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ABSTRACT: The Teaching Internship is a credit-bearing program
composed of undergraduate near peer instructors (teaching interns, or
TIs) that offers supplemental assistance for students in the General
Chemistry courses. With fellow undergraduates serving as a role
model and student−faculty liaison, the benefits of near peer
instruction have been well-documented. Because TIs develop a dual
role of student and instructor over time, they afford a unique
opportunity to explore the middle area of the expert/novice spectrum.
Identifying the most influential components of the TI role may allow
practitioners to implement these components in other ways for
different groups of students. The present work provides a description
of the TI model and uses a mixed-methods approach to analyze how
the peer leadership role impacted the TIs’ attitudes about learning chemistry. Quantitative results show that TIs do hold
predominantly expert-like learning attitudes compared to the General Chemistry population from which they are selected; however,
evidence of novice thinking is still observed in some areas. This survey data was then used to inform a qualitative approach. Further
analysis indicated that TIs’ responses on survey items were context-dependent, and that peer leadership experiences were associated
with expert learning attitudes and appear to be influential in the development of these attitudes. These findings suggest that these
factors should be taken into account when drawing general conclusions from survey results.
KEYWORDS: First-Year Undergraduate/General, Chemical Education Research, Collaborative/Cooperative Learning, Constructivism,
Student-Centered Learning, TA Training/Orientation
FEATURE: Chemical Education Research

■ INTRODUCTION

Rising university enrollments in the STEM fields have
outpaced the moderate growth in higher education funding,1,2

leading to increasing concerns about sustainability and student
learning.3−7 Recent calls for a larger, more diversified STEM
work force highlight the need for educational reforms.8 So-
called “near peer” instruction has been one means for mending
the resource gap, cementing itself as a critical component of
the teaching and learning infrastructure in higher education.
Previous studies have demonstrated the many benefits to
students on the receiving end of near peer instruction,9 but
fewer studies have reported the impact on the peer instructors
themselves.7

The present study aimed to quantify and describe how the
peer leadership role in the Rutgers General Chemistry
Teaching Internship program has influenced the teaching
interns’ (TIs’) beliefs about learning in real time. Our original
strategy was to explore the use of the Colorado Learning
Attitudes about Science Survey (CLASS),10 an instrument that
has been validated and used in other contexts. We found,
however, that the TIs’ responses were highly context-
dependent, and delving deeper, we collected extensive

qualitative data that shed light on the origin of novice and
expert shifts in attitudes. We found that TI shifts toward expert
attitudes were most profoundly correlated with their
experience as a peer leader; in fact, there were no instances
in which novice shifts in attitude were associated with this
context.
The paper is outlined as follows: The next section provides a

brief summary of the relevant literature on peer and near peer
instruction, as well as the motivation for this work. Following
this, a description of the TI program establishes the context of
the study, and the key research questions are developed from a
framework of situated learning. The Methods section provides
a detailed description of the data sets collected and their
analysis. The Results and Discussion sections then present the
analysis in order to sequentially answer each research question
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outlined earlier. The paper closes with a summary of
limitations, overarching conclusions, and implications for
researchers and practitioners.

■ LITERATURE REVIEW

Defining (Near) Peer Instruction

A quick search of the literature shows that peer instruction and
its close relative, near peer instruction, are becoming a
standard practice within higher education.9 Cited as a means
to compete with increasing admissions and changes to the
student populations,9,11−13 this practice also serves as an
homage to the shift toward active learning.14−17 Peer
instruction was first named by Eric Mazur as a means of
engaging all students in large-enrollment courses.18 In lecture,
students explained their reasoning for a given conceptual
problem (a ConcepTest) to others in their vicinity. The
“peers” are other students enrolled in the class. Near peers, on
the other hand, are experienced students who have successfully
completed a course and return to teach current students.
Murphey first coined the term “near peer”, describing them as
“...peers who are close to one’s social, professional, and/or age
level, and whom one may respect and admire”.19,20

Singh outlines some of the major differences between peers
and near peers in her commentary, primarily contrasting
students’ perceptions of their peers versus their near peers.21

Still, the two terms are often used interchangeably in the
literature, with both falling under the “peer” umbrella, and
countless nuanced terms only add to the confusion: peer
mentor,13 peer tutor,22 peer assistant,16 peer facilitator,23,24

peer leader,25−27 etc., in addition to others (e.g., undergraduate
teaching assistant,28−32 learning assistant,33 teaching intern,25

etc.). Even within a given term, the duties or goals of these
peers/near peers can look vastly different among departments,
universities, and disciplines.
Such inconsistent use of terminology in the literature can

lead to a considerable lack of clarity in discussions. For the
purpose of this paper and the various programs described, we
define “peer leader” as follows:

An undergraduate student acting in a mentorship or
instructive role for other undergraduate students in a course
or program for which they themselves were previously
enrolled.
The authors felt that the term “peer leader” was most

inclusive, consistent with current literature, and properly
conveyed the experience and facilitative nature of the students
acting in these roles.
Peer Leadership: History and Outcomes

In the 1970s, sudden demographic changes, climbing attrition
rates, and scarce resources catalyzed a movement that resulted
in the earliest standardized model of peer leadership:
Supplemental Instruction, or SI.4,34 Deanna Martin, a doctoral
student at the time, proposed the SI model as a stark contrast
to previous remedial-focused efforts that were being phased
out nationwide.4,35 Later programs like peer-led team learning
(PLTL)17 and the learning assistant (LA) program33 further
helped to popularize the idea of peer leadership in the 1990s
and early 2000s. There have since been countless models of
peer leadership described in detail in the literature and
implemented nationally and internationally.7

In accordance with the expansion of this practice, numerous
researchers have examined the outcomes of peer leadership in
courses such as physics,36,37 computer science,38 engineer-

ing,39,40 chemistry,12,15,41−44 social sciences,11,31,45 life sciences
and medicine,14,28,32,46,47 and the humanities.48,49 Emerging
benefits include both content gains (pass rates,12 retention,42

and exam scores33,41,42) and noncontent gains (attitudes42,43

and communication skills50) for students served by peer
leaders. However, only a handful of studies have aimed to
characterize the effects of peer leadership experience on the
peer leaders themselves. Such effects can also be classified as
content-related, including higher course grades,13,44 improved
content knowledge,25 or perceived improvement in content
knowledge,26,27,38,44,51 as well as non-content-related, such as
improved confidence23,26−28,51 and development of leader-
ship,25,26,51 communication,38 and teamwork skills.26,27,38

Beyond content knowledge and intra- and interpersonal skills,
there was a dearth of research on students’ beliefs specifically
about learning chemistry. Moreover, several of these studies
examined subjects’ self-perceived gains after their completion
of the program through course/program evaluations or other
open-ended surveys.26−28,38,44,51 In this paper, data is collected
to measure changes as they occur over time, in conjunction
with reflective data, to further elucidate the direction and cause
of change.

Learning Beliefs in Chemistry

As a whole, student beliefs about science have largely been
correlated to their success and retention in the class and in
STEM.10,52,53 For example, beliefs about identity and
belonging in a field have historically been linked to success
and persistence in STEM, particularly for underrepresented
students.54−56 Moreover, beliefs about learning in STEM
(metacognition, epistemology, the scientific process, relevance
of science to the real world) are unsurprisingly different
between novices and experts.57−59 Such research characterizing
the dichotomy between novice and expert learning has
underscored the push for students to “think like a scientist”
and develop skills needed for the modern world.60

Peer leaders serve as a liaison between faculty and the
students they work with and are often high-performing
students themselves, providing reasonable cause to place
them at some midway point on the novice−expert spectrum.
Concerning content skills such as problem-solving, the
differences between novices and experts are evident: experts
classify problems according to underlying principles (“deep
structures”), whereas novices tend to use surface features.61,62

Experts are better at focusing their attention on important
details of a problem and are more likely to perform certain
tasks automatically.63−65 Further, studies have shown that
those in-between novices and experts display some character-
istics of both.62,66 Beyond problem-solving, previous work has
linked instructional methods and curriculum design to
students’ beliefs, attitudes, or epistemological development,
also often in the context of expert versus novice think-
ing.10,67−70 For example, Otero and Gray68 found expert shifts
using the CLASS in their physics and physical sciences courses
for nonmajors, following a curriculum change that explicitly
addressed the nature of science and science learning. In this
study, investigating the affective transformations of peer
leaders, who likely sit somewhere between experts and novices,
means gaining better insight into the novice−expert shift and
even pinpointing the experiences that shape scientific thinking.
In the next section, we will describe the implementation of the
Teaching Internship program in order to provide a thorough
context for the present research study.
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■ THE TEACHING INTERNSHIP IN GENERAL
CHEMISTRY

The General Chemistry Teaching Internship program was
implemented in its current form in the Fall of 2015.71 The
internship is a for-credit course, as TIs are not paid a stipend
and must register as they would for any other course. New TIs
are invited to apply to the program each year on the basis of
their performance in General Chemistry I and II. While they
primarily earn top grades in the course, an “A” is not strictly
required. Selection then follows small group interviews.
Generally, TIs of previous years are permitted to return each
year as they choose, and many do. The weekly course
requirements are provided in Table 1 and include a staff

meeting with the program coordinator (E.L.A.), multiple
learning sessions with students (office hours, recitations,
workshops, etc.), and semiguided written reflections that are
accessible to all TIs. More details about the selection process
and program components can be found in the Supporting
Information.

The Certificate in Chemistry Education (CCE)

For applicants who wish to become more involved in peer
leadership, they are encouraged to apply for the Certificate in
Chemistry Education (CCE) program (Table 1).72 The
required Pedagogy Course (PC) is a flipped-style 3-credit
course created and taught by E.L.A. and includes both weekly
teaching and classroom components. As these students work
with General Chemistry students, they are also referred to as
TIs, with the two groups differentiated as PC- and non-PC TIs.
The course covers topics similar to the TI staff meetings;
however, students in the PC source their knowledge from the
assigned literature, delving deeper into the theories of
education, and complete frequent assessments.
Following the PC, CCE participants enroll in the TI

program, followed by leading their own section of the General
Chemistry laboratories. In an effort to maintain inclusivity for
students facing a semester of abnormally rigorous coursework,
health challenges, or other unexpected circumstances, the CCE
program can be flexible and nonlinear. For example, a small set
of TIs applied to the TI program initially and later opted to
take the PC.

■ FRAMEWORK: SITUATED LEARNING THROUGH
TEACHING

The notion of teaching as a means for learning can be found
throughout the education literature,73−75 largely stemming
from the pivotal work of Benware and Deci.76 In their study,
students performed better on an assessment when they
believed they would teach the material, compared to those
who believed they would be taking a traditional exam. Shook
and Keup7 write that peer leaders develop the abilities to
combine and apply multiple skills to solve realistic, ill-
structured, multifaceted problems, abilities often attributed to
experts.61,77−80 Given that student attitudes are tied to their
problem-solving strategies78,81 and performance in the
class,82,83 it is plausible that peer leaders also experience
expert shifts in their beliefs about learning chemistry.
Situated Learning

Situated learning theory refutes the notion of knowledge as an
entity to be gained by an isolated learner. Instead, it holds that
knowledge gained is a result of some external interaction(s).84

As a theoretical framework, situated learning addresses how
learners interact with their environment, create meaning via
social interactions, and achieve “old-timer” status in their
community of practice (the TIs) via legitimate peripheral
participation (teaching in their learning sessions).85 As such, in
an effort to study the TIs as a community of practice, it made
sense to differentiate the experienced TIs (the “old-timers”)
from the newcomers in our analysis to understand the role that
experience plays in shaping learning attitudes. Similarly,
analysis should also consider the fact that the PC offers a
different learning environment compared to the TI program
alone. These decisions served as the prerequisite research
questions (RQ1 and RQ2, below) needed to answer our
primary question, RQ3. While surveys are not the traditional
method associated with the situated learning framework,
survey data was crucial in informing the qualitative approach
used for RQ3. Such methods were then evaluated as RQ4
emerged during data analysis.
Research Questions

The research questions developed were as follows:

1. Do peer leaders’ beliefs about learning chemistry
correlate to their length in the program?

2. Do peer leaders’ beliefs about learning chemistry
correlate to whether or not they enroll in a formal
Pedagogy Course?

3. Do peer leaders’ beliefs about learning chemistry change
over time as a result of their peer leadership experience?

4. Is the CLASS a valid means for assessing the beliefs of
peer leaders?

■ METHODS

Setting

Rutgers is a large, R1 university and the state’s only public
land-granting university. This study was conducted on the
main New Brunswick campus which hosts 36,000 under-
graduate students and 14,000 graduate students.86 Approx-
imately 2,000 students enroll in General Chemistry each
semester. Nearly three-quarters of these students are life
science or pharmacy majors, followed by a minority of physical
science and social science majors. Nursing and engineering
students each have their own version of the course, which is

Table 1. Certificate in Chemistry Education (CCE)
Coursework and Requirements

Course
Length

(Semesters)
Credits per
Semester Weekly Requirements

Introduction to
Chemistry

1 3 Flipped class: 80 min

Education
(Pedagogy
Course)

One learning session:
1 h

Written reflection
Teaching Internship 2+ 1−2 Staff meeting: 1 h

Multiple learning
sessions: 2−4 h

Written reflection
Teaching a
Chemistry Lab

1+ 3 Lab training: 3 h

Teaching: 3 h
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not served by the TIs. The General Chemistry courses include
traditional lectures (∼300−400 students each), common-hour
exams, and graded online homework.
Participants

TIs are selected from the General Chemistry course population
which they will serve. Their declared majors are provided in
Figure 1, along with demographic data that contrasts them
with one cohort of General Chemistry students.
The Colorado Learning Attitudes about Science Survey
(CLASS)

Beginning in the Fall of 2015, TIs were asked to complete the
chemistry version of the CLASS.87 The CLASS was originally
designed for assessment in physics, but it was later adapted and
validated for use in chemistry.88 The CLASS-Chem provides
50 statements about chemistry and learning, and participants
use a five-point Likert scale to note their level of agreement or
disagreement. Instructors can then classify students’ responses
as evidence of “novice” or “expert” beliefs. Expert consensus
has been established in previous work for 45 of these
statements,10,87 meaning experts (e.g., physics professors)
converged on their level of agreement for these statements. Of
these statements, 36 belong to one or more of the nine
previously established categories to help provide meaning to
the responses.87 These categories are provided in Figure 2 and
described in detail in the Supporting Information. Several of
the CLASS items fall under multiple categories, and Figure 2
demonstrates the relative amount of overlap between
categories; larger circles contain more items, and the larger
the overlap is, the more items those categories share. Each
category has a favorable and unfavorable section, which
represent the percentage of statements by which students
agreed or disagreed with the experts, respectively. Neutral
responses are excluded from the scoring. Various measures are
taken to flag responses that may not be genuine (see the
Supporting Information, Section V).
The TIs complete the CLASS as a pretest and post-test in

the beginning of the fall semester and at the end of the spring
semester, respectively. Thus, students who have been TIs for
multiple years have completed the survey more than twice. TIs
who only remained in the program for one semester did not
complete a post-test and are excluded from the results. TIs
enrolled in the PC, offered only in the fall, are also given a

post-test at the end of the fall semester. Data was collected for
three academic years, as shown in Table 2.

A myriad of instruments have been developed for measuring
chemistry students’ attitudes, beliefs, expectations, self-
concept, epistemologies, and so on.87,89−94 While there are
important differences between these constructs, such analysis is
beyond the scope of this paper and has been discussed
previously.89,95,96 The decision to implement the CLASS over
other assessment tools came down to practicality and
applicability. The CLASS did not refer to a specific course

Figure 1. (a) Reported majors of all TIs from Fall 2015−Spring 2018 as a percentage (N = 179; 2 TIs reported double-majors). (b) The gender
and racial makeup of General Chemistry students (Fall 2015; N = 1,510) and Teaching Interns (Fall 2015−Spring 2018; N = 177). Please note that
the gender abbreviation “NB” refers to “nonbinary”.

Figure 2. A Venn diagram displays all nine categories of the CLASS.
“PS” is shortened for “problem-solving”. The size of the circle
corresponds to the number of items in that category; the size of the
overlap refers to the number of items that sit in two or more
categories. The PS-sophistication and PS-confidence categories have
only items that also live in other categories, while the atomic-
molecular perspective of chemistry items exist entirely in their own
category.

Table 2. TI Enrollment by Academic Year

Academic Year TI Status Fall, PC Fall, TI Only Spring, TI Only

2015−2016 New 11 27 34
Returning 6 7 4

2016−2017 New 12 20 25
Returning 1 20 11

2017−2018 New 13 20 24
Returning 2 22 14
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or course component, such as a lab, which would have been
inappropriate for our sample. Likewise, a homogeneously high-
performing population may have negated the usefulness of a
self-concept measurement.97

While overlapping categories within the instrument have
brought the discriminant validity of the CLASS into
question,98 the categories themselves were of secondary
importance. The CLASS items best aligned with the intended
research questions, and the plan to conduct further
investigation beyond the survey would provide additional
meaning behind the quantitative results.
Nonparametric statistical tests were performed in SPSS to

analyze survey data, after a Shapiro−Wilk test showed that the
results were not normally distributed. Specifically, the
Wilcoxon signed-rank test was used to identify large shifts in
TIs’ matched pretest and post-test scores. Due to sample size
concerns, the test was performed using exact calculations (as
opposed to asymptotic). Effect sizes are reported as rank-
biserial correlations, r.99 A detailed description of these
calculations can be found in the Supporting Information.

Interviews

Because the CLASS had never been used on this population,
we felt that conducting interviews would provide insight as to
how these participants were interacting with the instrument. A
stratified sample of 13 TIs was selected to participate in an
interview. TIs were sorted by gender, PC enrollment (or lack
thereof), and year in the TI program. TIs were then randomly
selected from these categories where possible.
The interviewee’s collective CLASS responses were used as a

rough interview guide. To prepare for each individual
interview, the interviewer (E.L.A.) noted items that had large
shifts, novice responses, or responses that differed from the
majority of the other TIs. The interviewer asked TIs to recall
their responses and consider their reasoning, particularly
stating what context they were thinking about when they
selected their answer. Interviewees were given a physical copy

of the CLASS instrument but not their responses. To minimize
bias, the interviewer did not make any references to the TI/
CCE programs until the final question, unless it was first
prompted by a TI. Audio data was collected, transcribed, and
coded using NVivo version 11.
IRB Approval

All methods and procedures were granted IRB approval from
the university, under IRB protocol 15-813M, with annual
renewal.

■ RESULTS

RQ1: CLASS by Year in Program

To measure the attitudinal changes that take place over time in
the program, it seemed logical to look at the TIs’ scores based
on their number of years in the program. Matched data from
all first- and second-year TIs were separated. While some TIs
had completed three years in the program, the sample size was
too small (N = 7) to obtain meaningful results. Data collected
during a TI’s enrollment in the Pedagogy Course were
excluded. To check for possible inconsistencies between
academic years, a Kruskal−Wallis test was run to compare
scores between the three academic years for both groups. No
significant differences were found, supporting the decision to
combine all first-year TIs into one group and second-year TIs
into a second group.
Figure 3 shows a large, expert shift in the “All Categories”

section for first-year TIs. Large shifts also appeared in three of
the categories: Real World Connection, Atomic-Molecular
Perspective of Chemistry, and Conceptual Connections. The
first two categories saw shifts in the expert direction, with the
Atomic-Molecular Perspective of Chemistry category demon-
strating both a significant gain in the favorable responses (F)
and loss in the unfavorable responses (U). However, the
Conceptual Connections category saw a novice shift due to the
rise of the unfavorable score. Effect sizes were calculated using
a rank-biserial correlation, r. Figure 3 illustrates these changes

Figure 3. Matched CLASS pretest and post-test results for all first-year TIs. Pretests were administered in the Fall semesters, prior to the first week
of the program. Post-tests were administered in the Spring semesters during the final week of the program. Blue outlines denote large (p ≤ 0.05)
expert shifts, while red outlines denote novice shifts (p ≤ 0.05). Biserial-rank correlations are provided as effect size (N = 48).
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and provides the effect sizes. Exact scores and shifts can be
found in Table S1 in the Supporting Information.
Second-year TIs (Table S2) also demonstrated desirable

shifts in the combined “All Categories” (r = 0.78) and in the
Atomic-Molecular Perspective of Chemistry category (r =
0.67). The full table of scores can be found in the Supporting
Information (Tables S1 and S2). Notably, the large undesirable
shift in the Conceptual Connections category was not seen in
the second-year, with the second-year’s post-test score being
greater than the first-year’s pretest score. While sample sizes
precluded direct comparisons between the groups, the results
were encouraging and informative for qualitative purposes.

RQ2: CLASS by Pedagogy Course Enrollment

To understand the role of the Pedagogy Course, PC TIs were
analyzed separately. TIs opting to take the PC were given a
separate pretest and post-test at the beginning and end of the
one-semester course. These TIs saw approximately 50% less
facetime with students and worked primarily in traditional
office hours, rather than in structured learning sessions like
recitations and workshops. In a similar fashion to RQ1, a
Kruskal−Wallis test was used to check the assumption that
there were no differences between academic years. Again, this
assumption was supported, and all PC TIs were combined into
one group. This group showed a large novice shift in Personal
Interest (N = 42, p ≤ 0.05, r = −1) and no large expert shifts.
We considered that those who enroll in the PC may begin the
program with different attitudes compared to those who enroll
only in the TI program. However, we did not see any notable
differences between pretest scores of PC and non-PC TIs for
any category. All scores for this group can be found in Figure
S3.

RQ3, Part I: Relationship of Coursework and CLASS
Responses

The third and primary research question asks how the
experiences gained by a peer leader are tied to their beliefs
about learning and was motivated by discrepancies in the
CLASS responses. While a majority of large shifts were in the
expert direction, when looking at the individual item responses,
there were some statements that had a large novice consensus.
Because the CLASS does not make specific mention of a
particular chemistry course, we questioned whether other
coursework could be a confounding factor in TIs’ responses.
Previous studies have shown differences in scores between
General and Organic Chemistry students, which the majority
of TIs had taken or were enrolled in at the time.87 Likewise, we
sought to better understand the TIs’ responses to the CLASS,
as this instrument had not been previously reported on for peer
leaders. For these reasons, it was necessary to determine what
coursework or experiences motivated TIs’ responses to the
CLASS.
As previously described, the participants’ (Table 3) CLASS

responses were used to guide the interview protocol. Of the 50
CLASS items, 30 were discussed at least once between the 13
interviews, with some items appearing in as many as 10
interviews. In total, there were 79 instances in which the
interviewer asked about a specific CLASS item. In 62 of those
79 instances, the TI was able to recall the context that they
were considering when responding to that item. Each context
response was coded according to course identity or fell under
the category of “Chemistry/Science as a Whole”. As some TIs
discussed more than one context per item, the total “Number

of Mentions” is greater than 79. The results are shown in Table
4.

Organic Chemistry was identified the most when prompted
with a specific CLASS item, followed by the Teaching
Internship/Pedagogy Course and General Chemistry. Only
General Chemistry was mentioned by all 13 TIs interviewed,
although the first two followed closely behind.
All 13 TIs cited more than one context during their

interview, and some even stated multiple contexts for a single
item, noting that it changed over time based on their
coursework. This supported our original hypothesis that the
increased coursework experience could be a confounding
factor. One third-year TI, Reema, exemplified how strongly her
concurrent coursework influenced her answers. Like most TIs,
Reema was enrolled in Organic Chemistry during her first year
as a TI. During this time, her response to item 37 (Box 1) had
a novice shift. However, the following year, her responses
indicated that an expert shift had occurred. A snippet of her
response can be found in Box 1.
In fact, of the 10 interviews in which item 37 was discussed,

nine of the TIs’ responses cited Organic Chemistry as the
reason for their response. Notably, this item is a part of the
Conceptual Connections category on the CLASS, which was
the only category that saw a novice shift among the first-year
TIs.
RQ3, Part II: Origin of Attitudinal Shifts

With strong evidence that individual TIs implicated different
contexts while completing the CLASS, it was pertinent to
understand the root of the various shifts. To separate the
survey data accordingly, the contexts were first mapped to the
categories each time a specific CLASS item appeared in the
interviews (Figure 4). Please note that items from the category
“Real World Connections” were not associated with any
context during any of the interviews and are thus excluded

Table 3. Interviewee Profiles

Pedagogy Course Gender 1st Yeara 2nd/3rd Yeara

Completed Female Zara Marla
Manasi

Male Niven
Raj

Did not enroll Female Nanjana Reema
Emma

Male Sami Kenny
George Darsh
Ronit

aNames have been changed.

Table 4. Context of CLASS Items

Context
Number of
Mentions

Number of
TIsa

Percent of All
Mentions

Organic Chemistry 34 12 36.6%
TI Program/Pedagogy
Course

25 11 26.9%

General Chemistry 23 13 24.7%
Other Science Course 5 4 5.4%
Chemistry/Science as a
Whole

4 3 4.3%

Nonscience Course 2 1 2.1%
aThe number of TIs (out of 13) that referenced that context.
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from the map. Additionally, a small number of items that were
discussed during the interviews do not belong to a CLASS
category, accounting for slight discrepancies between the totals
in Figure 4 and those provided in Table 4.
The next step was to map the general direction of the shifts

to each course context. As this could only be done for
instances in which an interviewee explicitly related a specific
context to a shift that they could recall, gathering a large data
set was challenging. To maintain consistency with the previous
methods, the Agree and Strongly Agree options were grouped
as “Agree” and Strongly Disagree and Disagree were grouped
as “Disagree”. Shifts were then only defined as any change
between Agree, Neither Agree/Disagree, and Disagree. Thus,
shifts from “Agree” to “Strongly Agree,” for example, were not
counted. In total, 42 instances were identified in which an
interviewee explicitly linked a specific context to a shift in their
CLASS responses. General Chemistry was not identified as a
cause, which was fitting because none of the TIs were enrolled
in General Chemistry during their time in the TI program.
As shown in Figure 5, a majority of shifts were in the expert

direction for all three contexts. However, in all instances in
which the TI program was cited as the cause, the shifts were
favorable. To probe further, the interviewer concluded each
interview by asking TIs to consider ways that the TI program
may have affected their general attitudes toward learning or
chemistry. All 13 interviewees stated various experiences of
positive personal growth resulting directly from the TI/CCE
programs, including improved metacognition, confidence,
study skills, time management, and resilience. These benefits
are elaborated on in the following section.
RQ3, Part III: Other Benefits to Being a Peer Leader

Throughout the interviews, TIs made numerous references to
the ways that being a peer leader shaped their beliefs about

learning, science, or even about themselves, outside the context
of the CLASS. A total of 71 such instances were extracted from
these interviews, from all 13 interviewees. These excerpts were

Box 1. Snippet of Interview with Reema

CLASS Item 37: “In learning chemistry, I usually memorize
reactions rather than make sense of the underlying physical
concepts.”
Interviewer: When you f irst came into the [TI] program you

disagreed with [Item 37]... that you do NOT usually memorize
these reactions instead of making sense, but then you went to agree
af ter one year... when you were still a sophomore.
Reema: Yeah
Interviewer:When you see this question, what are you thinking

of ? What were you answering that in the context
Reema: [interrupts] As a sophomore? Orgo!* Where you

memorize like a sheet of 50 reactions without thinking about it?
Yeah.
Interviewer: Okay
Reema: Like when you are in [General Chemistry], you are not

working with the same kinds of reactions again and again so you
have to understand which one’s an acid, which one’s a base and
then go f rom there.
Me: Right.
Reema: Versus Orgo, you do that, but there was so much that

at a certain point you just did not have time to.
Me: I understand. And af ter that year, you consistently selected

strongly disagree.
Reema: [laughs] Yeah. Once I was done being in Orgo.
*“Orgo” is the common term for the Organic Chemistry

sequence.

Figure 4. This data is based on responses from the interviews with
TIs, in which TIs were asked to provide the context that informed
their responses on specific CLASS items. CLASS categories are listed
on the left, while the courses appear across the top. The bubbles
represent the instances in which a CLASS item, belonging to one or
more categories, was associated with a specific course. The number of
instances is written in the middle of each bubble, and the size of the
bubble is commensurate with this number. If an item belonged to two
or more categories, it was included as such. Please note that “PS” is
abbreviated for “Problem-Solving” and “AMPC” is abbreviated for
“Atomic-Molecular Perspective of Chemistry”. An alternative
representation of this data may be found in the Supporting
Information (Figure S1).

Figure 5. Interviewees recalled the cause of any shifts from their
CLASS results. The main causes were classified as the TI Program,
Organic Chemistry (Org. Chem.), or another science course. General
Chemistry and nonscience courses were not identified by any of the
TIs as a cause of a shift. Red indicates a novice shift, while blue
indicates an expert shift.
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coded by the first researcher (E.L.A.), using an open-coding
scheme. The second researcher (D.M.Y.) independently coded
38/71 of these excerpts using the coding scheme provided,
with the option to make changes to the coding scheme if
necessary. Eleven categories were developed from these codes,
but they were collapsed into nine categories upon discussion
with the second researcher. Agreement was initially reached on
35 of the 38 excerpts (92.1%), and upon further discussion, the
researchers resolved all discrepancies. Results of this analysis
can be found in Table 5, and definitions of each category can
be found in Table S4 of the Supporting Information.
The most common finding to emerge fell under “Improved

Skills and Knowledge”, specifically that TIs’ Pedagogical
Knowledge and Techniques had improved dramatically.
While both the TI and CCE programs include a training
component, the fact that improved pedagogical content
knowledge was a notable benefit that the TIs discussed
unprompted was surprising. Further, most TIs (9/13) stated a
marked improvement in their problem-solving strategies and/
or content knowledge, which is consistent with previous
studies on similar populations.25,26,44,51

Stepping away from the chemistry, another often-discussed
benefit was labeled Empathy/Appreciation, whereby TIs
acknowledged developing a better understanding of students’
struggles or a newfound appreciation of their own professors.
Indeed, at the end of the interview, when asked how the TI
program changed their views of chemistry, one TI described
how their students gave them a new understanding of their
own past experiences:

“Where I went to school, originally, that area is kind of an
underserved area. And then moving, having the majority of
my high school in [a wealthier town], that really changed
me. But even then, when I thought about chemistry, I
overlooked that, because for me, it was generally like if you
work for it, you get it. But it’s not necessarily like that
because if some people are coming from an area where they
haven’t been paid attention to their entire life, there’s just
some things you can’t change, so I feel like I’m noticing
things like that more now.” (Nanjana)
When the topic of empathy arose, four TIs referenced the

lesson on equity, inclusion, and diversity from their weekly staff
meetings, suggesting that these topics left a lasting impact.

RQ4: CLASS Utility for Peer Leaders

The final research question asks whether or not the CLASS is a
suitable, valid instrument for assessing the learning beliefs of
peer leaders. There were instances in which a TI would
contradict their written answers in an interview or state that
they did not know why they answered the way they did. When
this occurred, the item and response were discarded from the
aforementioned qualitative analysis. The most commonly
stated cause for these discrepancies was a misunderstanding
of the question. Nine of the 13 TIs cited this at least once
during their interview, with none of them stating it more than
twice. On the other hand, it is possible that meanings changed
over time:

“Initially I agreed [that doing lots of problems was helpful],
but actually, from my perspective now, I didn’t realize how
many problems other people did. I genuinely had no idea. I
did maybe two practice exams max and I thought that was
a lot. Until I started working with students.” (Ronit)
Other potential sources for a discrepancy could be survey

fatigue (taking the CLASS multiple times over the years) or

simple forgetfulness. The “lazy data” removed from statistical
analysis was not included in the interviews.
Ultimately, mixed results on the survey indicated that the

survey data alone was not satisfactory to determine the effect
that the TI program had on these participants’ attitudes.
Interview data suggested that TIs were implicating multiple
different contexts when responding to the survey items, and
that different contexts were associated with different attitudes:

“I think I did most of [the survey] in the mindset of Gen
Chem. But the questions about how you feel about the
subject of chemistry, I was thinking of being a TI. So it
depends on the question. But I wouldn’t say as an Orgo
student. My thoughts on Orgo are a little different.” (Niven)
Interestingly, five TIs explicitly acknowledged approaching

their own current coursework differently from how they
encourage their students to approach it. For example:

“When the student comes in, I have to encourage them, even
though it’s not what I necessarily always do, I tell them you
can’t just sit there and memorize this, that you have to
understand why it works. I try to explain that, even though I
don’t always do that myself.” (Zara)
“The biggest thing was that it’s important for them to do the
process rather than just give them answers, to have them
work through it... but then sometimes I go to office hours
and I might just really want the answer [laughing].”
(Kenny)
This lends support to the idea that, for this particular

population that has experienced multiple chemistry courses,
the CLASS is not simply assessing “chemistry” as a particular
course, but perhaps a combination of courses or prior
experiences, or even as a discipline in general, as one TI
stated “I was just thinking of my experiences in general, like
with my entire chemistry career.” (Emma)

■ DISCUSSION: CONTEXT MATTERS
From the data presented here, it appears that TIs do
experience positive growth in their attitudes toward learning
chemistry as a result of their time in the program. This is
consistent with previous work that has shown that different
instructional practices can impact students’ scientific be-
liefs.68,70,100 All TIs participated in some form of weekly
pedagogy training that focused on the nature of learning and
the scientific process and received continuous feedback on how
to apply their training to actual teaching experiences. Likewise,
these findings add to the growing body of knowledge about the
benefi ts that peer leaders have been shown to
gain.13,23,25−28,38,44,51

TIs who opt to take the Pedagogy Course were not found to
have large changes in learning attitudes during their first
semester. Further, there was no evidence to suggest that these
PC and non-PC TIs begin their respective programs with
different attitudes. It is possible that one semester, approx-
imately 14 weeks, is not enough time to capture meaningful
data, keeping in mind that the PC TIs only gained half the
teaching experience as the non-PC TIs. Alternatively, it could
be that the PC TIs’ training was simply different in nature, the
results of which could not be properly evaluated by the
CLASS. Previous studies have shown that a formal pedagogy
course did offer unique benefits, suggesting that this latter
possibility may hold some truth.25,28,101,102 For example, in
their study on a population that included TIs, Blackwell et al.
identify the PC as “the most critical component of [peer
leaders’] training and professional development”, citing one
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peer leader who stated that the course was influential in
learning about their own learning.25 Further, our own course
evaluations of the PC have been overwhelmingly positive.
Perhaps most encouragingly, the small number of TIs who
took the PC after one or more semesters of being a TI noted
benefits gained specifically due to the PC. More rigorous work
on a larger sample would be needed to fully capture any
differences between PC and non-PC TIs.
Concerning our primary research question, RQ3, interview

data ultimately aided in our understanding of how the TI
program, through teaching or training, affects TIs’ attitudes
toward learning chemistry. Each mention of peer leadership
corresponded to expert responses and/or shifts in attitudes.
Aside from specific items from the survey, TI responses about
their experience in the program suggested that they gained
valuable skills and a matured perspective on their own
education and on chemistry and learning in general.
All 13 interviewees stated that their responses were context-

dependent. Interestingly, one interviewee stated that when
they were conflicted about their level of agreement for an item
because they were considering two different contexts, their
beliefs developed from the TI program took higher precedence
and affected their survey response accordingly. While it is not
possible to generalize this statement to the population, there
were multiple instances in which TIs admitted to not always
practicing what they preached. This sentiment was similar to
that found by Adams et al.,103 in which physics students taking
the CLASS were found to hold personal beliefs that differed
from beliefs they perceived an expert would hold.

■ CHALLENGES AND LIMITATIONS
One challenge for conducting this study was that participants
were asked to discuss coursework and the CCE/TI programs
with the programs’ coordinator. This introduces the possibility
that certain beliefs or experiences were not disclosed by the
TIs if they felt that those beliefs and experiences were not
positive or aligned with the programs’ pedagogical philosophy.
To minimize these concerns, interviews were conducted at the
end of the Spring 2018 semester, after TIs were presumably
more at ease in the program. Continuous efforts were made
throughout the year to invite constructive feedback from TIs,
encourage honest self-reflection, and promote a safe environ-
ment for discussion. For the interview, participants were told
that the purpose was to understand their coursework
experiences in general. At no point during the CLASS portion
of the interview did the interviewer explicitly name the TI
program unless it was brought up by the interviewee, so as to
avoid any “prompting”. The final question asking them to
discuss their experiences and attitudes as a TI was purposefully
reserved for the end.
One limitation for this study is the modest sample size.

Typically, the CLASS has been administered in large courses,
such as General Physics or General Chemistry, where the
sample size can extend into the thousands. In this case, the
sample size reduced the statistical power and impeded the
ability to draw many meaningful conclusions from the
quantitative data alone. Second, this sample was relatively
homogeneous in terms of academics. The TIs were selected
from the top of their General Chemistry class and enrolled in
similar coursework, and the overwhelming majority held
interest in healthcare careers. Even in cases of novice shifts,
their CLASS scores were still high compared to a typical
General Chemistry population,87 introducing the possibility of

“maxing out” the instrument. Still, the qualitative data provided
meaning to some of the results where the statistics could not.

■ IMPLICATIONS FOR INSTRUCTION AND
RESEARCH

The calls to promote classroom equity and to foster so-called
“21st Century Skills” such as scientific thinking have shaped
recent educational practices.9,104−109 The paradigm of learning
through teaching is well-supported, and this research suggests
that teaching, and learning how to teach, may impact one’s
beliefs about learning science, and thus their scientific thinking.
Encouraging this as a practice either through formal programs
like the Teaching Internship or simply as a classroom exercise
may foster this type of development in our STEM students.
Interview evidence suggested that at least some TIs

simultaneously hold opposing expert and novice beliefs about
learning and that they may act on those beliefs differently given
a specific context. If we suppose that a TI’s conflicting beliefs
are a direct result of their diverse experiences, it would be of
interest to examine what factors of a course or program
determine precedence in their selection. For practitioners, this
fact also emphasizes the importance of incorporating practices
that foster positive/expert beliefs about science and learning
throughout multiple courses, rather than isolating these
practices as their own entity.
Within our own population, these findings have prompted

modifications to the PC and TI staff meetings. For example,
TIs are given in-class activities which provide opportunities for
them to explicitly apply their pedagogical knowledge to their
own coursework, such as Organic Chemistry, in addition to
their General Chemistry duties. By encouraging a broader
application of these skills and concepts, TIs may not only
improve their General Chemistry pedagogical content knowl-
edge but perhaps also develop more expert-like attitudes about
learning and chemistry across the field. In a similar manner,
small changes have since been made to discuss the importance
of empathy when working with students. Topics of equity,
inclusion, and diversity have been incorporated within other
topics throughout the semester for both the PC and the TI
staff meetings.
To our knowledge, detailed CLASS data has not been

reported on previously for a peer leader population, although
Otero et al. do note positive overall attitude changes in Physics
LAs.110 The instrument served as a valuable starting point for
our investigation on peer instructors’ learning attitudes about
chemistry. Interviews were then necessary as a means of
clarification for conflicting or unexpected responses, as well as
to assess the validity of its use in our population. In the future,
a modified version of the survey may help to more easily
pinpoint attitude changes specific to a peer leader’s role. Such
an instrument could investigate similar beliefs about learning
chemistry, while prompting participants to consider their
training or experiences in this role. This data may inform the
pedagogical practices and/or overall structure of the program
to target peer leaders’ learning beliefs. Alternatively, this data
could be compared with their attitudes stemming from other
coursework, expanding upon the work discussed in this paper.
If similar results are found, such that peer leaders do
compartmentalize or rank beliefs based on a specific context,
it may be worth investigating why this divergence occurs and
providing an argument for incorporating explicit pedagogical
content knowledge within the early general STEM course
curricula.
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