 291 0.7 43.0
mDC(q) 262 291 7.1 143
TIP3P —6.59 2.77 4.3 21.0

remaining vdW parameters were adjusted to reproduce the water
cluster relative energies (Tables 3 and 4) and water dimer binding
energy curve. For comparison purposes, we also introduce a
model called mDC(q), which is constructed in the same way as
mDC; however, the Mgiozp and M(OZZ)POZP parameters are zero so

that the inter-region interactions involve Mulliken charges only.
Table 2 demonstrates the correctness of the gradient
expression provided in section 2.4 by comparing the analytic
gradients to those computed from finite differentiation of the
mDC energy. The displacement value was 3 X 107> Bohr.
Table 3 shows the MP2 binding energy (AE = E((H,0),) —
nE(H,0)) for various cluster sizes. The MP2+CP binding
energies are AE = E((H,0),) — YN ,E,(H,0;(H,0),), where
E,(H,0;(H,0),) is the energy of the ith water in the basis of the
full cluster. The (MP2) AE’s are the average between MP2 and
MP2+CP. The “rms” columns are the root-mean-square of the
geometry optimized coordinates relative to the starting
coordinates, where the starting coordinates are the DFTB2
isolated waters superimposed onto the optimized MP2
geometry. In this manner, the rms values shown are not biased
due to the inherent difference in DFTB2 and MP2 isolated water
geometries. Table 4 summarizes the AE and AAE errors relative
to MP2, MP2+CP, and {(MP2) for each cluster size. The AAE’s
are computed as the difference in cluster binding energy relative
to the minimum energy cluster configuration. “mse,” “mue,” and

Figure 3. Comparison of water dimer geometries.
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Table 2. Comparison between Analytic Gradients and Finite Difference-Computed Gradients (kcal mol ' A™") for a Water Dimer
with Coordinates (A): O, (—6.30251, 2.12723, 0.82374); H,, (—6.89182, 2.55639, 1.44404); H,, (—5.73654, 1.58707, 1.375233);
0, (—5.61042, 3.12260, —1.66172); H,, (—6.13634, 2.53942, —2.20902); and H,; (—5.80420, 2.83043, —0.77104)

analytic analytic-numerical
x y z @ y z
O, 2.864 162 3.921 650 —7.135 612 0.000 000 03 0.000 000 10 0.000 000 00
H,, 0.105 627 —1.017 738 0.375 008 —0.000 000 12 —0.000 000 03 0.000 000 09
H,, —0.983 719 —0.083 198 0.422 835 0.000 000 03 —0.000 000 03 0.000 000 02
0, —4.968 891 —6.631 666 10.682 508 —0.000 000 06 0.000 000 01 —0.000 000 24
H,, 1.082 556 1.367 119 —1.174 10§ —0.000 000 0S —0.000 000 15 —0.000 000 01
H,, 1.900 265 2.443 833 —3.170 632 —0.000 000 08 0.000 000 03 0.000 000 28
Table 3. Cluster Binding Energies for Each Method and mDC and DFTB2 Root Mean Square Values®
AE rms
cluster MP2 MP2+CP (MP2) mDC DFTB2 mDC DFTB2
(H,0), -6.13 —447 -5.30 -5.83 -332 0.03 0.19
(H,0); uud -17.92 ~13.88 ~15.90 -15.11 —9.62 0.20 031
(H,0); uuu -17.11 ~13.28 ~15.19 ~13.93 -8.79 0.26 031
(H,0), 1_udud —3157 —2435 ~27.96 —26.87 ~17.69 017 0.16
(H,0), 2 _uudd —30.53 —23.40 —26.97 —25.75 —-16.94 0.18 022
(H,0), 6 —24.15 —1834 -2125 -20.81 ~13.07 0.40 075
(H,0),7 —24.07 —18.27 -21.17 —20.60 —13.53 0.48 2.03
(H,0), 8 ~18.99 ~13.50 ~1625 ~18.37 ~1025 017 0.11
(H,0)s Puckered_ring —41.93 —32.10 —37.01 —35.53 —23.03 0.20 0.39
(H,0); Envelope —40.35 ~30.78 —35.57 —34.10 —23.03 1.08 123
(H,0); Tetramer_trimer —40.15 ~30.87 -35.51 —34.16 2237 023 032
(H,0); Tricycle —39.08 ~29.94 —34.51 —32.61 2247 0.34 0.96
(H,0); Tetramer 1 —3755 ~28.58 ~33.06 ~32.03 —2075 020 0.53
(H,0); Double_trimer —35.66 —27.38 —31.52 —29.91 —19.21 0.37 0.66
(H,0); Cage -33.05 —24.63 —28.84 -29.34 ~18.87 0.18 021
(H,0); Prism -52.18 ~39.92 —46.05 —44.54 —29.60 0.20 021
(H,0), Chair —52.02 —40.01 —46.01 —44.38 -2823 0.26 021
(H,0), Book —51.75 —39.64 —45.69 —4379 ~28.88 026 031
(H,0) Open_bag —5147 —39.22 —45.34 —4331 —2867 028 037
(H,0), Prism_book —51.09 —38.66 —44.87 —42.96 ~28.53 042 0.54
(H,0); Boat —50.83 —38.86 —44.85 4322 ~27.59 0.42 023
(H,0), Twisted_boat —50.80 —3891 —44.85 —43.14 -27.73 041 1.80
(H,0), Intermediate_bag —50.73 —3871 —44.72 4293 ~27.88 135 133
(H,0)s Double_tetramer —50.70 —39.26 —44.98 —42.45 —28.10 0.47 0.42
(H,0), Pentamer_down_1 —50.68 —38.85 —44.77 —43.07 ~27.87 032 0.54
(H,0)4 Pentamer_planar 1 —50.47 —38.66 —44.57 —43.24 —27.80 0.50 0.39
(H,0) Cage —50.31 —38.61 —44.46 —42.60 —28.52 028 045
(H,0) Double_envelope —48.83 —37.59 —4321 —41.84 ~27.35 037 041
(H,0)4 Tetramer_trimer —48.80 -37.53 —43.16 —40.92 —26.74 0.34 0.65
(H,0); Tricycle_la —47.65 -36.35 —42.00 —40.40 —27.54 035 118
(H,0); Closed_bag —47.08 ~3593 —4150 —40.10 —2632 037 0.51
(H,0), Tricycle_1b —46.79 —35.45 4112 —39.96 ~26.33 022 0.69
(H,0); Triple_trimer —43.01 ~33.13 ~38.07 ~36.10 —27.67 046 2.88

“All energies are kcal mol™". Coordinate rms values (au) are relative to the structure before geometry optimization, which are the DFTB2 isolated

waters superimposed onto the optimized MP2 cluster geometry.

“max” are the mean signed, mean unsigned, and maximum error,
respectively. The “rms” columns display the mean and maximum
rms values relative to the optimization starting coordinates.
Figures 4 and 5 display the amount of wall-clock time required
to perform a SCF calculation for various models. All of these
timings (except for the BALYP/6-31G* timings) were performed
on a Dell Precision T5500 desktop computer equipped with
12 GB of memory and dual quad-core Intel Xeon ES520 processors
clocked at 2.27 GHz. Some of the calculations in these figures
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were performed on a single core while others used all eight cores
via OpenMP parallelization; see the figure captions for details.
The B3LYP/6-31G* timings shown in Figure 4a were performed
on a single AMD Opteron (Model 8356) core using the
GAMESS (ref 96) software package. The HF/6-31G* timings
were performed using the PSI (ref 97) program on a single Xeon
ES520 core. The GAMESS and PSI calculations perform “direct
SCF;” i.e,, integrals are recomputed to avoid writing large integral
files to disk. All other program options were left to default values.
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Table 4. Summary of mDC and DFTB2 Cluster Binding Energy (AE) and Cluster Relative Energies (AAE) Errors (kcal mol ")
Relative to the MP2, MP2+CP, and (MP2) Reference Values”

AE AAE rms
ref. cluster mDC DFTB2 mDC DFTB2 mDC DFTB2

MP2 (H,0), mse 338 11.57 —1.65 —2.90

mue 3.38 11.57 1.69 2.90 0.28 0.66

max 4.78 13.89 —4.08 =5.18 0.48 2.03
(H,0), mse 573 16.86 -078 -2.38

mue 5.73 16.86 0.80 2.38 0.37 0.61

max 6.47 18.90 —2.69 —4.73 1.08 1.23
(H,0), mse 7.57 21.88 —0.08 —0.74

mue 7.57 21.88 0.36 1.15 0.40 0.73

max 8.26 23.78 —0.81 —7.24 1.35 2.88
MP2+CP (H,0), mse -291 528 —0.49 —1.74
mue 291 5.28 0.69 1.74
max —4.87 6.67 -2.35 -3.42
(H,0); mse —3.34 7.79 0.11 —149
mue 3.34 7.79 0.54 1.49
max —4.72 9.07 —1.28 —-3.32
(H,0), mse —4.09 1022 0.55 —0.11
mue 4.09 10.22 0.55 0.92
max —4.61 11.78 1.65 —4.86
(MP2) (H,0), mse 023 8.42 -1.07 —2.32
mue 1.09 8.42 1.13 2.32
max -2.13 10.28 —-3.22 —4.28
(H,0); mse 1.19 12.33 -0.33 -1.93
mue 1.34 12.33 0.52 1.93
max 1.90 13.99 —1.98 —4.02
(H,0), mse 1.74 16.05 0.24 —-0.43
mue 1.74 16.05 0.33 1.01
max 2.54 17.78 1.02 —6.05

“The coordinate root mean square statistics (au) are relative to the structure before geometry optimization, which are the DFTB2 isolated waters
superimposed onto the optimized MP2 cluster geometry.
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Figure 4. SCF evaluation timings for spheres of water of various sizes. (a) Timings shown on a log scale. (b) Timings divided by the cube of the number
of atoms. Part b is meant to illustrate the size at which the matrix diagonalization begins to adversely dominate the performance of the SCF procedure.
Solid lines, observed timings; dotted lines, extrapolated estimates. Black lines, serial evaluation; red lines, OpenMP parallelized with eight threads on an
eight-processing-core workstation. Squares, HF/6-31G* evaluated with PSI (ref 97); circles, BALYP/6-31G* evaluated with GAMESS (ref 96);
diamonds, standard DFTB2; X’s, mDC. The B3LYP calculations were performed on an AMD Opteron (Model 8356). All other calculations were
performed on an Intel Xeon E5520 workstation.

The solid lines are measured timings, and the dotted lines are to be run on our desktop, and so we rely on extrapolation for an
extrapolations. For example, our implementation of the standard estimate. There are very few B3LYP and HF data points available
DFTB2 method requires too much memory beyond 3000 atoms due to the enormous cost of these methods; therefore, the
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Figure 5. SCF evaluation timings for spheres of water of various sizes. (a) Timings shown on a linear scale. (b) Timings shown on a double log scale.
Black lines, O(N?) brute-force electrostatics; red lines, O(N log N) adaptive FMM electrostatics. X’s, mDC with point multipoles; circles, mDC with
point charges. All calculations were performed on an Intel Xeon E5520 workstation and performed using eight cores.

extrapolated timings of these models cannot be regarded as being
quantitatively reliable, but they are instead intended to offer a
qualitative guess at the order of magnitude that one would
expect. Figure 5 compares the use of direct evaluation of the
electrostatics to the adaptive fast multipole method (FMM)
described in ref 98.

3. RESULTS AND DISCUSSION

3.1. The Effect of Intermolecular Tight-Binding Energy
on the Water Dimer Geometry. Standard DFTB2 does a
good job at reproducing the geometries and relative binding
energies of water clusters. It is particularly impressive that
DFTB2 predicts the correct geometry of the water dimer fairly
accurately even though the explicit electrostatic interactions
occur through monopolar charges only. When we remove the
interwater overlap and associated Fock matrix elements
[mDC(q)], however, the hydrogen bond angle “flattens” in a
manner similar to what one observes with the TIP3P water
model (see Figure 3 and Table 1). From this we infer that
DFTB2 retains the proper dimer wag angle, not through a second
order electrostatic interaction but through the multipolar
character of the two-center AO basis products and the resulting
effect on the inter-region coupling through the tight-binding
energy. Note, that despite getting a fairly accurate water dimer
binding geometry, the water dimer adiabatic binding energy with
DFTB2 is considerably under-bound by 2.8 kcal/mol relative to
MP2 or 1.2 kcal/mol relative to MP2+CP.

We were interested in exploring the possibility of creating a
mDC method that improves the accuracy of the intermolecular
interaction energies relative to DFTB2 while retaining good
geometries. Initial tests using models based on monopolar charge
representations for the second-order term, while able in some
cases to obtain improved energies, were not successful in reliably
reproducing the dimer (and cluster) geometries. The solution to
the geometry problem came upon considering models that
included higher-order multipole electrostatic interactions. Our
approach was thus to expand the density matrix to higher-order
atomic multipoles and use those expansions only for the inter-
region interaction. Since these higher-order multipoles do not
directly alter the intraregion energy, this strategy allows us to
avoid having to reparametrize the DFTB2 model for intra-
molecular interactions, for which the model has proved to be
highly successful, and instead concentrate on intermolecular
interactions. The multipole expansions do indirectly affect the

1424

energy of a water through the variational procedure that allows
coupling of electrostatic interactions (through the multipole
expansions) with other water molecules. The variational
inclusion of the multipole moment expansions allows us to
compute the mDC analytic gradients accurately with simple
formulas (see Table 2).

It was found that expanding the oxygen density up to
quadrupole terms was necessary to obtain improved water dimer
angles. Adjusting the MgZ)P 0,, parameter reduces the “b” angle

error (Table 1) from 29.8° [mDC(q)] to 1.1° (mDC). We
choose not to reduce this error to zero so that we can better
reproduce the binding energies and geometries of larger clusters
(section 3.2). The MSZ)SOZp parameter was then adjusted to

reproduce the long-range tail (R,, > S A) of the water dimer
(Figure 2). The tail of the water dimer is not exactly reproduced
because we found that the relative energies of larger water
clusters were benefited by slightly overpolarizing the mDC water.
From this simple procedure, the dipole moments of the isolated
waters are (D) 2.19 (MP2), 1.63 (DFTB2), and 2.34 (mDC),
and the quadrupole moments are (au) 2.14 (MP2), 1.11
(DFTB2), and 2.14 (mDC).

3.2. Reproduction of Water Cluster Relative Energies
and Geometries. Table 3 compares DFTB2 and mDC water
cluster geometries and relative energies to MP2, MP2+CP, and
(MP2). In general, DFTB2 does an excellent job of retaining the
proper water cluster minima. Only a few DFTB2 clusters
degenerate into lower energy clusters (e.g, SHOH_Envelope)
or other hydrogen bonding arrangements (e.g, 4HOH_7,
6HOH_Twisted_Boat, (HOH_ Intermediate_bag, 6(HOH_ Tri-
cycle_la, and 6HOH_Triple_trimer.) mDC does not rearrange
the hydrogen bonds in any case where DFTB2 does not and
retains the MP2 hydrogen bonding network in most cases where
DFTB?2 reorganizes. The exceptions to this are the SHOH_En-
velope and 6HOH_Intermediate bag structures, which both
DFTB2 and mDC undergo a reorganization.

Table 4 summarizes the AE and AAE differences between the
models. The mDC model reduces the AAE unsigned error by
factors of 1.7, 3.0, and 3.2 for tetramer, pentamer, and hexamer
clusters, respectively, when compared to MP2 and by factors of
2.5,2.8,and 1.7 when compared to MP2+CP. The rms errors are
also reduced by nearly a factor of 2.

3.3. Computational Cost. Figure 4a displays timing results
for ab initio, DFTB2, and mDC. For a 9000 atom system, an ab
initio SCF procedure would take 100 years to complete, assuming
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a cubic extrapolation of observed timings. Standard DFTB2
would take a day and mDC takes 2—10 s. Figure 4b redisplays the
DFTB2 and mDC timings divided by the cube of the number of
atoms. Therefore, the horizontal lines in this figure represent
perfect O(N?) scaling. The DFTB2 timings become dominated
by the O(N®) diagonalizations at around 600 atoms.

Overcoming the diagonalization bottleneck is only one
obstacle toward achieving linear scaling. Electrostatic inter-
actions scale O(N?), but methods for its O(N log N) evaluation
exist, e.g, various linear-scaling Ewald methods for periodic
systems” "> and the EMM for nonperiodic systems.” Figure Sa
compares the SCF timings between brute-force electrostatic with
an adaptive FMM.”® The mDC timings with the FMM show
linearity to 1 million atoms. We also show the timings for the
mDC(q) model to measure the cost of including higher-order
multipoles in the method. For large systems, the use of
multipoles increases the cost by less than a factor of 2. When
comparing the timings between mDC and mDC(q), it is
important to note that they differ only in their treatment of the
electrostatic interactions, and the differences are not due to our
modification of DFTB2 to expand the density to higher-order
atomic multipoles. The atoms in mDC(q) continue to have point
quadrupole moments, and those expansions are still mapped
from the density matrix and the potentials reverse-mapped into
and Mgz) o,
parameters have been set to zero and the electrostatic
interactions have been optimized for point-charges.

Figure Sb shows Figure Sa on a double-log scale to make the
smaller systems more visible and show the points at which the
FMM becomes faster than brute-force electrostatic evaluation.
The “break-even” points, relative to full evaluation of electro-
static interactions, occur at 4000 atoms (point multipoles) and
8000 atoms (point charges). Prior to these system sizes, full
electrostatic evaluation is quite efficient. To put the scale of
Figure S into perspective, a desktop computer computed a 1
million atom system with mDC in 6.5 min. Assuming a cubic
scaling, standard DFTB2 and B3LYP/6-31G* would take 1700
years and 131 million years, respectively.

the Fock matrix. It only so happens that the M&) o,

4. CONCLUSION

We have described a variational modified divide-and-conquer
algorithm with charge-dependent inter-region interactions that
eliminates the need for a buffer space, is extremely efficient and
accurate, and has simple gradient formulas. We have applied this
method with the DFTB2 Hamiltonian and demonstrated that
intermolecular interactions in the mDC method require higher-
order multipole expansions to reproduce the correct geometry
and binding for a broad range of water clusters. The resulting
mDC model well-reproduces the reference MP2 quadrupole
moment of water and greatly improves the binding energies and
geometries of water clusters relative to the full DFTB2 method.
This strategy allows intermolecular interactions to be tuned to
obtain even higher accuracy than the DFTB2 method without
sacrificing the quality of the intramolecular geometries and
energies. This balance of intra- and intermolecular interactions
may be important for the development of linear-scaling quantum
mechanical force fields for molecular simulations. DFTB2 and
mDC program execution timings were compared with ab initio
programs using modestly simple Hamiltonians, from which the
performance of mDC was shown to be superior. It was shown
that a complete SCF calculation of a 3000 atom system, using
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quadrupole expansions and the FMM, takes 0.44 s, whereas a 1
million atom system was possible to calculate in 6.5 min.
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