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A formulation of the chemical potential~electronegativity! equalization principle is presented from
the perspective of density-functional theory. The resulting equations provide a linear-response
framework for describing the redistribution of electrons upon perturbation by an applied field. The
method has two main advantages over existing electronegativity equalization and charge
equilibration methods that allow extension to accurate molecular dynamics simulations. Firstly, the
expansion of the energy is taken about themolecularground state instead of theneutral atom
ground states; hence, in the absence of an external field, the molecular charge distribution can be
represented by static point charges and dipoles obtained from fitting to high-levelab initio
calculations without modification. Secondly, in the presence of applied fields or interactions with
other molecules, the density response can be modeled accurately using basis functions. Inclusion of
basis functions with dipolar or higher order multipolar character allows molecules or chemical
groups to have correct local anisotropic polarizabilities. A modified semiempirical form of the
hardness matrix has been introduced that can be evaluated efficiently using Gaussians, and requires
only one parameter per basis function. Applications at two basis-set levels demonstrate the method
can accurately reproduce induced dipole moments and estimated chemical potentials obtained from
density-functional calculations for a variety of molecules. Inclusion of basis functions beyond the
conventional spherical-atom type is essential in some instances. The present formulation provides
the foundation for a promising semi-empirical model for polarization and charge transfer in
molecular simulations. ©1996 American Institute of Physics.@S0021-9606~96!02901-7#

I. INTRODUCTION

The development of accurate, computationally tractable
methods to model the interactions of atoms and molecules is
a major goal of modern theoretical chemistry. High level
first-principle methods are generally reliable; however, the
compute-intensive nature of the calculations severely limits
the range of applications that can be addressed by these tech-
niques. On the other hand, more simplistic empirical models
frequently lack sufficient accuracy for many important appli-
cations. Conventional molecular mechanical force fields of-
ten model charge distributions by static point charges and
dipoles1 and, hence, neglect polarization and charge transfer
that generally require consideration of many-body effects.
Progress has been made by introducing models that include
atomic dipole and higher order multipole polarizability.2

Nonetheless, the development of new methods that incorpo-
rate improved physical models is an ongoing area of active
research.

Intrinsic to the nature of molecular interactions is the
behavior of the electron density.3,4 In particular, it is instruc-
tive to know how the electron density responds to changes in
molecular configuration and chemical environment. Thus, an
appealing approach towards modeling chemical systems in-
volves modeling changes in the electron density. Density-

functional theory4–7 ~DFT! provides a natural framework for
attacking this problem since it treats directly the electron
density as the basic variable. Unfortunately, the computa-
tional requirement inherent in conventionalab initio density-
functional methods precludes application to very large mo-
lecular systems,8 especially when coupled with extensive
sampling of configuration or phase space. For these systems,
approximate methods that are less computationally demand-
ing are required.

A particularly promising class of methods that address
this problem are based on the concept ofelectronegativity
equalization. Electronegativity equalization was first intro-
duced by Sanderson9 as a method for estimating atomic
charges in molecules based on the relative electronegativities
of the atoms before and after equalization~molecule forma-
tion!. Sanderson’s original method, however, had the defi-
ciency that it would not distinguish between like atoms in the
same molecule. Later, Gasteiger and Marsili10 introduced an
iterative method for determining atomic charges based on
partial equalization of orbital electronegativities.11 Although
these methods proved qualitatively useful as empirical meth-
ods for estimating atomic charges, they lacked a rigorous
foundation in theory.

Density-functional theory provides a rigorous math-
ematical definition for many intuitive chemical concepts
such as electronegativity12 and chemical hardness,13,14and is
the foundation of the electronegativity equalization principle.a!Author to whom all correspondence should be addressed.
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The connection is established through the identification of
the electronegativity as the negative of the chemical
potential.15 Analogous to macroscopic thermodynamics, the
chemical potential of an equilibrium ground-state electronic
system is everywhere equal~a constant!.16 The idea behind
the electronegativity equalization methods, as the name sug-
gests, is that when atoms or molecules interact, the electrone-
gativity ~chemical potential! must equalize. From the view-
point of density-functional theory, this follows directly from
the variational principle for the ground-state electron
density.4

A major advance was realized with the development of a
rigorous mathematical formalism for electronegativity equal-
ization based on density-functional theory by Nalewajski17

and Mortieret al.18 Methods derived from this formulation
predicted atomic charges and other properties that were ge-
ometry and connectivity dependent~for a review, see Ref.
19!. Following these developments, several variations have
been proposed.20–25 For the most part, these methods have
been used to determine atomic charges,18–23model chemical
binding,24 and analyze charge transfer in chemical bond
formation.25 Recently, electronegativity equalization has
been used to probe reactivities using charge sensitivity
analysis,26 and provide a method for determining dynamic
charges for molecular simulations.20,27 In general, these
methods rely on empirical parameterizations of individual
atoms and, hence, have the advantage that they can be ap-
plied to any molecule. However, for a highly reliable repre-
sentation of the electron density, as is required for molecular
simulations, it is not clear that any single set of atomic pa-
rameters can provide sufficient accuracy for a diverse set of
molecules.

In this work, we describe a formulation of the classic
chemical potential~electronegativity! equalization principle
that can be applied to molecular simulations. We choose to
refer to the method explicitly as a chemical potential equal-
ization ~CPE! method to emphasize its origin in density-
functional theory. The method provides a linear response
model for the electron density that employs basis functions.
The model gives high accuracy in the presence of relatively
large perturbations such as those arising from interactions
with other molecules or applied fields, and is ‘‘exact’’ in the
limit that these interactions vanish. The method has the ad-
ditional advantage that it can be systematically improved by
inclusion of more complete basis functions for the density
response. In several important instances, inclusion of basis
functions beyond the conventional single spherical-atom
type representation is essential. Section II gives a general
derivation of the chemical potential equalization equations.
Section III outlines how the equations can be solved using
basis functions for the density response. Section IV gives
formulas for several useful properties derivable from the
density. Section V applies the method at two basis-set levels
to small molecules in the presence of perturbing fields, and
to intermolecular water–water interactions. Section VI dis-
cusses the advantages and disadvantages of the present
method, and its relation with others proposed in the litera-
ture.

II. DERIVATION OF CHEMICAL POTENTIAL
EQUALIZATION EQUATIONS

Consider a ground-state molecular system characterized
by electron densityr0(r !. From density-functional theory,4

the energy can be written as a unique functional of the den-
sity in the form

E@r#5T@r#1Vee@r#1E r~r !n0~r !d
3r1VNN

5F@r#1E r~r !n0~r !d
3r1VNN , ~1!

whereT[r] is the kinetic energy functional,Vee[r] is the
electron–electron interaction energy functional which in-
cludes both classical Coulombic and nonclassical exchange
and correlation effects, andVNN is the nuclear–nuclear re-
pulsion energy. The functionalF[r] depends only on the
electron density~does not depend implicitly or explicitly on
the external potential!, and is therefore universal. The varia-
tional principle for the ground-state energy in terms of the
electron density is4

E@ r̃#>E@r0#[E0 ~2!

for anyN-representable trial densityr̃. The conditions for an
N-representability density28 are that the density is smooth,
positive semidefinite, and normalized to the total number of
electronsN. From Eq. ~2! it is clear that the ground-state
electron density satisfies the stationary condition

d$E@r#2mN@r#%50, ~3a!

N@r#5E r~r !d3r , ~3b!

where the chemical potentialm is the Lagrange multiplier on
the normalization constraintN[r]5N. The Euler–Lagrange
equation for the ground-state energy and density is thus

S dE

dr~r ! D
n
U

r5r0

5S dF

dr~r ! D U
r5r0

1n0~r !5m05const.

~4!

If the variations in the space ofN-representable densities are
replaced by variations of orthonormal spin orbitals, Eq.~4!
translates into the conventional Kohn–Sham equations of
density-functional theory.5 The Kohn–Sham method pro-
vides an accurate method for obtaining the ground-state mo-
lecular density.

Consider now the effect of a perturbationdn(r ! on the
ground-state system. The perturbed energy to second order is
given by
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E~r01dr,n01dn!5E01E S dE

dr~r ! D
n

dr~r !d3r1E S dE

dn~r ! D
r

dn~r !d3r1
1

2 E E dr~r !

3S d2E

dr~r !dr~r 8! D
n

dr~r 8!d3r d3r 81E E dr~r !S d2E

dr~r !dn~r 8! D dn~r 8!d3rd3r 81
1

2 E E dn~r !

3S d2E

dn~r !dn~r 8! D
r

dn~r 8!d3rd3r 8. ~5!

In Eq. ~5! and, hereafter, it is implied that all functional
derivative terms are evaluated at the ground state~r5r0 and
n5n0!. Note that the variationsdn(r ! anddr(r ! are not in-
dependent for a given number of electronsN, but are related
through the Euler-Lagrange equation Eq.~4!. Examination of
Eq. ~4! identifies the first functional derivative term in Eq.
~5! as the chemical potentialm0 of the unperturbed system.
From the expression for the energy functional in Eq.~1!, Eq.
~5! simplifies to

E~r01dr,n01dn!

5E01m0E dr~r !d3r1E @r0~r !1dr~r !#dn~r !d3r

1
1

2 E E dr~r !S d2F

dr~r !dr~r 8! D dr~r 8!d3rd3r 8. ~6!

The new Euler–Lagrange equation for the perturbed system
is

E S d2F

dr~r !dr~r 8! D dr~r 8!d3r 81dn~r !5m2m05Dm.

~7!

Equation ~7! is the fundamental equation from which the
present formulation of chemical potential equalization is
based. The strategy we employ in the following section is to
transform Eq.~7! into an algebraic equation that can be
solved for the density responsedr(r ! for a given applied
field perturbationdn~r ! ~and optionally a net charge transfer
DN!.

III. SOLUTION OF THE CPE EQUATIONS IN A FINITE
BASIS

In this section, we show how the CPE equations can be
solved using basis functions for the density responsedr(r !.
We further suggest a semiempirical approximation for the
second functional derivative term in Eq.~7! that is demon-
strated later~Sec. V! to give a simple but useful model for
polarization and intramolecular charge transfer.

Consider an expansion of the density responsedr(r ! in a
basis of normalized functions$w i% such that̂ w i uw i&51 and
*w i~r !d

3r,`

dr~r !5(
i
ciw i~r !. ~8!

The coefficients$ci% are determined from matrix form of the
stationary condition Eqs.~3!,

]

]ci
$E@cI #2mN@cI #%50, ~9!

whereE[cI ] andN[cI ] are given in matrix notation by

E@cI #5E01^r0udn&1m0cI
T
•dI 1cI T•dn1 1

2cI
T
•h= •cI

1VNN , ~10a!

N@cI #5N01cI T•dI , ~10b!

whereN0 is the number of electrons in the unperturbed sys-
tem. The matrix and vector elements of Eqs.~10! are defined
by

~dI ! i5E w i~r !d
3r , ~11a!

~dn! i5^w i udn&, ~11b!

~h= ! i j5K w iUS d2F̂

drdr D Uw j L . ~11c!

The matrixh= describes the interaction between basis func-
tions which we term thehardness matrixin the basis of the
density response. Application of Eq.~9! using Eqs.~10! and
~11! results in the linear equation

h= •cI 1dn2DmdI 50 ~12!

which, assumingh= is nonsingular, has solution

cI 5h= 21
•$DmdI 2dn%. ~13!

The Lagrange multiplierDm is chosen to satisfy the normal-
ization conditioncI T•dI 5N2N0[DN:

Dm5
DN1dI T•h= 21

•dn

dI T•h= 21
•dI

, ~14!

whereDN is the amount of net charge transfer that is al-
lowed ~zero for fixed total number of electrons!.

Thus far, we have not explicitly specified the form of the
hardness matrix elements. Recall from Eq.~1!, the universal
functional F[r] is a sum of kinetic energy and electron-
electron interaction terms. Within the Kohn–Sham formula-
tion of DFT,5 this term is written as

F@r#5TS@r#1J@r#1EXC@r#, ~15!
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whereTS[r] is the Kohn–Sham noninteracting kinetic en-
ergy,J[r] is the classical electrostatic energy,EXC[r] is the
exchange-correlation energy. In fact, the form of the two-
electron operator

S d2F

dr~r !dr~r 8! D5
1

ur2r 8u
1S d2TS

dr~r !dr~r 8! D
1S d2EXC

dr~r !dr~r 8! D ~16!

is not known because the kinetic energy and exchange cor-
relation functionals are not known exactly in terms of the
density. We therefore introduce the following extended
Hückel–like approximation29 for the elements of the hard-
ness matrix:

~h= ! i i5 f i1^w i u
1

ur2r 8u
uw i&, ~17a!

~h= ! i j5
1

2
k~ f i1 f j !^w i uw j&1^w i u

1

ur2r 8u
uw j&

for iÞ j , ~17b!

where the$ f i% are empirical parameters, andk is taken to be
unity. Thus, long-range interactions are treated as purely
Coulombic, and the kinetic and exchange correlation energy
contributions are modeled by a term proportional to the over-
lap of the density basis functions. For localized basis func-
tions, the model assumes the kinetic energy and exchange-
correlation contributions are short range. This treatment is
also analogous to a Mulliken-type approximation30 using
density basis functions.

Construction of a CPE force field for molecular dynam-
ics simulations requires selection of a density basis set$w i%

and parametrization of the hardness matrix parameters$ f i%
~one per basis function!. Once this has been accomplished,
the procedure for determining the linear density response
dr(r ! of a system for a given perturbing potentialdn~r ! with
the CPE method is as follows:

~i! Construct the vectorsdI anddn from Eqs.~11a! and
~11b!.

~ii ! Construct the hardness matrix@Eq. ~11c!# using the
form Eqs.~17!.

~iii ! Solve for the Lagrange multiplierDm from Eq.~14!;
this requires inversion of the hardness matrix.

~iv! Solve for the coefficientscI from Eq. ~13! using the
value forDm determined in the previous step.

The basis set coefficients define the density response
dr(r ! through Eq.~8! and are used to determine the total
energy Eqs.~10!. The CPE equations@Eqs. ~10!–~14!# are
valid for any set of normalized basis functions of the form
Eq. ~8!. In the following section, we outline how other
chemical properties can be obtained from the CPE proce-
dure.

IV. CHEMICAL PROPERTIES DERIVABLE FROM THE
DENSITY

Several useful derivatives can be computed directly from
the CPE method presented earlier. Perhaps the simplest is the
chemical potentialm, defined from density-functional theory
to be the functional derivative of the energy with respect to
the electron density~at constant external fieldn!, or alter-
nately, the derivative of the energy with respect to the total
number of electrons6

m5S dE

dr~r ! D
n

5S ]E

]ND
n

. ~18!

FIG. 1. Linear regression of permanent dipole moments from density-
functional LDA calculations and from experiment~Ref. 41!. Data is shown
for all molecules listed in Table I.

TABLE I. Comparison of LDA and experimental permanent dipole mo-
mentsD.

Molecule Da Dexp
b

CO 0.23 0.11
HF 1.78 1.83
HCl 1.10 1.11
NaCl 8.53 9.00
HCN 3.01 2.98
H2O 1.84 1.85
H2S 1.01 0.97
SO2 1.50 1.63
OCS 0.85 0.72
CH3OH 1.59 1.70
CH3NH2 1.31 1.31
CH3F 1.69 1.86
CH3Cl 1.91 1.89
NH3 1.50 1.47
PH3 0.63 0.57
HCOH 2.22 2.33
HCOOH 1.50 1.41
HCONH2 3.81 3.73
HCOCH3 2.73 2.75
CH3OCH3 1.13 1.30

aLDA permanent dipole moment~Debye!.
bExperimental permanent dipole moment~Debye! taken from Ref. 41.
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In the CPE framework, the chemical potential follows di-
rectly from Eq.~14!. The chemical potential of an atom or
molecule corresponds to minus the electronegativity.15 An-
other intuitive chemical property is the global or absolute
hardnessh,13,14 defined as the second derivative of the en-
ergy with respect to the total number of electrons,13 and can
be evaluated with the CPE method from the matrix equation

h5S ]2E

]N2D
n

5S ]m

]ND
n

5~dI T•h= 21
•dI !21. ~19!

A related property, the softnessS, is defined as the inverse of
the hardness

S5S ]N

]m D
n

5~dI T•h= 21
•dI !5

1

h
. ~20!

Hardness and softness are fundamental concepts in acid/base
and inorganic chemistry,14 and are global quantities for a
given molecule. It is possible to define related local quanti-
ties and kernels that give additional insight into regions of
likely chemical reactivity. The localsoftnessis defined as31

s~r !5S ]r~r !

]m D
n

5sIT•wI ~r !, ~21!

where

sI5S ]cI

]m D
n

5h= 21
•dI ~22!

and wI (r ! is the vector of basis functionsw i(r !. Note the
integral of the local softness gives the global softnessS. A
closely related quantity to the local softness is the so-called
Fukui function. The Fukui functionf (r ! is an index of reac-
tivity that measures the response of the chemical potential to
a variation in the external field.32 The necessary connection
between the local softness and the Fukui function can be
established through the identity

S ]r~r !

]m D
n

5S ]r~r !

]N D
n
S ]N

]m D
n

, ~23!

which identifies the relationshipf (r !5s~r !/S.

TABLE II. Comparison CPE induced dipole moment~D!, chemical potential~m!, and polarizability~a! results usingS andSPbasis sets with corresponding
LDA and experimental values. Relative percent errors of the CPE and LDA induced dipole moments~errD! and chemical potentials~errm! are given. LDA
chemical potentials were estimated by the highest occupied KS orbital eigenvalueeHOMO . Static polarizabilities~a! are given in Å3.

Molecule errDS errDSP errmS errmSP aS aSP aexp
a

H2
b 63.8 7.0 0.4 0.5 0.33 0.79 0.80

N2 70.2 10.2 0.4 0.1 0.75 1.75 1.74
O2 70.0 10.4 0.2 1.0 0.71 1.60 1.58
F2 51.3 0.7 0.1 0.2 0.62 1.30 1.38
Cl2 73.2 9.1 0.4 0.3 2.17 4.60 4.61
Na2 77.5 18.1 3.1 5.9 14.5 36.9 39
CO 74.5 7.3 0.6 0.6 0.79 2.00 1.95
HF 79.6 4.5 0.2 0.4 0.33 0.92 0.80c

HCl 81.2 5.0 0.2 0.5 0.94 2.81 2.77
NaCl 82.8 5.9 0.4 0.9 2.07 5.38
HCN 64.2 5.1 0.1 0.3 1.14 2.58 2.59
H2O 63.4 7.7 0.8 0.7 1.00 1.57 1.45
H2S 64.2 10.7 1.0 0.7 2.38 3.92 3.95
CO2 58.8 1.8 0.1 0.1 1.29 2.57 2.91
SO2 45.1 6.5 0.4 0.3 2.61 3.71 3.72
CS2 61.9 2.7 0.1 0.3 4.61 8.48 8.74
OCS 65.2 5.5 0.3 0.5 2.51 4.94 5.2
CH4 17.6 2.6 0.5 0.5 2.26 2.35 2.59
CH3OH 18.4 10.6 2.5 1.1 3.10 3.22 3.29
CH3NH2 12.7 10.5 2.9 1.3 3.98 4.00 4.01
CHCH 69.5 4.7 0.1 0.4 1.50 3.53 3.33
CH2CH2 56.5 9.5 0.9 1.2 3.07 4.35 4.25
CH3CH3 8.6 8.0 0.3 0.4 4.40 4.52 4.43
CH3F 18.2 9.9 1.1 0.7 2.46 2.55 2.97
CH3Cl 31.2 5.6 0.9 0.4 4.63 4.64 4.72
NH3 21.9 10.9 0.6 0.6 2.36 2.28 2.26
PH3 23.2 6.7 1.1 0.8 4.49 4.70 4.84
HCOH 43.1 6.8 0.9 0.8 1.99 2.70 2.8
HCOOH 43.1 9.8 0.3 1.1 2.73 3.51 3.4
HCONH2 45.3 6.3 0.8 0.7 3.31 4.31 4.2
HCOCH3 19.5 7.7 3.9 3.0 4.41 4.64 4.6
CH3OCH3 14.1 7.5 0.5 0.7 5.18 5.14 5.16

aExperimental static polarizabilities in Å3 taken from Ref. 41.
bFor H2, theSPbasis consisted of ones-type and one isotropicp-type Gaussian on each hydrogen. For all other molecules, only a singles-type function was
used for hydrogens.
cExperimental static polarizability taken from Ref. 42, and discussed in Ref. 43.
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Hardness and softness can be further broken down into
two-variable kernels,7 which, in the basis of the density re-
sponse, are simplyh= and h=21, respectively. Similarly, the
two-variablelinear response function7 is defined as

S dr~r !

dn~r 8! D
N

5S d2E

dn~r !dn~r 8! D
N

5S dr~r 8!

dn~r ! D
N

5wI T~r !•P= •wI ~r 8!, ~24!

where

P= 5S h= 21
•dI ^dI T•h= 21

dI T•h= 21
•dI

2h= 21D ~25!

and the symbol̂ indicates the direct product. Note the lin-
ear response function given by Eq.~24! satisfies the exact
condition

E S dr~r !

dn~r 8! D
N

d3r 850. ~26!

A closely related quantity to the linear response function is
the static polarizability tensora= , defined as minus the second
derivative of the total energy with respect to components of
the electric fieldFW 5(F1 ,F2 ,F3),

33

~a= !ab52S ]2E

]Fa]Fb
D . ~27!

Here Greek subscripts are used for elements in three-
dimensional Cartesian space. In the limit of small uniform
electric fields, the interaction of the response density with the
field can be written as the scalar product:

2 (
a51

3

ma
indFa5 (

a51

3 S E xadr~r !d3r DFa

5 (
a51

3

cI T•xaFa , ~28!

wherema
ind ~a51,2,3! are the Cartesian components of the

induced dipole moment,xa ~a51,2,3! are the components of
the position vectorrW5(x,y,z), andxa ~a51,2,3! are vectors
defined by

~xa! i5E xaw i~r !d
3r . ~29!

It follows directly from Eqs.~28! and ~29! that the static
polarizability tensor in the CPE model is simply

~a= !ab52xa
T
•P= •xb ~30!

It should be emphasized that the CPE method employed
here is a linear response model. The energy has been con-
structed as a quadratic function of the electron density; hence
the energy and its derivatives are continuous functions of the
number of electronsN. This is in contrast to the known dis-
continuities of derivatives of the form]/]N whenN is an
integer. Examples include the chemical potential (]E/]N)n

and Fukui functions@]r~r !/]N#n ~in fact, from this prospec-
tive, the absolute hardness of a molecule with integer num-
ber of electrons is not well defined!. Nonetheless, chemical
potential equalization methods have been demonstrated to
provide a useful qualitative description of these properties
for a variety of systems.26

V. NUMERICAL APPLICATION

In this section we apply the CPE formalism to model the
linear density response. In Sec. V A the method is param-
etrized and applied to a series of small molecules in the
presence of perturbing fields. Induced dipole moments and
chemical potentials calculated with the CPE method are
compared with corresponding LDA and experimentally de-

FIG. 2. Linear regression of CPE and LDA induced dipole moments:~a!
CPE results obtained with theS basis set;~b! CPE results obtained with the
SP basis set. Individual components (Dx ,Dy ,Dz) are shown for each mol-
ecule listed in Table II. Linear, planar, and nonplanar molecules are depicted
by diamond symbols, crosses, and solid squares, respectively. Units are
atomic units.
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rived values. In Sec. V B we examine in detail intermolecu-
lar water–water interactions within the CPE framework.

A. Computational procedure

1. Density-functional calculations

Density-functional calculations were performed using
the Kohn–Sham~KS! formulation of density-functional
theory5 implemented in a numerical self-consistent-field
~SCF! algorithm.34 Electron correlation was treated using the
Vosko–Wilk–Nusair local density approximation~LDA !.35

Atomic orbital basis functions were generated as numerical

LDA solutions of the KS equations for the isolated atoms,
similar to that of Delley.36 Extensive diffuse functions and
polarization functions were employed in order to obtain ac-
curate moments of the electron density for a series of applied
field perturbations. A basis set of 3s, 3p, and 3d ~polariza-
tion! functions were used for hydrogen atoms, and 5s, 4p,
4d, and 2f ~polarization! functions for second and third row
atoms. The numerical integration mesh was chosen such that
the error in evaluation of the matrix elements was~approxi-
mately! less than 1026 Hartree. The convergence criterion for
the SCF procedure was 1026 Hartree for the total energy and
1025 Hartree for the classical electrostatic component of the
energy. The latter was necessary to achieve convergence of
induced dipole moments.

FIG. 3. Linear regression of CPE and experimental static polarizabilities:~a!
CPE results obtained with theS basis set;~b! CPE results obtained with the
SP basis set. Static polarizabilities are shown for each molecule listed in
Table II. Linear, planar, and nonplanar molecules are depicted by diamond
symbols, crosses, and solid squares, respectively. Experimental values were
taken from Ref. 41. Polarizabilities are in Å3.

FIG. 4. Linear regression of CPE chemical potentials~m! and LDA esti-
mated chemical potentials~eHOMO!: ~a! CPE results obtained with theSbasis
set;~b! CPE results obtained with theSPbasis set. Chemical potentials are
shown for each molecule listed in Table II. Linear, planar, and nonplanar
molecules are depicted by diamond symbols, crosses, and filled squares,
respectively. Units are atomic units.
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2. Estimation of the CPE parameters

Chemical potential equalization parameters were calcu-
lated for molecules by fitting to induced dipole moments and
estimated chemical potentials obtained from LDA calcula-
tions. For each molecule, LDA calculations were performed
in the absence and presence of a series of applied field per-
turbations at the molecular surface~described below!. The
LDA induced dipole and chemical potential results provided
the reference data used to obtain the CPE parameters. CPE
parameters$ f i% in Eqs.~17! were determined by introducing
identical applied field perturbations and fitting parameters to
best reproduce~in a least squares sense! corresponding LDA
values. The purpose of the fitting procedure was to demon-
strate that the CPE method can adequately reproduce well-
defined quantities~dipole moments and chemical potentials!
for a diverse set of molecules subject to applied field pertur-
bations, with relatively simple basis sets. These parameters
are later shown to be transferable to intermolecular interac-
tions as demonstrated in the case of water dimers. The pa-
rameters are not intended to represent rigorously derived
force field parameters; hence they are not all listed, but are
available upon request.37

The chemical potential from the LDA calculations were
estimated by the highest occupied KS orbital eigenvalue
eHOMO.

7 For each molecule, dipole moments were induced
by introducing a perturbing field at points outside the mo-
lecular surface as follows. A ‘‘solvent-accessible surface’’
was defined as the surface generated by the van der Waals
radii of the atoms plus a probe radius of 2.65a0 ~1.4 Å,
approximately the radius of a water molecule!. Points
roughly evenly spaced on the surface were chosen at a den-
sity of 0.05a0

22 ~i.e., this corresponds to 18 points for H2O!.

At each surface pointRk a Gaussian probe density was added
of the form

rprobe~r !56Q•S z

p D 3/2e2zur2Rku
2

~31!

where the exponentz was 1.0a0
22, and the net chargeQ was

alternately 0.25e and 0.5e. The sign6 was chosen such that
the electrostatic interaction of the probe with the unperturbed
molecule was favorable. At each surface point, the static po-
tential of the probe was used as an applied field, and the
corresponding perturbed molecular density was computed
from SCF solution of the KS equations. Hence, the number
of perturbations used to collect induced dipole moment and
chemical potential data was 2M , whereM is the number of
surface points~the factor 2 comes from theQ values 0.25e
and 0.5e at each point!.

Basis functions for representation of the CPE density
response Eq.~8! were chosen as normalized atom-centered
Gaussian functions. Two different sets of basis function were
considered. The first set, denoted theS set, consisted of a
single spherical~s-type! Gaussian on each atom. This set
represents each atom as a spherical charge density similar to
the electronegativity equalization method of Mortieret al.18

and the charge equilibration method of Rappe´ and

FIG. 5. Convergence of change in total energyDE ~a.u.! as a function of
iteration for linear water dimer~solid line! and bifurcated water dimer
~dashed line!. DEi for each iterationi is defined byDEi5Ei2Ei21, where
Ei is the total energy at iterationi , and E0 is zero ~henceDE1 is the
interaction energy of the static charge distributions!.

FIG. 6. Water and water dimer geometric and electrostatic parameters:~a!
isolated water molecule;~b! bifurcated water dimer;~c! global minimum
~linear! water dimer. Parameters for the isolated water molecule were taken
directly from Hall and Smith~Ref. 45!. Relative geometries of the water
dimers were taken from Marsdenet al. ~Ref. 46!.
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Goddard.20 The second set, denoted theSPset, contained an
s-type function on each atom in addition to three Gaussian
functions with dipolar ~p-type! symmetry on all non-
hydrogen atoms.

The Gaussian exponents of the basis functions along
with the $ f i% parameters of Eqs.~17! were determined by
least squares fitting of the LDA and CPE chemical potentials
and induced dipole moments. In all fitting procedures, pa-
rameters for eachp-type basis function for a given atom
were constrained to be equal, and parameters oftopologi-
cally equivalent atoms~atoms with the same covalent con-
nectivity! were constrained to be identical.

One additional parameter per molecule is required, the
molecular chemical potentialm0 in the absence of an applied
field @Eq. ~10a!#. Note, this term is only needed for the evalu-
ation of the total energy in the case where there is a net
charge transfer (DN5*dr(r !d3rÞ0!. If no net charge trans-
fer is allowed, explicit dependence of this term vanishes, and
only the Lagrange multiplierDm @Eq. ~14!# is required. Since
we have estimated the LDA chemical potentials by the
eHOMO values for molecules in the presence of applied fields,
it is natural that we takem0 to be the correspondingeHOMO
for the system in the absence of an applied field~no probe
perturbation!.7

B. Linear response to applied field perturbations

Kohn–Sham density-functional theory in conjunction
with the LDA has been used extensively and with great suc-
cess for the computation of dipole moments38,39 and
polarizabilities.33,40 This is based largely on the observation
that the LDA gives a very good description of the electron
density, despite the known errors in the corresponding total
energies. We exploit the strength of LDA for predicting reli-
able densities to parameterize Eqs.~17! and, hence, gain ac-
cess to a wealth of chemical information within the CPE
framework.

Table I compares the experimental and calculated LDA
dipole moments for several small molecules. The agreement
between the two data sets is quite close~Fig. 1!. The overall
root-mean-square~rms! deviation is 0.14 D and the linear

correlation coefficient is 0.999. The largest rms error occurs
for NaCl ~0.5 D!, with a relative error of 5.2%. These results
support the assertion that the LDA is sufficiently accurate for
describing moments of the electron density.

The CPE basis functions and parameters~S andSPsets!
were optimized to fit the LDA induced dipole moments and
estimated chemical potentials. Relative errors in the CPE di-
pole moments and chemical potentials, along with the calcu-
lated isotropic polarizabilities are listed in Table II.

The CPE induced dipole moments calculated using theS
basis set show a wide range of relative errors@Fig. 2~a!#.
This results from the inability of the spherical functions to

FIG. 7. Bifurcated water dimer properties as a function of O–O distance:~a!
CPE induced dipole moments calculated withS ~dotted line! and SP
~dashed line! basis sets and corresponding LDA values~solid line!; ~b! CPE
stabilization energiesDE calculated withS ~dotted line! andSP ~dashed
line! basis sets. For the dipole moments, theS andSP curves are almost
indistinguishable. All units are atomic units.

TABLE III. Water molecule CPE parameters.

CPE parametersa Hs Os Op

S basis
z 0.937 0.226
f 0.0 14.13
h 13.41 69.65

SP basis
z 0.883 0.255 0.262
f 0.0 0.0 26.86
h 14.23 49.25 42.82

aParameters for the CPE procedure: the Gaussian exponent~z! and the f
parameter@Eqs.~17!#. Also listed are the diagonal elements of the hardness
matrix ~h! ~which can be computed from the other parameters, but conveys
more intuitive physical meaning!. The type of Gaussian~s or p type! is
indicated by atom subscripts in the column headings. Note there are no
basis functions on the off-center Gaussian site~Fig. 6!. All units are atomic
units.
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adequately accommodate the density response for a diverse
set of field perturbations, and is reflected by the correspond-
ing molecular polarizabilities@Fig. 3~a!#. In the worst case of
linear molecules, the CPE method with theS basis set allows
polarization only along theC` axis. The corresponding po-
larizabilities are, in general, underestimated by approxi-
mately 2/3, since effectively only one component of the
static polarizability tensor is represented. In the case of pla-
nar molecules, the situation with theS basis set is similar,
except that polarization is now restricted to the molecular
plane. The corresponding polarizabilities are underestimated
by approximately 1/3. For nonplanar molecules, theS basis

set is able to reproduce fairly well the LDA induced dipole
moments and polarizabilities.

TheSP basis set, which includes isotropicp-type func-
tions on nonhydrogen atoms, overcomes the deficiencies of
theS set by accommodating out-of-line and out-of-plane po-
larization for all molecules. The resulting fit to the induced
dipole moments is significantly improved@Fig. 2~b!#. These
results suggest theSPbasis set representation is sufficient to
capture the essential dipolar density response for small per-
turbations at the molecular surface. The molecular polariz-
abilities calculated with theSPbasis set agree well with the
experimental values@Fig. 3~b!#.

The total error associated with the polarizability results
relies in a multiplicative fashion on the error in the LDA
induced dipole moments, and the error in the CPE model in
reproducing the LDA results. The latter, of course, depends
on the basis set used in the CPE method to model the density
response. The strong correlation of the experimental and pre-
dicted polarizabilities indicates that both the LDA and CPE
approximation using theSP basis set are reliable. These re-
sults are encouraging that the CPE method may be used to
model polarization in molecular simulations by allowing a
dynamical representation of the charge density.

In addition to the induced dipole moments and polariz-
abilities, it is interesting to consider the chemical potentials
estimated from the LDA calculations and from the CPE
model. We have estimated the LDA chemical potential by the
highest occupied KS eigenvalueeHOMO.

7 The CPE chemical
potentialsm were calculated directly from the hardness ma-
trix via Eq. ~14!, andm0 was chosen as the LDAeHOMO value
for the unperturbed system. These two quantities,eHOMO and
m, are remarkably well correlated for bothS andSPdensity
basis sets@Figs. 4~a! and 4~b!#. The maximum relative error
for the S andSP sets occurs for Na2 ~3.1% and 5.9%, re-
spectively!, which has by far the largest observed polariz-
ability ~;37 Å3!. The striking agreement of the estimated
CPE and LDA chemical potentials is intriguing. Moreover, it
is suggestive that coupling of the CPE procedure with
density-functional methods, for example in hybrid quantum
mechanical/molecular mechanical simulation force fields,
may be possible.

FIG. 8. Global minimum~linear! water dimer properties as a function O–H
distance:~a! CPE induced dipole moments calculated withS ~dotted line!
andSP ~dashed line! basis sets and corresponding LDA values~solid line!;
~b! CPE stabilization energiesDE calculated withS ~dotted line! andSP
~dashed line! basis sets. All units are atomic units.

TABLE IV. Water dimer results. Dipole moments (Dy ,Dz) in Debye of
water dimers at ‘‘equilibrium’’ geometry@Figs. 6~b! and 6~c!#. Thez direc-
tion in the bifurcated dimer is taken along theC` axis; thex direction in the
linear dimer is taken to be perpendicular to the symmetry plane, and hence
has no dipole component. Stabilization energiesDE resulting from chemical
potential equalization are also listed in atomic units.

Dy Dz uDu DE

BifurcatedC2v

S basis 4.01 4.01 23.631023

SP basis 4.04 4.04 24.031023

LDA 3.99 3.99
Global min.Cs

S basis 1.80 2.04 2.72 21.131022

SP basis 1.81 2.18 2.84 22.831022

LDA 1.82 2.15 2.81
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C. Water–water interactions

The close fit between the LDA and CPE induced dipole
moments and chemical potentials is encouraging. It remains
to demonstrate that the method can be used to accurately
describe intermolecular interactions. In this subsection we
apply the CPE method to water–water interactions, using the
parametrization procedure described in the previous section
for the isolated molecules.

The CPE model described here is a linear response
theory for predicting the response of the molecular electron
density to an applied field. In the case of interacting mol-
ecules, the ‘‘applied field’’ felt by a given molecule arises
from the charge distributions of the surrounding molecules.
Solving the CPE equations requires inversion of the global
hardness matrix, which has dimensions equal to the total
number of density basis functions. For small systems this is
trivial; however, for larger systems this will become a se-
verely limiting problem. Although this limitation will not be
realized in the case of the water dimers examined here, we
outline a fast iterative procedure that does not require inver-
sion of the global hardness matrix.

We define the external field felt by a single molecule to
be that due to the charge distributions of all the other mol-
ecules in the system multiplied by one half. The factor of one
half arises because we require the sum of the molecular en-
ergies~intramolecular1field interaction! to be equal to the
correct total energy of the system. With this definition, we
can solve the CPE equations for each molecule separately, by
inverting the local molecular hardness matrices, and obtain
the linear response. Since determination of the density re-
sponse for one molecule changes the field felt by the other
molecules, the chemical potential equilibration process pro-
ceeds iteratively until a certain level of convergence is
reached. The procedure converges rapidly for systems where
the induced field is small compared to the static field such as
in the case of the water dimers~Fig. 5!. Convergence is
linear; that is the change in energy decays exponentially with
iteration. Similar iterative procedures are routinely used to
calculate dipole polarization in molecular simulations.44

Another aspect of the CPE procedure when applied to
interacting molecules involves the normalization conditions.
If only global normalization is enforced, the chemical poten-
tial is allowed to everywhere equalize, and intermolecular
charge transfer, in general, occurs. However, there has been
some criticism of this method as being unrealistic in practical
applications.27 For instance, consider two water molecules
very far separated, and subject to different applied fields. The
chemical potentials of the molecules before equalization will
in general be different and, hence, equalization will be ac-
companied by a net intermolecular charge transfer. If indeed
the system is in a stationary state, this is the correct quantum
mechanical result within the Born–Oppenheimer approxima-
tion ~fixed nuclei!. However, the tunneling probability for an
electron to jump from one molecule to the other is so small
that, for any dynamic system, charge transfer would be ki-
netically forbidden. In this way, the solvent bath would act as
an infinite reservoir of electrons for a solute molecule. An

alternative approach that has been applied to liquid water
simulations27 involves individual normalization constraints
for each molecule. This reduces the global chemical potential
equalization process to that of many local molecular chemi-
cal potential equalization processes, and prohibits by defini-
tion intermolecular charge transfer. Since there is no compu-
tational disadvantage to this convention, we adopt it in our
application to water dimers. For ionic systems, however, this
approximation may not be appropriate; in this case, an inter-
mediate procedure for regulating intermolecular charge
transfer as a function of distance is required.

In order to obtain the total potential due to the charge
densityr01dr of a water molecule in a perturbing field, the
CPE method assumes a knowledge of the static potential of
the unperturbed ground-state densityr0. We have chosen to
represent the static ground-state potential of the isolated wa-
ter molecule by the simple point charge/Gaussian model pro-
posed by Hall and Smith45 @Fig. 6~a!#. CPE parameters for
the isolated water molecule were obtained for theS andSP
basis sets using the procedure outlined in the previous sub-
section and are summarized in Table III~note: no basis func-
tions were placed on the off-center Gaussian site!. Two water
dimer structures were considered@Figs. 6~b! and 6~c!#, the
bifurcatedC2v structure, and the global minimumCs struc-
ture. Water dimers were constructed to have geometries simi-
lar to that given by Marsdenet al.,46 with the exception that
the internal geometries of each water molecule are the same
as that of the isolated molecule.45 Both S andSP basis sets
were considered.

Figure 7~a! compares the LDA and CPE bifurcated water
dimer induced dipole moments as a function of O–O dis-
tance. The agreement is remarkably close. The dipole mo-
ments for theS andSPbasis sets are virtually indistinguish-
able. This is because polarization occurs only along the O–O
(C2) axis, which lies in the molecular plane of both mol-
ecules and, hence, can be accommodated equally well by the
S andSP basis sets. Figure 7~b! shows the corresponding
CPE energy curves. The energy associated with the linear
response is fairly small, and the two curves are very similar.
It should be pointed out that the bifurcated water dimer has
been predicted to be a transition state near the Hartree–Fock
limit, and does not correspond to the global minimum
structure.46

The global minimum (Cs) water dimer structure is
shown in Fig. 6~c!. Polarization will clearly be out-of-plane
for one of the water molecules. Figure 8~a! compares the
LDA induced dipole moments with the CPE values for the
water dimer as a function of the H•••O hydrogen bond dis-
tance. TheS basis set underestimates the LDA induced di-
pole moment by about 15–25 % in the region near the pre-
dicted equilibrium distance. This is a direct result of the
inability of the S basis set to allow polarization out of the
plane of the molecule. Inclusion of theSP basis set effec-
tively overcomes this difficulty and gives the correct induced
dipole moment behavior. The discrepancy between the two
methods manifests itself even more distinctly upon examina-
tion of the response energy curves@Fig. 8~b!#. The response
energy at the equilibrium distance differs by more than 100%
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~Table IV!. Since many hydrogen bonds have a similar an-
gular dependence to that of the (Cs) water dimer, this may
be an important concern for hydrogen-bonded systems such
as biological macromolecules.

VI. RELATION TO OTHER CHEMICAL POTENTIAL
EQUALIZATION MODELS

Two related methods based on chemical potential equal-
ization have been proposed by Mortieret al.18 and later by
Rappé and Goddard.20 The former has been employed
mainly as a method for estimating atomic charges in mol-
ecules based on parametrization to STO-3G Mulliken
charges,18 and more recently for probing reactivity using sen-
sitivity coefficients from density-functional theory.26 The lat-
ter method20 has been developed to provide a dynamic
charge model for molecular simulations. Both methods are
based on the approximation of themolecular energy as a
second order Taylor expansion about theneutralatoms. The
molecular charge distribution and energy are obtained as so-
lutions to the CPE equations of the neutral atoms assembled
to form a molecule. Hence, these methods treat a molecule as
a perturbation of an assembly of noninteracting neutral at-
oms. The methods require two parameters per atom: an ef-
fective electronegativity~negative of the chemical potential!,
and hardness~in the latter method, the hardness appears as
the atomic electrostatic self-energy!. These atomic param-
eters are assumed to be transferable for all molecules.
Mortier et al.18,19have demonstrated that this approximation
is remarkably robust, and gives useful qualitative, and some-
times even quantitative insight to a variety of chemical prob-
lems. Nonetheless, the representation of the molecular en-
ergy and charge distribution as an expansion about the
neutral atoms is considerably limited in its ability to give
high accuracy. Consequently, a new method that provides
high accuracy and can be systematically improved is re-
quired for reliable molecular simulations.

The CPE formulation presented here accommodates
these difficulties. Since the total molecular energy is ex-
panded about the ground-state molecular density, the exact
energy and charge distribution are recovered in the absence
of an applied field. This is convenient for molecular simula-
tions that routinely obtain atomic point charges and dipoles
from ab initio calculations of molecules in the gas phase. For
a system of interacting molecules, the CPE method provides
a model for the linear density response of each molecule in
the field of the other molecules, with the possibility of charge
transfer. As demonstrated in the preceding section, this
method reproduces well the density response, even with very
simple basis function representations. More importantly, sys-
tematic improvement of the methodology is straight forward
by inclusion of more complete density basis functions, which
may include off-center functions in bond regions or functions
with higher angular momentum~multipolar! symmetry.

The methods proposed by Mortieret al.18 and Rappe´ and
Goddard20 are, in fact, particular cases of the general formal-
ism developed here. To illustrate this, consider the integral
Taylor expansion Eq.~5! to be chosen about the neutral-atom

ground-state densities. If the density basis functions are cho-
sen to be delta functions at the atomic positions~neglecting
the infinite electrostatic self-energy term in the diagonal ele-
ments of the hardness matrix!, the present model reduces to
that proposed by Mortier.18 In this case, the empirical param-
eters are the effective atomic chemical potentials and hard-
nesses. Alternately, if atom-centerednsSlater-type functions
are used as basis functions, and the empirical parameters$ f i%
of Eqs.~17! are set to zero, the present model reduces to that
proposed by Rappe´ and Goddard.20 The latter method param-
etrizes the diagonal elements of the hardness matrix by ad-
justing the Slater exponents of the density basis functions.
The corresponding electrostatic self-energies play the same
role as the atomic hardness parameters of Mortier.18 Note
both of these methods treat the off-diagonal elements of the
hardness matrix as being purely Coulombic in nature.

The present chemical potential equalization method pro-
vides a particularly convenient framework for modeling po-
larization in molecular simulations. Electrostatic fields in
molecular simulations are typically modeled by static charge
distributions obtained from fitting to gas-phase electrostatic
potentials. For such models that do not attempt to take into
account polarization implicitly, the present method is ideal.
This derives from the fact that the static charge distribution is
chosen to directly reflect the zero order term in the Taylor
expansion Eq.~5! corresponding to the ground-state electron
density in the absence of a perturbing field. Hence, param-
eters for the density response are uncorrelated with param-
eters used to represent the static charge distribution. In this
way, improvement of force field models by inclusion of ad-
ditional polarization terms does not require reparametrization
of existing static terms. For very large macromolecules, ex-
pansion of the energy can be taken about molecular frag-
ments~for instance individual amino acids or DNA nucle-
otide units!, thus allowing distinct chemical groups to be
linked together in the same spirit as conventional macromo-
lecular simulation force fields.

It is known that for linear and planar molecules, chemi-
cal potential equalization methods that use ‘‘spherical-atom’’
representations~more properly termed in the present formal-
ism ‘‘spherical atom-centered basis functions’’! cannot de-
scribe polarization out of line or out of plane. It has been
suggested that implementation of a Drude oscillator model
into the standard chemical potential equalization method can
be used to circumvent this difficulty.47 The Drude model uses
a harmonic force constant that allows the electronic charge
cloud to be displaced from the nuclear center. Similar models
have been employed in molecular dynamics simulations of
water using distributed charge sites and treating the polariza-
tion as a explicit degree of freedom.48 In the present gener-
alized CPE formalism, dipole~or higher multipole! polariza-
tion is a natural consequence of using basis functions with
suitable symmetry. The method has the additional advantage
that since density basis functions are employed, there is no
difficulty associated with divergence of the energy resulting
from interactions of point charges and dipoles at close dis-
tances.

It should be pointed out that the present model has been
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introduced specifically as an empirical model for polarization
and charge transfer, derived from density-functional theory.
The use of basis functions for the linear density response
illustrates that one should be careful in interpreting the pa-
rameters of this model as having any well defined ‘‘atomic’’
character, since there has been no effort here to rigorously
define an atom in a molecule. If such an interpretation is
sought, for example, in the analysis of wave functions from
electronic structure calculations, one must adopt a rigorous
definition of an atom in a molecule,3 and employ appropriate
constraints. Such work has been explored extensively by
Cioslowski.25

It is noteworthy to make a few comments on the param-
etrization of the proposed CPE model, and on future direc-
tions of research in this area. The main purpose of the
present work was to derive a generalized formulation of
chemical potential equalization, propose a semiempirical
model that employs density basis functions, and demonstrate
that this model is sufficient to reproduce induced dipole mo-
ments and chemical potentials obtained from LDA calcula-
tions. For this purpose, the CPE parameters were fit to LDA
results for isolated molecules in the presence of applied
fields. These parameters were observed to be transferable to
intermolecular interactions as demonstrated in the case of
water dimers. However, the fitting procedure adopted here
may not be in itself appropriate to derive a force field based
on the generalized CPE method. Such a procedure requires
parameters to be essentially decoupled so that they may be
transferable between like chemical fragments in a large mol-
ecule. We note that most of the parameters obtained by fitting
to induced dipole moments are correlated and often degen-
erate; that is, more than one set of parameters is able to give
essentially the same fit to the induced dipole moments. This
does not imply a limitation in the CPE method, only that the
fitting procedure employed is not well conditioned and,
hence, insufficient to fully extract all the physical informa-
tion contained in the model. The development of a more
rigorous procedure whereby a complete set of transferable
parameters can be obtained has important implications to the
field of molecular simulation, and is currently underway by
the authors. The method would allow, for instance, a library
of biomolecular functional groups to be linked together to
form macromolecules.

VII. CONCLUSION

A formulation of chemical potential equalization has
been presented, and cast in a form that can be solved using
basis functions for the linear density response. The main ad-
vances that allow extension of the method to molecular
simulations are summarized as follows.

~i! Expansion of the energy is taken about the exact
ground-state molecular or fragment density instead of the
neutral atom densities; hence it recovers the exact charge
distribution in the absence of a perturbing field. This has the
advantage that the method can be integrated with conven-
tional empirical point charge and dipole parameters for rep-
resentation of the static ground-state potential.

~ii ! Variational flexibility is provided by modeling the
density response in terms of basis functions. This has the
advantage that even linear and planar molecules and chemi-
cal groups can have correct local anisotropic polarizabilities.

~iii ! A simple semiempirical form for the hardness ma-
trix is suggested that allows non-Coulombic contributions to
be modeled by an overlap term. Efficient analytical evalua-
tion of the hardness matrix is efficiently accomplished with
Gaussian basis functions.

Numerical application at two basis-set levels demon-
strates that the CPE method can accurately reproduce in-
duced dipole moments and chemical potentials derived from
LDA density-functional calculations. In certain instances,
such as the case of linear and planar molecules, inclusion of
basis functions with dipolar character is essential. The CPE
formulation presented here forms the foundation for future
work to model polarization and charge transfer effects in
molecular simulations.
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