
Chapter 1

Free Energy Methods in Drug Discovery—Introduction

Zoe Cournia,*,1 Christophe Chipot,*,2,3,4 Benoît Roux,*,5 Darrin M. York,*,6,7,8

and Woody Sherman*,9

1Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou,
11527 Athens, Greece

2Laboratoire International Associé CNRS, UMR n°7019, Université de Lorraine, BP 70239,
F-54506 Vandœuvre-lès-Nancy, France

3Department of Physics, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801, United States

4Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science
and Technology, University of Illinois at Urban-Champaign, 405 North Mathews,

Urbana, Illinois 61801, United States
5Department of Chemistry, Gordon Center for Integrative Science, University of Chicago,

Chicago, Illinois 60637, United States
6Laboratory for Biomolecular Simulation Research, Rutgers,

The State University of New Jersey, Piscataway, New Jersey 08854-8076, United States
7Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey,

Piscataway, New Jersey 08854-8076, United States
8Department of Chemistry and Chemical Biology, Rutgers,

The State University of New Jersey, Piscataway, New Jersey 08854, United States
9Roivant Sciences and Silicon Therapeutics, Boston, Massachusetts 02110, United States

*Email: zcournia@bioacademy.gr
*Email: chipot@illinois.edu
*Email: roux@uchicago.edu

*Email: darrin.york@rutgers.edu
*Email: woody.sherman@roivant.com

Complete understanding of most, if not all chemical processes requires at its very
core the knowledge of the underlying free-energy change. In computer-aided drug
design, for instance, such processes as binding of a drug to a protein or its
spontaneous partitioning across the cell membrane cannot be predicted reliably
without considering how the associated free energy varies. Owing to relentless
theoretical developments, which have benefited from ever-growing computational
resources, free-energy calculations leaning on statistical-mechanics simulations
are now part of the arsenal of robust and well-characterized modeling tools.
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However, as will be explained below and touched upon throughout the chapters
of this book, it is still challenging to obtain accurate and reliable free-energy
predictions for biomolecules due to the many nuances in the system setup and the
unknown unknowns such as whether a given simulation is globally converged or
only locally converged, perhaps in an incorrect free-energy basin. In all but the
simplest cases, free-energy simulations still require experts in the field to prepare
the system, run the calculations, and analyze the results in order to obtain robust
predictions that can be confidently used to make decisions in drug discovery
campaigns.

Introduction

Foundations of Free-Energy Simulations and Historical Backdrop

The calculation of free energies is among the most important applications of biomolecular
simulations in drug discovery (1–5). Initial applications to biomolecular systems such as, for
example, the calculations of hydration free energies (6, 7) and of binding free energies go back to
the 1980s (8–13). Early calculations were generally burdened by the limited sampling from short
simulations, though the promise of free-energy methods was immediately recognized. Considerable
progress has been made since then, due to advances in theoretical formulations, progress with
simulation algorithms, and also increased availability of powerful computers. Importantly, the
theoretical framework for carrying out various free energy computations has been greatly clarified
(4).

Free energy simulations are arguably the most powerful and attractive approaches to estimate
the binding free energy of ligands to macromolecules, which determine the thermodynamics of
life. While relative and absolute free energy of binding calculations remain too demanding
computationally for screening extremely large databases of compounds, recent successes in
prospective lead optimization and the increase in computational power suggest that these methods
are going to play an increasingly important role in drug discovery as computational resources
continue to expand and the price of computational resources falls (14).

Democratization of free-energy calculations has been accompanied by the emergence of a host
of algorithms that have contributed to improve not only the reliability, but also the efficiency of the
methodology, with the unfortunate consequence of breeding confusion, and leaving the neophyte
and the expert alike puzzled by how seemingly similar approaches could lead to significantly different
results when compared, and which methodology is best to apply in their specific case of interest.
In spite of carrying very distinct names, these methods are often conceptually related, and rest on a
handful of basic ideas, which can be traced back to such trailblazers of the field as De Donder (15),
Peierls (16), Landau (17, 18), Kirkwood (19), Zwanzig (20), or Valleau (21, 22). Still, addressing
the question of the best method for a given problem remains eminently relevant, and ought to
be rephrased in terms of the most cost-effective algorithm, or combination thereof, to obtain a
reliable answer. From an applicative standpoint, free-energy calculations can be dichotomized in
terms of geometrical and alchemical transformations. Whereas the former act directly on the spatial
coordinates of the chemical objects at play to modify their positional, orientational, and
conformational states, the latter exploit the malleability of the potential energy function to
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interconvert between chemically distinct states. Beyond this rather coarse distinction, from a
methodological perspective, geometrical and alchemical transformations can be carried out
employing a variety of numerical schemes, which, in a broad sense, can be categorized in four
classes, namely methods that rest upon (i) histograms and counting statistics (21–23), (ii) free-
energy perturbation (FEP) (17, 20), (iii) gradients and thermodynamic integration (TI) (2, 19), and
(iv) non-equilibrium ensemble (NEE) (24, 25). The common denominator of these four classes of
methods is the exploration of the configurational space of a reference state such that the relevant low-
energy configurations of the target state are appropriately sampled, which constitutes the prerequisite
for the accurate determination of a free-energy difference.

Since neither brute-force molecular dynamics, nor Monte Carlo, are particularly well suited to
the above task of sampling all relevant energy minima, a number of strategies aimed at performing
non-Boltzmann sampling have materialized at the dawn of the seventies. It is interesting to note
that the groundwork for this methodology had been laid a long time before the advent of the
computational era. Such is the case of the concept of an order, or generalized-extent parameter
(thermodynamic coupling parameter lambda), introduced by Kirkwood in his derivation of integral
equations for liquid-state theory (19), which reconciles statistical mechanics and the early notion of
degree of evolution of a chemical reaction by De Donder (15). This concept was utilized by Valleau
and Card to connect the reference and the target states (23), the low-energy regions which only
marginally overlap, thereby establishing the foundation of a stratification strategy broadly utilized
to break the total free-energy difference into a sum of finite free-energy differences between
intermediate states for which the overlap is significantly greater. Pursuing the objective of sampling
the reference state adequately to extract valuable information about the low-energy configurations of
the target state, Torrie and Valleau put forth the idea of a non-Boltzmann weighting function, which
could be introduced in the simulation, and ultimately removed to supply an unbiased probability
distribution, provided that sufficient overlap in sampling between adjacent states that reside on
steeply increasing (or steeply decreasing) parts of the (free) energy surface is achieved. This strategy
forms the basis of the popular umbrella sampling algorithm (21, 22), employed to determine
potentials of mean force (PMFs) (26), and pertains to the first, histogram-based class of methods.
Another approach based on histograms and counting statistics is λ-dynamics, whereby the
probability of different alchemical states is determined from the dynamical evolution of a generalized
coupling parameter (27–29). The development of tools such as the Weighted Histogram Analysis
Method (WHAM) (30, 31) has greatly contributed to the overall robustness of this class of methods.

Historically, the second class of methods, which rests on free-energy perturbation theory (17,
20), has often been associated to alchemical transformations (7), even though gradient-based
schemes, like thermodynamic integration (19), constitute a relevant alternative to obtain reliable
free-energy differences between chemically distinct states. This implicit association of a method
and an application can be understood in terms of the target state being the result of a chemical
perturbation of the reference one, and rationalizes the prevalent use of “free-energy perturbation” to
describe chemical alterations in molecular objects, as would be done experimentally, for instance, in
site-directed mutagenesis. In practice, however, the absence of compelling evidence that one class of
methods is computationally superior to the other suggests that either can potentially be employed to
transform between chemical states (5, 13, 32–36).

A related class of methods, leaning on the knowledge of the free-energy gradient with respect
to some coupling parameter, can be employed interchangeably for both geometrical and alchemical
transformations. Whereas plain thermodynamic integration has been applied successfully in both
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instances, with a general-extent parameter of a geometric or of a chemical nature, its many heirs
have been used in the context of geometrical transformations (37–40),, (e.g. chemical reactions
and conformational changes) and the mapping of free-energy landscapes, which offer valuable
information to understand how chemical objects recognize and associate. In fact, one might argue
that such free-energy landscapes, and their one-dimensional form, or PMF, provide a more
satisfactory picture of recognition and association phenomena than alchemical transformations
because they allow the molecules at play to be followed as they come towards each other and bind,
even though the general-extent parameter utilized bears a certain arbitrariness, and, in general, does
not necessarily mirror a physically meaningful pathway. Gradient-based methods, like the adaptive
biasing force family of algorithms (40, 41), have been employed fruitfully to determine within
chemical accuracy protein-ligand (42, 43) and protein-protein binding (44) affinities, following a
purely geometric (configurational) route consisting of a series of PMF calculations.

All these methods, which assume an equilibrium sampling of the system, are built upon the
reversible work theorem that relates free energy differences with the log of histogram ratios (45). In
contrast, one last class of methods are based on the remarkable relationship put forth by Jarzynski
(24) connecting an equilibrium free-energy difference and a suitable set of irreversible
transformations performed between a reference and a target state of the system, i.e., time-dependent
perturbations that are switched on rapidly via nonequilibrium simulations. Combined with steered
molecular dynamics carried along an arbitrary direction of Cartesian space (46), application of the
Jarzynski identity supplies in principle the one-dimensional free-energy, or PMF, change along
this direction (47). In practice, however, an overly high pulling-speed regime is prone to hamper
convergence of the Jarzynski identity due to an insufficient number of near-equilibrium realizations,
thereby questioning the advantage of this route over equilibrium geometrical free-energy
calculations.

Applications of free-energy methods in real chemical systems began to emerge in the 80s in
conjunction with molecular dynamics (MD) or Monte Carlo (MC) sampling. The first study of
absolute free energy calculations to study the free energy of cavity formation in water was performed
in 1982 (6). The first study of relative free energy calculations was published by Jorgensen in 1985
(7), who computed the difference in the free energy of hydration between methanol and ethane,
which compared favorably to the experimental result. Soon after, the first calculation of relative
binding free energies (RBFE) in a biomolecular system followed by McCammon and co-workers,
who applied FEP/MD to predict the difference in the free energy of binding of Cl− and Br− anions
to the macrotricyclic receptor SC24 in water in excellent agreement with experimental data (48). In a
series of follow-up studies, the first substrate-protein relative free energies of binding were predicted
using FEP for hydrated trypsin, thermolysin, and subtilisin by the McCammon and Kollman groups,
again in good agreement with experimental results (49–51). The predictive value of FEP became
apparent when the RBFE of three thermolysin inhibitors was predicted prospectively by Merz and
Kollman (52). The value of calculating free energy profiles across a coupling parameter was not only
promising in host-guest systems but also for the investigation of chemical reactions. The first example
of a chemical reaction studied with enhanced sampling calculations and stratification strategies was
the investigation of the Cl− + CH3Cl SN2 reaction in both the gas phase and aqueous solution (53),
which laid the foundations for quantum mechanical/molecular mechanical (QM/MM) calculations
together with earlier seminal works (54).

These first applications set a precedent and showcased the feasibility and applicability of using
free energy methods to predict fundamental chemical quantities such as binding or equilibrium
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constants, solubilities, partition coefficients, relative pKa values, adsorption coefficients and others.
For more examples and applications and a more detailed discussion the reader is referred to reviews
in e.g. Refs. (1, 3, 55–67)

Methods

The reliability of the sampling algorithm used in a free energy calculation, such as for example
MD simulations, is limited by the accuracy of the force field, the degree to which relevant phase
space can be sampled, the degree to which the microscopic system set up in silico represents the
macroscopic system in vitro or in vivo, and to a lesser extent the fundamental physical approximations
inherent in classical non-relativistic treatment of the potential energy surface and equations of
motion (14, 68–70). In some cases, it is of interest to study the mechanisms associated with a
chemical process such as a catalytic chemical reaction, in which case the transformation between
states needs to occur along a physical pathway characterized by a free energy landscape parameterized
by a set of appropriate coordinates. In other cases such as in computer-aided drug design
applications, only the difference between thermodynamic states is desired, which may be much easier
to compute using non-physical transformations.

In this book, free energy differences are discussed for processes involving similar but distinct
molecules, where thermodynamic cycles can be constructed where pathways involve transformations
from one molecule into another. These types of transformations are designated “alchemical”, where
changes occur between defined thermodynamic states of the system via non-physical pathways.
Specifically, we focus on applications of free energy simulations within the context of the lead
optimization stage of drug discovery (14, 71–75). The direct simulation of the free energy of the
physical process of ligand binding to a protein target is extremely difficult as it involves diffusion,
desolvation, and conformational changes of both ligand and protein. However, the alchemical
change between two similar ligands in solution and in a complex with the protein is often
comparatively much simpler and more amenable to calculation. In particular, the calculation of
RBFEs of sufficiently similar ligands can be routinely achieved to reasonable precision with current
state-of-the-art methods, although significant challenges still remain.

A major goal in drug discovery is to make predictions about the binding thermodynamics, and
in some cases kinetics, in order to guide the synthesis and further testing of compounds in lead
refinement. Alchemical free energy simulations enable the prediction of absolute and/or relative
binding free energies (14, 71–75). Recent progress and improvements in computer hardware,
simulation software, and free energy methods (75–81), including GPU-acceleration (72, 82–87),
have opened new doors by extending the accessible time scales of computer simulations and scope of
applications.

As discussed earlier in the introduction, the change in free energy between two thermodynamic
states can be rigorously formulated from equilibrium simulations using perturbation theory (20)
or gradient-based methods such as thermodynamic integration (TI) (2, 19), or through non-
equilibrium ensemble (NEE) simulations using the Jarzynski equality and its equation variations
(24, 25, 88–90). Both the TI and NEE approaches require formulation of a transformation pathway
between states in order to connect them. Only the free energy perturbation (FEP) approach formally
requires performing simulations only of one or both of the thermodynamic end states in order
to obtain the free energy differences between states. This aspect has made this method appealing
as a method for performing so-called “book-ending” end point corrections between molecular
mechanical (MM) and quantum mechanical (QM) models so as to reduce or eliminate the need

5
 Armacost and Thompson; Free Energy Methods in Drug Discovery: Current State and Future Directions 

ACS Symposium Series; American Chemical Society: Washington, DC, 0. 



for simulations that require the use of computationally intensive QM models (88, 91, 92). Further,
the FEP approach has been used as the foundation for approximate end-point methods such as the
Linear Interaction Energy (LIE) approach (LIE) (93).

All of the above classes of methods are critically sensitive to “phase space overlap”: the degree
to which the required averages from different phase space distributions can be reliably computed
from numerical simulations (88, 92, 94–96). In practice, this implies that even for the class of FEP
approaches, it is necessary to break up the transformation into multiple small steps for all but the most
conservative transformations (e.g., such as book-ending approaches that use special “reference”
potentials designed to optimize the phase space overlap with the QM end state). In this way, for drug
discovery applications in practice, all the classes of methods above require defining a transformation
pathway between states.

The free-energy methods outlined so far have been devised to improve sampling, while
remaining consistent with a Boltzmann equilibrium distribution. Because they encourage sampling
in regions that contribute substantially to the free energy, and that are only seldom visited by
Boltzmann sampling, they are often referred to as importance-sampling methods. This terminology
is often confused with enhanced-sampling strategies, which, by fostering ergodic sampling, go
beyond the free-energy methods mentioned herein (97, 98). One of the remarkable properties of the
algorithms utilized in free-energy calculations is that they can be combined seamlessly to effectively
enhance sampling. A class of algorithms, often referred to as Hamiltonian tempering (99), improves
configurational sampling through a modification of the underlying potential energy function. This
class of algorithms includes accelerated MD (100) (aMD) and its Gaussian variant (101) (GaMD),
which can be associated to geometric free-energy calculations, using, for instance, an adaptive biasing
force. To enhance conformational sampling, the microscopic isothermal MD propagator utilized
to evolve the atomic configurations is replaced periodically by a different Hamiltonian, like aMD,
by means of non-equilibrium switches, and acceptance of the proposed moves is determined by a
Metropolis–Hastings criterion (102). A symmetric two-end momentum reversal ensures that the
algorithm obeys microscopic detailed balance, and supplies the expected equilibrium Boltzmann
distribution (103, 104). It is also possible to enhance the sampling via hybrid nonequilibrium MD
guided by a coarse-grained model (105). Another Hamiltonian-tempering algorithm, known as
replica-exchange solute tempering (106) (REST2), and also the alchemical enhanced sampling
(ACES) method discussed in the present book by Lee et al., and often used in conjunction with
FEP calculations, enhances sampling by scaling the interaction of the solute with its environment
to lower the barriers separating conformational states. Assuming proper post-hoc reweighting of the
trajectories, or generation of the latter within a replica-exchange scheme, Hamiltonian-tempering
algorithms can generate Boltzmann-distributed configurations. Closely related to replica-exchange
strategies (107, 108), multiple-walker schemes address sampling nonuniformity, which, most
commonly, arises from poor timescale separation, and misrepresentation of the reaction coordinate
by means of a naive set of collective variables. Under these premises, a number of walkers are
spawned to populate different regions of the free-energy landscape, exchanging periodically
information about the latter, like the locally measured gradients in multiple-walker adaptive biasing
force (MW-ABF) scheme (109). This approach may be brought to a higher level of sophistication
through Darwinian selection, cloning good walkers that cover large stretches of the transition path,
while eliminating less efficient, kinetically trapped ones (110). Similar strategies, leaning on multiple-
copy algorithms available in a number of MD engines, include, but are not limited to, multi-canonical
temperature and Hamiltonian tempering replica-exchange MD (111–113) (REMD), replica-
exchange umbrella sampling (108), and bias-exchange umbrella sampling (114) (BEUS). The basic
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idea of replica-exchange schemes, swapping either temperatures or windows, is to make high-
temperature—or high-coupling-parameter—configurations available to the ensemble of states
generated at low temperature—or at low coupling parameter. This powerful strategy may, however,
prove insufficient under certain circumstances, whereby in the course of an alchemical
transformation conformational states of a solute remain marginally sampled due to insuperable
barriers. Under these circumstances, it might be beneficial to preface the alchemical transformation
by a geometrical free-energy calculation, and use the resulting PMF as a boost potential (113) to
populate adequately all conformational states as the solute is coupled reversibly to its environment.
An alternate road towards enhanced sampling consists in associating importance-sampling
algorithms, such as metadynamics (115) and an extended-Lagrangian version of ABF (116, 117)
(eABF), exploiting the aggressive exploration of the free-energy landscape by the former, and the
accurate determination of the local gradients by the latter. This seamless combination of two popular
algorithms, referred to as meta-eABF (118, 119), allows a coarser stratification scheme to be
employed, and maps complex free-energy landscapes between 3 to 6 times faster than eABF alone,
with virtually no computational overhead. Other schemes for enhanced sampling calculations
include blue moon sampling (120), conformational flooding (121), weighted ensemble path
sampling (WESTPA) (122), and local elevation (123).

In the sections that follow, we will summarize recent examples of the current state of the art, and
describe Challenges and Limitations.

Examples of State of the Art Studies

A growing body of evidence supports that free-energy methods have reached a state of maturity
where they can be successfully applied to real-world applications and impact the progression of
drug discovery projects. However, as readers of this book are likely aware, there is a publication
bias where positive results are more frequently presented than negative results (124). Experts in
the field have undoubtedly experienced the pains and challenges associated with obtaining accurate
and reliable free-energy simulations. Days, weeks, or even months might be needed to develop
a protocol that has the desired reliability and accuracy for a given system of interest. Similar to
developing an experimental assay for a new target, a great deal of care and expertise is needed when
developing a free-energy simulation protocol for a new system. With free-energy simulations, an
incorrect parameter or misplaced atom can render the simulation results meaningless, with valuable
time, money, and computational resources wasted, not to mention the impact on the environment
caused by the massive power consumption of modern computational resources. Nonetheless, with
careful attention to necessary simulation elements and expertise in the field, it is generally possible
to develop robust in silico binding assays using the free-energy methods described above and
throughout the chapters of this book. The numerous published retrospective and prospective success
examples, some of which are highlighted below, lend credibility to value of free-energy simulations in
drug discovery. That being said, the inexperienced scientist might find it uncomfortable, frustrating,
or even unapproachable to embark into the free-energy simulation world, where a “one size fits all”
or “push-button” approach is still far from being a reality. Careful assessment of the system to be
studied, careful preparation of the free-energy simulation protocol, monitoring of the simulations,
thorough post-processing of the results and assessment of convergence all constitute critical elements
to reliable free-energy calculations such as the recent applications presented below.
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Recent Retrospective Applications

G protein-coupled receptors (GPCRs) are the most important, yet also one of the most
challenging class of drug targets for modeling, owing to their plasticity, allosterism, dynamic
configurational ensemble with side-chain orientations, backbone rearrangements, and dynamic
water positioning and displacement, thus making accurate binding free energy calculations more
challenging than for globular proteins. In a combined work, Sosei Heptares and Janssen used free-
energy simulations to predict the RBFE for ligands of two different GPCRs, highlighting key
elements for the successful outcome of the calculations such as the water molecule positioning,
determining amino acid ionization states, equilibrating the system with known ligands, and enhanced
sampling (125). The team showed that they could not yield meaningful results by following a
standard FEP protocol, but results could be improved in a systematic way by tailoring their protocol
to the specific system. This example illustrates the importance of protocol development by experts.
Due to the rigorous thermodynamic nature of free-energy methods, it is generally possible to
systematically improve simulation results by identifying problems, which typically relate to 1)
incorrect system setup, 2) poor force field, or 3) insufficient sampling and reach sufficient accuracies
to have a positive impact on decision making in drug discovery projects.

Large and flexible ligands also challenge the applicability of free-energy simulations for ligand
optimization, where protocols were originally developed for less flexible small molecules. In one
example, academic researchers partnering with an Astrazeneca team reported on the structure-based
design of peptide macro-cycles targeting the protein binding site of human adaptor protein 14-3-
3 (126). The researchers observed large activity cliffs, where large changes in experimental binding
affinities were observed for relatively small variations in the chemical substituent size. Free-energy
simulations were performed to rationalize observed trends. To account for insufficient convergence
of the large, flexible ligands, restrained calculations were performed and complemented with
extensive enhanced sampling of the ligands. These calculations revealed that changes in affinity
originate both from altered direct protein-ligand interactions as well as conformational changes of
the free ligand in solution. The study predicted a specific interaction that was important to explain
some of the steep SAR, which was verified for one of the high affinity ligands by X-ray crystallography
(126).

Cyclic nucleotide phosphodiesterases (PDEs) are metalloenzymes that play a key role in
regulating the signaling molecules cAMP and cGMP. Metal atom interactions with organic and
biomolecules present another challenge in free energy simulations, namely, poor force field
treatment of the directional valence orbitals of metal atoms. PDE’s share a highly conserved catalytic
site (about 50%), thus presenting significant challenges to the design of selective drug candidates
with classical structure-based design approaches. In one retrospective study, researchers applied
free-energy simulations to predict the selectivity of inhibitors that bind two pairs of closely related
PDE families: PDE9/1 and PDE5/6, where only one co-crystallized structure per pair was publicly
available at the time (127). The authors demonstrated that free-energy simulations of homology
models constructed for these metalloenzymes could accurately reproduce experimentally observed
selectivity profiles. Moreover, using free energy calculations they could determine the protonation
state of pKa of studied inhibitors. Based on these data, the authors could show that free-energy
simulations are capable of producing robust predictions of affinity and selectivity for this challenging
system, although significant time, expertise, and novel method development was needed to obtain
the published level of accuracy.
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Recent Prospective Applications

Industrial and academic groups are embracing relative and absolute binding free energy
calculations (RBFE and ABFE), as evidenced by a number of prospective applications. A robust in
silico binding assay allows drug discovery teams to explore a larger swath of chemical space more
rapidly than can be done with experiments alone, which should facilitate more rapid progression
of projects to the clinic. Indeed, there is a growing body of literature demonstrating the value of
free-energy simulations in prospective drug discovery applications. Below, a small number of recent
examples is presented. While there is no intention to be exhaustive, the below selection represents
a diverse set of targets and challenges that should provide the reader with a general sense of the
opportunities that accurate and reliable free-energy simulations can provide within the context of
drug discovery projects.

In one example, researchers studied HIV-1 reverse transcriptase (HIV-RT), which is the enzyme
responsible for converting the HIV RNA genome into DNA, an essential step in retroviral
replication. HIV-RT possesses a unique and highly selective hydrophobic allosteric pocket in which
many diverse allosteric inhibitors called non-nucleoside reverse transcriptase inhibitors (NNRTIs)
have been designed, six of them now being FDA-approved. In a computer-aided NNRTI design
journey that nearly lasted 20 years (128), lead optimization with free-energy simulations led to the
discovery of NNRTIs, where they optimized micro-molar binders to picomolar leads. The optimized
molecules include the most potent NNRTIs reported to date (129–134), including compounds with
picomolar activity for the Y181C and Y181C/K103N HIV-RT mutant proteins (135–137).

In another study, a series of triazolopyrimidines binding to the embryonic ectoderm
development (EED) subunit of the Polycomb repressive complex 2 (PRC2) complex were explored
using free-energy simulations to inform compound designs for potential anticancer therapeutics
(138). The authors performed a large number of free-energy simulations to rapidly evaluate structural
modifications in a previously unexplored region of the EED binding site, which resulted in a series of
novel triazolopyrimidine EED ligands with improved physicochemical properties and which inhibit
PRC2 methyltransferase activity in a cancer-relevant G401 cell line.

In a large-scale assessment of binding free energy calculations in active drug discovery projects,
researchers at Merck KGaA started a large initiative in 2016 to prospectively assess the prediction
accuracy of RBFE calculations. In this study, 12 targets and 23 chemical series were tested performing
over 35,000 individual perturbation calculations with the subsequent synthesis and testing of 400
blindly predicted and novel molecules (139). The authors conclude that the pre-requisites for a
successful RBFE calculation is the choice of an accurate small molecule and protein force field, a high
quality crystal structure, a known binding mode, known IC50 data with 3 log unit range, and the
initial validation of the RBFE method/protocol/software to be used in the study by retrieving a root
mean squared error (RMSE) of <1.3 kcal/mol for the known data before embarking in prospective
lead optimization using RBFE methods. Moreover, the method is still limited in the type of
transformations that can converge to the desired accuracy, although these transformations were
of high interest to the project teams (e.g., from aromatic ring systems to aliphatic chains, charge
changes, addition of new groups via flexible linkers). The team also found that, contrary to what
was expected, RBFE calculations had more impact in their hit-to-lead campaigns rather than lead or
fragment optimization.

Using a computationally empowered workflow, a team from Bayer identified novel covalent
allosteric binders for the KRAS G12C isoform (140). Due to its frequent mutations in multiple lethal
cancers, KRAS is one of the most-studied anticancer targets nowadays. Since the discovery of the
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druggable allosteric binding site containing a G12C mutation, KRASG12C has been the focus of
attention in oncology research. The free-energy simulation workflow involved initial enumeration
of virtual molecules tailored for the KRAS allosteric binding site, and pharmacophore modeling,
docking, and finally free-energy simulations were used to prioritize the compounds with the best
profiles. The synthesized naphthyridinone scaffold showed the ability to react with G12C and inhibit
KRASG12C. Analogues were prepared to establish structure-activity relationships, while molecular
dynamics simulations and crystallization of the inhibitor-KRASG12C complex highlighted an
unprecedented binding mode (141).

More recently, free-energy simulations were also employed in the discovery of new inhibitors
of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19 (142). Starting
from 14 known drugs as inhibitors of the main protease (Mpro), the weak hit FDA-approved drug
perampanel was redesigned to yield multiple noncovalent, nonpeptidic inhibitors with an IC50
of 20 nM. FEP calculations for Mproligand complexes provided valuable guidance on beneficial
modifications that rapidly delivered the potent analogues. The design efforts were confirmed by
high-resolution X-ray crystal structures for five analogues bound to Mpro. Results of cell-based
antiviral assays further demonstrated the potential of the compounds for treatment of COVID-19. In
addition to the possible therapeutic significance, the work demonstrates the power of computational
chemistry for drug discovery, especially free-energy-guided lead optimization, to rapidly progress
weak hits to potent leads.

In one of the largest free-energy simulation studies on a GPCR, a collection of 3,4-
dihydropyrimidin-2(1H)-ones was enumerated and computationally screened with free-energy
simulations against the A2B adenosine receptor (A2BAR) (143). Many of the compounds were
found to bind selectively to A2BAR, with a number of potent and selective antagonists further
confirmed by functional cyclic adenosine monophosphate experiments, and an accurate model of
the structure-activity relationship of this chemotype was obtained. The assessment of the effect in
representative cytochromes (CYP3A4 and CYP2D6) demonstrated insignificant inhibitory activity,
while in vitro experiments in three prostate cancer cells demonstrated that this pair of compounds
exhibits a pronounced antimetastatic effect.

In another study of a viral protein, the RNA-dependent RNA polymerase (RdRp) of norovirus
was studied as a target of antiviral agents aimed at providing protection against norovirus-associated
gastroenteritis (144). Free-energy simulations were performed on the crystal structure of norovirus
RdRp in complex with several known binders to determine binding free energies of these molecules
relative to the natural nucleotide substrates. Using free-energy simulations, a virtual nucleotide
library containing 121 molecules was screened and two novel molecules were successfully identified
with in vitro activity.

As a final prospective example presented here, a team of researchers at Janssen recently described
the hit-to-lead exploration of a [1,2,4]triazolo[1,5-a]pyrimidine phosphodiesterase 2A (PDE2A)
inhibitor arising from high-throughput screening (145). Starting from a co-crystal structure of the
target in complex with a lead compound, rounds of lead optimization using relative binding free-
energy simulations helped prioritize chemically-diverse substituents to explore the chemical space.
FEP calculations were performed for 265 putative PDE2A inhibitors, and 100 compounds were
synthesized and tested in binding assays, representing a relatively large prospective application. The
screen provided unexpectedly active molecules with IC50 values of some molecules achieving sub-
nanomolar potency. One of the top compounds prioritized from the free-energy simulations showed
a PDE2A IC50 of 1.3 +/-0.39 nM, 100-fold selectivity versus other PDE enzymes, a clean
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cytochrome P450 profile, in vivo target occupancy, and promise for further lead optimization. More
examples can be found in (146, 147).

These recent examples only represent a small sample of the many retrospective and prospective
applications of free energy methods in drug discovery. They demonstrate that free-energy
calculations can be applied to active drug discovery projects and are being increasingly adopted
by the pharmaceutical industry and the academic community. However, significant challenges still
remain and expertise is required to address many ‘hidden’ caveats of the target and lead series when
performing free-energy calculations.

Challenges and Limitations

As explained above, there are many possible methodological variants to compute binding free
energies within a rigorous thermodynamic framework. Indeed, with proper system setup, sufficient
sampling, and an accurate force field all of the above approaches should produce accurate binding free
energies, although the rate of convergence (and therefore simulation time) will depend on the details
of the method. However, even with a rigorous thermodynamic framework, the setup and analysis
of free energy methods is elaborate and requires a high degree of technical expertise, especially in
challenging cases. There are a number of important factors beyond force field and sampling that
must be carefully considered in order to consistently compute accurate binding free energies. Below,
we touch on a number of the most common challenges encountered in drug discovery applications
of free-energy simulations. While this list is not exhaustive, it is intended to give a flavor of the
complexities involved and the importance of the details. In short, every atom matters in free-energy
simulations and therefore it is prudent to take special care throughout the entire process (preparing,
running, and analyzing results). Excellent recent discussions on best practices for alchemical free
energy calculations cover many of the topics below in detail (75, 148).

Force Field

Having a proper model of the Born-Oppenheimer energy surface is paramount to the accuracy
of binding free energy calculations (and molecular simulations in general). Without an accurate
molecular mechanical force field, even the most sophisticated free-energy approaches will converge
to the wrong answer. Though not entirely free of approximations, a rigorous quantum mechanical
(QM) treatment could ultimately be the desired approach to model the energetics of biological
systems, but it is currently impractical to treat an entire protein-ligand complex in explicit water
with quantum mechanics. As such, the potential energy of the atoms in the system is typically
approximated via a classical molecular mechanics force field that is parameterized based on quantum
mechanics and experimental data. The force field representation allows for much faster energy
evaluations while still representing the underlying physics in an approximate manner. There are many
ways in which a force field can be generated to achieve accurate energetics at a fraction of the time
of a QM calculation. However, all approximations will come at a cost in terms of accuracy relative
to quantum mechanical calculations. The calculated free energies integrate contributions from the
protein and ligand force field as well as the solvent model, all of which are prone to introducing
errors (149). The primary interest in drug discovery efforts is striking the right balance between
computational throughput and accuracy. It is beyond the scope of this introductory chapter to cover
force fields extensively, but a few of the most significant challenges and limitations will be discussed.

For ligands, there are two common ways to obtain force field parameters: 1) Lookup tables based
on similar chemical moieties that have previously been parameterized or 2) bespoke parameterization
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based on quantum mechanics. In some cases a quantum mechanical/molecular mechanical (QM/
MM) or quantum mechanical force field (QMFF) approach (150) can be used for the ligand and
ligand-protein interaction, although at considerable computational expense relative to more
conventional MM force fields. One attractive procedure for including these types of QM interactions
in alchemical free energy simulations is to use a so-called “book-ending” or “reference potential”
approach that only requires consideration of free energy corrections at the real state endpoints, and
not along the entire alchemical transformation pathway (88, 91, 92).

For the solvent model, usually water is represented explicitly in relative and absolute free energy
calculations, although the presence of explicit water molecules is particularly computationally
demanding. Recently implicit solvent models have been also employed in alchemical free-eenrgy
calculations (151). The single-decoupling method (SDM) (152), for example, is based on
progressively turning on the effective interaction between the ligand and the receptor with an implicit
representation of the solvent. Replica-exchange FEP simulations with a GB continuum model
(REFEP-GB) have also been employed to combine FEP with a GB implicit solvent model to calculate
relative binding free energies (153), which can significantly speed the calculation time reaching
convergence in less than 1 ns per lambda step reaching reasonable accuracy compared to
experimental data.

A particularly promising strategy for improvement of molecular simulation force fields is to
use machine learning (ML) or deep learning potentials (154–170). ML-based potentials afford a
promising solution to the development of next-generation molecular simulation force fields with the
efficiency comparable to that of MM force fields, and accuracy that has started to approach that of
high-level QM methods (171). More recently, ML-based forces fields have generated encouraging
results for energy calculations of small molecules (155), but applications to free energy simulations
have not been published at the time of this writing. Most force fields rely on fixed charge models
that do not treat polarization explicitly. Ideally, a force field would adapt to the environment (e.g.
solvent, protein, lipid) to account for polarizability, as would be the case with a quantum mechanical
potential. While polarizable force fields do exist, such as AMOEBA (172), applications to binding
free-energy simulations have been limited, likely due to the challenges associated with the
parameterization process. Interestingly, the most commonly used force fields use the same general
functional form, which has not been updated in decades (173–177), although other functional forms
have been presented (178, 179). As such, the commonly used force fields for free-energy simulations
still perform poorly in situations with close contacts that cannot be explained with a simple Lennard-
Jones potential and fixed charges. Recent augmentations of force fields have added charges off of
atom centers in order to more accurately reproduce non-spherical charge distributions, such as those
observed with lone pairs (180), halogen bonds (181), and other sigma hole interactions (182).
Another significant limitation of most modern force fields is the reliance on atom types, which have
been constructed to simplify the process of assigning bonded and non-bonded parameters to atoms
that should have similar properties, but this generalization creates a lack of precision on the specific
parameters applied to each atom. Recent efforts by the Open Force Field Consortium have overcome
the atom typing limitation, although results have not yet been shown to improve compared to force
fields with traditional atom typing procedures (183).

Importantly, any framework developed to address the above problems should be automated in
such a way that it can be run robustly in industrial applications where hundreds of ligands need to be
processed in a single iteration of hit-to-lead or lead optimization. Finally, building a “good enough”
force field for free-energy simulations in drug discovery will likely need to be done iteratively using
accurate binding free energy data, which is still sparse. The protein and water force field parameters
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are also essential in relative binding free energy calculations to accurately model protein motions.
While high-quality protein force fields are broadly available due to the limited chemical space (20
amino acids and one water molecule) and the large number of groups working on them. Nonetheless,
there are still inaccuracies in the protein and water force fields and multiple groups continue working
on force field improvements.

Optimization of the Alchemical Transformation Pathways

The free energy is a state function, and thus the free energy difference between states is formally
independent of pathway. However, the practical computation of the free energy is in fact very
sensitive to the pathway that is chosen, and on the degree of phase space overlap along the pathway.
There has been much effort devoted to the choice of pathways that are the most amenable to stable,
precise computation. Some of the most commonly encountered issues that can arise in alchemical
transformations that limit the overall reliability and statistical precision of free energy estimates
include: 1) the end-point catastrophe, 2) the particle collapse, and 3) the large gradient-jump
problems. Each of these problems arise from issues related to phase space overlap along the
alchemical transformation pathway that can result in instabilities or “phase-change-like” behavior
making sampling and/or thermodynamic averaging extremely difficult. One of the methods to help
mitigate these problems and facilitate stable alchemical transformations is to “soften” certain types of
interatomic interactions in the potential energy function as certain chemical moieties are created and
others are annihilated as one ligand transforms into another. These so-called “softcore” potentials
have been instrumental in addressing the stability of alchemical transformations, and are an ongoing
topic of research. The transformation pathways can be further enhanced through developing more
advanced λ-scheduling (184); i.e., the specific schedule of how individual energy terms of
transformed as a function of the λ transformation progress variable. Examples of outstanding
challenges in alchemical transformations include those that involve changes in charge state and
scaffold/core hopping (185, 186).

Equilibration

Equilibration protocols are employed after system preparation and before the free energy
simulations. The objective of the equilibration is to have the system adequately relaxed such that
the production simulation is stable. Systems that have not been sufficiently equilibrated in binding
free-energy simulations can lead to large errors. For RBFE simulations, the equilibration can be
challenging, since ligands with diverse functional groups might clash with the initial protein
structure. In such systems that are not carefully equilibrated, the protein can locally unfold or the
ligand can unbind due to the large initial forces, leading to suboptimal results. It is therefore
important to sufficiently equilibrate to provide the best starting point for the free-energy simulation.
Standard equilibration protocols have been developed for most MD engines, but free-energy
simulations offer an additional challenge, since each protein-ligand system could have different levels
of clashes and therefore require different equilibration approaches. While tedious, this step is
extremely important for accurate free-energy results.

Slowly Exchanging Buried/Trapped Waters

In addition to sampling protein and ligand molecules, many biological systems contain buried
waters that cannot freely exchange with bulk solvent during the time course of free-energy simulation
(~5 ns). Introducing ligand modifications into these regions of buried waters require changes in the
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number of buried water molecules in order to accurately predict binding energies. Neglect of these
buried waters will result in inaccurate structures and energies. Approaches to handle this critical
challenge include Grand Canonical Monte Carlo (GCMC) (187, 188) and mixed Monte Carlo
Molecular Dynamics (MCMD) (189), which have both been shown to improve the convergence and
accuracy of free-energy simulations. It should be noted that 5 ns, as mentioned above, is a sampling
time per lambda used in a typical RBFE calculation. With this sampling time, one ligand perturbation
can be calculated per day per GPU (65), providing the appropriate throughput in a large scale project
(139). In challenging cases, the sampling time per lambda-window may be extended in order to
obtain convergence provided that time and computing resources allow it (66).

Quality of Initial Structure

The starting protein structure (from experiments or modeling) has to be of sufficiently high
quality and no major conformational changes should be expected during the simulations as large-
scale protein movements cannot be usually sampled within the timeframe of FEP calculations (65,
139, 190). Moreover, to predict free-energy changes upon ligand binding, accurate bound poses
are necessary. If no experimental structures for the protein-ligand complex exist, several strategies
are reported to predict the bound pose in advance of free-energy calculation such as generalized
replica exchange with solute tempering (gREST) and FEP, cross docking and calculating interaction
fingerprints and others (190–192).

Treatment of Protein Flexibility

One of the great strengths of free-energy simulations using molecular dynamics is the ability to
capture conformational changes, making it possible to treat biologically relevant motions underlying
biomolecular recognition. However, most of the current implementations of RBFE in drug discovery
run a few nanoseconds of MD simulation per lambda window, which limits the scope of
conformational changes that can be assessed with high confidence. One of the great challenges of
RBFE simulations is understanding the conformational free energy landscape associated with the
target of interest and developing bespoke workflows based on that landscape. When high-energy
barriers separate relevant states, biased simulations like umbrella sampling can be used (193). The
trade off between computational time and simulation accuracy represents one of the fundamental
challenges in free-energy simulations in drug discovery. Assess convergence is particularly
challenging with high-energy barriers, since statistical methods cannot infer what has not been
observed in the simulations. As such, target-specific knowledge is often required to choose the
right enhanced sampling method and associated degrees of freedom for the collective variables of
interest (113). Understanding what enhanced sampling method to apply for a given problem requires
expertise in the sampling method as well.

Movement of even a single side chain can significantly influence RBFE results, as seen in a study
of a series of pyrazine PDE2 inhibitors (194). The single underpredicted compound in the series
was lacking a large side chain at a specific position that was filled by all other ligands in the series.
As a result, the compound induced a conformational change in Leu770 that filled the vacant pocket
left from the smaller ligand substituents, as verified by experimental X-ray structures. While it was
previously known that different ligands can induce either an open or closed conformation based on
the rotamer of Leu770, the conformational transition took approximately 30 ns of MD simulation.
While the appropriate conformational transition was observed with a longer simulations, without a
priori knowledge of the two states it might not have been known that additional simulation time was
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needed. T4 lysosyme L99A offers another case where a single side-chain rotamer can influence the
binding free energy predictions, as described by Jiang and Roux (113).

Backbone flexibility is also important to consider. For example, a fragment optimization study
of Janus Kinase 2 (JAK2) shows that even for very small molecules, protein backbone conformational
changes can influence results (195). Two protein X-ray crystal structures, each with different small
molecules bound, were available for this study. Both receptor structures were independently used as
inputs and produced comparable results (R2-values of 0.8 between the results from each structure).
However, the large ligands in site with the smaller co-crystallized ligand required constraints in the
docking calculations to ensure that reasonable poses were obtained. In a similar example from the
same paper (this time with the protein target HSP90), two X-ray crystal structures with ligands of
different size were available. Comparison of the two structures revealed a helix partially unwinding
with a subset of ligand substituents, which substantially changed the shape of the binding pocket.
This time, only the receptor structure with the large co-crystallized ligand was used, since all
members of the ligand series could be reliably placed in that receptor binding pocket but many ligands
were too large to fit into the structure that was co-crystallized with the smaller ligand.

Finally, from that same work, the authors showed fragments binding to p38α MAP kinase.
Again, there were multiple receptor cocrystal structures available and the protein exhibited backbone
conformational changes in the binding pocket. In this case, the authors removed a subset of ligands
that could not be accurately docked. While the binding free energy results were accurate for the
subset of ligands used, it highlights some limitations associated with standard RBFE protocols where
significant conformational changes might be needed to accommodate the ligands in the series. As
seen in these examples, even moderate protein backbone conformational changes can introduce
challenges into RBFE predictions, which in these cases stemmed primarily from the inability to
generate viable input poses from docking. In one case, the authors were able to overcome the
challenge by imposing restraints on the ligands and in another case a single viable receptor structure
was used. However, in the final case no suitable solution was found and a subset of the ligands had
to be removed from the data set. Based on these examples, it can be seen that more robust ways of
treating protein backbone flexibility in RBFE workflows are needed. In the meantime, users of RBFE
calculations should carefully examine each system on a case-by-case basis and apply the appropriate
system setup, simulation protocol, and analysis steps to overcome the specific challenges at hand.
It is not trivial to detect possible protein conformational changes a priori and can be even harder
to implement robust solutions. Fortunately, free energy methods are built on the foundations of
molecular physics and statistical mechanics, so solutions should exist for all problems, although they
may require significant human time and expertise to uncover.

Treatment of Ligands

Ligand Alignment and Atom Mapping

In addition to the issues common to molecular dynamics simulations (as described above),
there are additional steps specifically associated with the setup of alchemical simulations. Incorrect
treatment at this stage can result in slower convergence at best, and more commonly wrong results.
This becomes particularly challenging and important when automating a large number of ligand
perturbations. As such, care should be taken to appropriately prepare the ligands. Several reviews
cover the details associated with setting up alchemical free energy simulations (65, 139, 148, 196,
197), which will be briefly highlighted below.
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For RBFE simulations, the common part of the perturbation pairs should be aligned (typically in
Cartesian space) to minimize the thermodynamic path length between endpoints in order to improve
convergence and overlap between adjacent lambda windows. This step can be done via a variety of
methods, including docking with core constraints, shape-based alignment, pharmacophore overlap,
or some form of manual overlay. The need for highly accurate alignments to facilitate atom mapping,
especially when the precise alignment of atoms in unknown, makes this a challenge, especially for
complex drug-like molecules where a one-to-one mapping is not always obvious. Manually
inspection of the results from automated alignment protocols is recommended, since each approach
has inherent limitations that depend on the ligand series being explored. Additionally, given that
most RBFE pose placement tools do not account for protein flexibility, it may be necessary to
perform conformational sampling and/or energy minimization of the binding site (or whole protein)
to check whether clashes can be alleviated by maintaining the ligand and receptor structures in
the final pose (190). In addition, as discussed above, a careful equilibration protocol should then
be applied to get the ligand, protein, and waters into a stable state with minimal energetic clashes
while maintaining the appropriate ligand alignments. An important consideration is the degree of
movement that is acceptable during the equilibration, since sufficient energy overlap between
adjacent lambda windows typically requires a degree of structural overlap.

Even with high quality ligand alignments (each pair of matching atoms within 0.5 Å), atom
mapping can still present challenges and ambiguous solutions. The most commonly used approach
to atom mapping involves maximum common substructure (MCS) search with atomic graphs
regardless of atom type and bond valences, thereby maximizing their topological overlap. Even in
cases where two molecules do not differ in the number or connectivity of atoms, there still might
be challenges in atom mapping because the ligand modifications may engage in different interactions
which then induce different conformations in the binding site. When there is a difference in topology
of the two molecules of interest (i.e. there is not a sufficient MCS between the molecules), atoms
not present in the atomic graph of one molecule can be introduced as dummy atoms to match the
topology of the other molecule.

Connecting Perturbations through Graphs

Modifications are typically introduced based on an initial lead ligand or set of ligands. Toward
that end, a network, or thermodynamic “graph” is created where the “edges” represent
thermodynamic transformations between individual ligands that form the nodes (intersection of
the edges) of the graph. Redundant pathways are often included such that the network contains
free energy cycles. While this increased the computational costs (more ligand perturbations), it can
improve the accuracy and reliability of RBFE calculations, since each closed thermodynamic cycle
can be used as a convergence test and also to correct outliers. In addition, the graphs may contain
edges that have already been measured experimentally to improve the overall predictions (198).
There exist a number of methods, some of which are formally equivalent, to estimate the free energy
of a single edge, such as the Bennett acceptance ratio method (BAR) (199), multistate BAR (MBAR)
(200), and the unbinned WHAM (UWHAM) method (201, 202), as well as variational methods for
their solution (203). More recently, a variational approach for network-wide analysis of free energy
simulations has been introduced to include experimental or high-precision reference data (204).
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Multiple Binding Poses

Ligand placement may result in multiple plausible poses that cannot be unambiguously
distinguished. In such case it is possible to perform RBFE calculations on each of the poses. If the
conformations interconvert during the RBFE simulations, then the same computed ΔΔG will be
generated for all of the input ligand conformations. However, if the different poses are separated
by high-energy barriers then they will not interconvert during the simulations and must be treated
specially. The nature of the energy barrier and whether it is associated with both the bound and
unbound states or just the bound state will dictate the best approach. One option is to perform
independent free-energy simulations on each of the binding modes, taking the free energy of the
more favorable of the ligand binding modes (or using a Boltzmann-weighted energy) (65, 205). The
ligand should sampling the different conformations in the unbound state in order for the energies
to be comparable. Additionally, the overall entropic contribution from having multiple poses can be
computed, which can be as much as 0.6 kcal/mol (kT ln(2)) when two states are isoenergetic, and
larger if more than two such states exist (206).

Tautomers and Ionization States

Exchanges of hydrogen atoms (tautomerism and ionization) involve making and breaking of
bonds, which is not handled with traditional molecular mechanics force fields. Properly treating
these states therefore requires special treatment, which is critical because each of the tautomers and
protomers generally have different energetic preferences in solution and in the binding site. Indeed, it
has been estimated that 25% of drug-like molecules have multiple energetically accessible tautomers
(207). There are a number of methods that can account for dynamic sampling of protonation and/
or tautomerization during MD simulations, but the reference value of the different states is generally
not known, thus accurate estimation of the free energy involving changes in protonation state remains
highly challenging. While tautomers play a critical role in binding, tools to accurately predict
tautomer energies are not common. A recent publication of a tautomer database may provide an
opportunity to improve tautomer prediction accuracy (208). Within the current paradigm of
molecular mechanics force fields, whenever multiple tautomers exist, each should be considered as
a distinct ligand, with the tatuomeric energy being included in the final free energy value, similar
to the above discussion about multiple binding modes. Changes in protonation states can be even
more challenging for RBFE calculations, since it is involves molecules with different charges (see next
paragraph). Methods like constant-pH molecular dynamics can be used in cases of tautomer and
ionization states (209, 210), which would remove the need for pre-generating the relevant tautomers,
although validation of this approach in the context of free-energy simulations has been limited and
still requires knowledge of a reference value for the pKa or tautomer energy.

Charged Mutations

Computing binding affinity differences for molecules with different formal charges remains a
challenge for free-energy simulations. Favorable results have been published (211), although other
studies have suggested otherwise (212). There are technical challenges associated with introducing
or removing a charge during free-energy calculations using the particle-mesh Ewald (PME) approach
for long-range electrostatics (213–215). Additionally, charged groups produce much larger
contributions to the total energy, which can add noise to the calculations when the charge is not
conserved across the ligands. Even errors in the solvation step (perturbing ligand A to B in solution)
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could result in many kcal/mol of error for charge changes, which might be compounded in the bound
state. Finally, more computational time is needed for the system to relax around different formal
charges due to the long-range nature of the electrostatic forces. Additionally, the overlap between
adjacent lambda windows will likely be lower than for charge-preserving changes. Encouraging
works have demonstrated success in ligand and protein residue mutations with different formal
charges (216–218), although there have not been additional publications using this approach. As
such, when molecules with different formal charges are of interest, it is advised that at least one
reference molecule for each formal charge state be synthesized and assayed to provide a reference
energy for subsequent RBFE simulations of congeneric molecules with the same formal charge.

Covalently-Bound and Metal-Bound Ligands

The commonly used molecular mechanics force fields do not account for the formation or
breaking of covalent bonds. However, binding free-energy simulations can still be used in such
situations by analyzing only the non-covalent interactions, assuming that the energetics of the
covalent bond is constant throughout the ligand series. In this same way, the relative affinity of metal-
bound ligands can be computed if the contribution coming from the formation of the ligand-metal
bond is constant across the ligands in the series, although such assumptions must be made with
caution. Quantum mechanical calculations can be performed to assess the geometries and energetics
of the different ligands. When substitutions are far from the covalent/metal interaction site and the
geometry of the ligands are preserved throughout the series, then this approximation is more likely
to be valid. Performing covalent or metal-binding RBFE simulations requires a thermodynamic cycle
unique from a traditional non-covalent binding calculation, as has been described (219, 220) and
validated in a successful prospective application (221). When the energetics of the covalent or metal
interaction are suspected to be different across the ligands of interest, it should be possible to perform
a separate quantum mechanical calculation to assess the energy of the covalent linkage, which can
then be used to augment the RBFE calculations (222), although these calculations are challenging
and generally require a high level of expertise in the application of quantum mechanics to biological
systems.

Convergence

Convergence of free-energy simulations depends on the nature of the free energy surface and
specifically the height of the energetic barriers separating biologically relevant states. In general,
large-scale protein conformational changes cannot be sampled sufficiently within the time frame of
standard free-energy simulations (1-10 ns per lambda). Even small conformational changes, such
as the 180-degree flip of a ligand ring in a binding site or amide bond, might have sufficiently
high free-energy barrier to not exchange during the simulations. Improving convergence by running
simulations longer is often the simplest approach, but not practical for most cases due to the vast
increase needed to overcome many barriers (223). For example, extending a simulation by a factor of
ten would only allow it to cross energetic barriers 1.4 kcal/mol higher than at the shorter simulation.
As such, overcoming a barrier that is 5 kcal/mol higher than those being crossed during a certain
simulation time would require more than 1,000 longer simulations. Despite rapid increases in
available computing power, extending MD simulation times is likely not the best approach to
improve reliability of free energy calculations. Instead, enhanced sampling methods have been
developed to improve convergence of slow degrees of freedom, although expertise and system
knowledge is generally needed to control which degrees of freedom to apply the enhanced sampling.
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For example, a method that works well in one case might cause the protein to denature in another
situation, as a result of differences in free energy surfaces. There are many enhanced sampling
approaches, which are covered through many excellent reviews and associated primary sources
(224–227).

Analysis

Post-simulation analysis is an important step that should be taken before making decisions
based on the free energy results. Careful analysis can identify problems with the simulations and/
or build confidence in predictions before making final recommendations for chemical synthesis.
Traditional tools for MD analysis, such as computing energy fluctuations and atomic movements can
be informative, although it is more complex in alchemical free energy simulations due to the multiple
lambda windows. Uncertainties in free energies can be calculated with the block bootstrapping
method, where the data are divided into blocks of observations and then sampled randomly with
replacement to compute uncertainties that arise from the finite nature of the simulation. However,
this approach only assesses uncertainties within the conformational ensemble that has been sampled
and cannot account for conformational states that have been missed. Running multiple independent
simulations from different random seeds and/or starting configurations is a more robust way to
estimate sampling errors, although it takes more computational resources and still does not guarantee
that all relevant conformational states have been sampled. Another way to detect possible
convergence problems is by performing the same perturbation in the reverse direction (i.e. preparing
the system with ligand B and perturbing to ligand A rather than the reverse) (228).

Workflows and Automation

In addition to methodology development, the integration of methods is critical to the success of
real-world free energy calculations (43, 64, 64, 71, 97, 228–235). Furthermore, there are many tools
to help with post-simulation analysis (200, 202, 203, 234, 236–240). Workflows are an important
part of large-scale applications of alchmical binding free energy simulations in drug discovery
projects (139) to help to ensure best practices (148) and enable high throughput with reduced human
effort and error (241–246). In this way, scientific advances can be more broadly exposed to academic,
government and industry labs to guide the design and facilitate discovery of new therapeutics.
Examples of such efforts include commercially available automated FEP/TI pipelines such as the
FEP+ module of Schrödinger Suite (72), the Molecular Operating Environment (MOE) offered
by the Chemical Computing Group (CCG) (247, 248) providing a pipeline for performing relative
binding free energy calculations using the AMBER TI platform (75), BIOVIA Discovery Studio and
Pipeline Pilot (249) offering a workflow for setting up and implementing relative FEP calculations
on GPUs using CHARMM (28), QuantumBio’s movable type method (250), and FEP in Flare
of the Cresset software (245) that uses open-source tools such as AMBER tools (251), OpenMM
(83), LOMAP (252), Sire (253), and BioSimSpace (254). Non-commercial workflows include the
Free Energy Workflow tool (241) available for AMBER (251, 255), QligFEP (256) for the Q open-
source MD package (257), FESetup (242) for AMBER and GROMACS (258), BioSimSpace (254)
that automates the creation of the required input files for the implementation of relative binding free
energy simulations using SOMD (253) or GROMACS (259), BFEE2 (246) for absolute free energy
calculations generating configurational files in NAMD (184) and GROMACS formats, and three
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web-servers, the “Alchemical Assistant” of the LigParGen server (260), FEPrepare (261), and the
CHARMM-GUI FEP calculator (262).

Data Sharing and Open Science

In real world drug design projects, structural information and availability of ligand series with
large affinity spread are not always available to the scientific community. Open, findable, accessible,
interoperable, and reusable public data help to ensure the reproducibility of published results can
support further method development, comparative benchmarking of free energy calculations, and
advance the field as a whole. For example, in machine learning and artificial intelligence there have
been significant improvements in the field due to data sharing and open science challenges. Open
Science represents a new approach to the scientific process based on cooperative work and new
ways of diffusing knowledge by using digital technologies and new collaborative tools. With Open
Science we can make the primary outputs of publicly funded research results – publications and
the research data – publicly accessible in digital format with no or minimal restriction. As such,
Open Science is about extending the principles of openness to the whole research cycle, fostering
sharing and collaboration as early as possible thus entailing a systemic change to the way science
and research is done. Open Science will be crucial in providing datasets and tools freely to the
scientific community and the general public, which will enable cooperative work for the maximum
output of harnessing big data to develop more efficient computer-aided drug design methodologies.
In this respect, several initiatives have been launched that foster the concept of open data in global
drug discovery efforts. The drug design data resource (D3R) organized challenges against blinded
experimental data to prospectively test computational methodologies as an opportunity for improved
methods and algorithms to emerge (263, 264). SAMPL (Statistical Assessment of the Modeling
of Proteins and Ligands) is another set of community-wide blind challenges aimed to advance
computational techniques as standard predictive tools in rational drug design (264, 265). Both of
these challenges have been based on blinded data such as binding affinity and hydration free energy
data, that later became openly available to the community to test the latest modeling methods and
force fields.

The need to produce open, reproducible scientific output has led to discussions for the
standardization of molecular simulation file formats, streamlining molecular simulation data, best
practices for sharing data and workflows used to produce and analyze molecular simulations, code
sharing as well as strategies to enhance the reproducibility of such data (258, 266–269). This trend
has been accelerated by the unprecedented pandemic crisis, which brought together the molecular
modeling community in a rapid manner to collaborate in a global and timely fashion using open
research practices, sharing of research outputs, data and code, thereby facilitating research and
research reproducibility and timely collaboration beyond borders (270, 271).

Conclusions

The chapters of this book present the latest advances in free-energy methods and applications in
the context of drug discovery applications from a diverse set of academic and industry researchers.
The many successes of free-energy methods applied in drug discovery projects have sparked the
interest of applying similar protocols beyond affinity calculations. Although in vivo biology is not only
dictated by ligand-protein binding and operates under other processes such as kinetics, allostery,
and biological phenomena operate beyond thermodynamic equilibrium, the concept of calculating
free energy changes within a thermodynamic cycle can be still be applied not only to ligand-protein
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binding but also to predicting solubility, protein-protein binding, protein stability, crystal packing
preference and other properties that are crucial in the drug discovery and development process. At
the moment, free-energy simulations still require experts to obtain accurate and reliable predictions
that can be confidently used to make decisions in drug discovery campaigns. While challenges remain
for free-energy methods in facilitating drug design, tremendous progress continues to be made, and
it is hoped that the combined efforts of leading research teams in the field such as those presented in
the chapters that follow will forge the next generation of methods that enable breakthroughs in drug
discovery.
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	Figure 5. Expansion of R1 chemical space via single edge FEP+. Circles indicate reference compounds, 5 point stars are new designs, 4 point stars are new designs implemented with an alternate scaffold. Unsynthesized compounds are assigned an arbitrary experimental ΔpKi of -1.0. ΔpKi’s are used because different virtual sets used different references for the single edge validation.
	Figure 6. A time point during prospective validation efforts at solvent front R3. (A) Design cycle 1, 42 virtual compounds scored, 9 compounds synthesized/tested with MUE of 0.47 kcal/mol, 6 compounds in synthesis (red stars: compounds in high priority synthesis queue, blue stars: medium priority queue, yellow stars: low priority queue). The queue priorities were assigned by the medicinal chemistry team intuitively based on FEP+ scores and expected ADME properties. Because the substitutions being explored in this vector were relatively large, multiple reference compounds were kept as part of the full map (shown as filled circles), providing additional nodes to avoid harsh perturbations. All virtual compounds were shown as stars. (B) Design cycle 2, 16 virtual compounds scored, 3 compounds synthesized/tested with MUE of 0.43 kcal/mol, 3 compounds in synthesis (blue stars).

	Prospective Validation in Solvent Front (R3)
	Solvent Front (R3) Chemical Space Expansion
	Figure 7. Prioritizing two virtual R3 libraries with single edge maps. Circles indicate reference compounds, diamonds are new designs. The same compound was used as reference in scoring both virtual libraries. Unsynthesized compounds were assigned an arbirary value of pKi=7.0 for visualization purposes.

	Retrospective Validation in Solvent Front (R4)
	Figure 8. Initial R4 validation showed consistent underprediction of larger groups.
	Figure 9. Salt bridges collapse due to overly rewarded electrostatics by forcefield (A) A representative snapshot from lambda=1. The aspartic acid-lysine side chain distances are on average 2.5 Å, much tighter than observed in the crystal structures. (B) In-house co-crystal structure corresponding to the same ligand. The aspartic acid-lysine side chain distances span a range of 3.2 to 8.4 Å. (C) 100 ns molecular dynamics simulations with WT (aspartic acids, blue) and mutant (asparagines, red) starting from the in-house co-crystal structure shown in panel B. The first column shows the histograms for lysine 1 interacting with each of the three aspartic acids/asparagines as well as lysine 1 interacting with the ligand atom 1 and ligand atom 2. The second column shows the histograms of the same distances but for lysine 2. The corresponding distances observed in the crystal structure are shown in green. X-axis shows distance in Å and Y axis shows the number of frames. (For MD simulations, the crystal structure was prepared with the Protein Preparation Wizard workflow 12. As part of preparation, hydrogens were added, side chains with missing atoms were built, and the optimal protonation states for ionizable side chains were determined. For the neutral Asp simulation, the aspartic acids of interest were deprotonated. Hydrogen-bonding network was also optimized by flipping the terminal chi angle of Asn, Gln and His residues and sampling hydroxyl/thiol polar hydrogens. Desmond with OPLS3 was used in all minimization, equilibration, and production stages. All structures were solvated explicitly in a truncated octahedron box using the TIP3P water model with a 10 A buffer of solvent between the solute’s further dimensions in each direction. Each system was neutralized by adding Cl- counterions and added extra Na+ and Cl- ions to keep the simulation box at 150 mM salt concentration. Desmond’s default relaxation protocol was used. 100 ns production were collected at NPT ensemble at 2 fs time steps and recorded every 10 ps.).

	Focused Expansion of R4
	Figure 10. (A) A smaller portion of the original validation map from Figure 8 with three key aspartic acids modeled charged. (B) The same map reran with three key aspartic acids modeled as neutral. (C) Focused expansion of R4 groups using full map. Due to the large number of perturbations with >10 heavy atoms differences, we used three structurally diverse reference compounds (shown as cyan circles) to decrease the chances of high Bennett errors and hysteresis. Designs are shown in orange diamonds.

	Examples from Other Programs
	Protein Perturbations to Investigate Identical Binding Pockets for Selectivity (Program C)
	Figure 11. (A) Kinase 1 and 2 overlayed with amino acid differences highlighted in green. (B) In-silico alanine scan. 25 binding site residues were mutated to alanine in both kinase 1 and kinase 2 complexes and relative free energy of binding was calculated for the ligand. Residue 3 became the focus of targeted design efforts due to its high signal in protein FEP analysis.

	FEP Links Hydration Effects to Unintuitive SAR
	Figure 12. (A) Schematic representation of the pyridine-based set analyzed in the study. (B) Binding model showing the water molecule bridging pyridine nitrogen and catalytic lysine in the target active site. (C) Correlation plot showing predicted vs. experimental binding free energies for the pyridine-based set described in this section (MUE 0.3 kcal/mol, R2 0.91). The experimental ΔG is estimated based on the IC50 measured in the corresponding enzyme assay.
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