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ABSTRACT
Modern semiempirical electronic structure methods have considerable promise in drug discovery as universal “force fields” that can reliably
model biological and drug-likemolecules, including alternative tautomers and protonation states. Herein, we compare the performance of sev-
eral neglect of diatomic differential overlap-based semiempirical (MNDO/d, AM1, PM6, PM6-D3H4X, PM7, and ODM2), density-functional
tight-binding based (DFTB3, DFTB/ChIMES, GFN1-xTB, and GFN2-xTB) models with pure machine learning potentials (ANI-1x and
ANI-2x) and hybrid quantum mechanical/machine learning potentials (AIQM1 and QDπ) for a wide range of data computed at a consistent
ωB97X/6-31G∗ level of theory (as in the ANI-1x database). This data includes conformational energies, intermolecular interactions, tau-
tomers, and protonation states. Additional comparisons are made to a set of natural and synthetic nucleic acids from the artificially expanded
genetic information system that has important implications for the design of new biotechnology and therapeutics. Finally, we examine the
acid/base chemistry relevant for RNA cleavage reactions catalyzed by small nucleolytic ribozymes, DNAzymes, and ribonucleases. Overall,
the hybrid quantummechanical/machine learning potentials appear to be the most robust for these datasets, and the recently developed QDπ
model performs exceptionally well, having especially high accuracy for tautomers and protonation states relevant to drug discovery.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139281

I. INTRODUCTION

Alchemical free energy (AFE) simulations1 are widely used for
the prediction of ligand–protein binding energies in drug discov-
ery. These predictions are used to prioritize compounds for costly
synthesis and testing in the lead optimization cycle.2 The predictive
capability of these methods relies critically on the accuracy of the
force fields that are used.3 For well-studied biological systems such as
proteins4–6 and common solvents such as water7–11 and monovalent
ions,12–15 several molecular mechanical (MM) force fields16,17 have
been developed and have undergone extensive validation and revi-
sion based on comparison with a wide range of experiments. These
force fields have evolved to become increasingly robust and reliable
in long-time molecular dynamics simulations, despite the simplicity

of their functional forms. On the other hand, the “general” molecu-
lar mechanical force fields needed to model drug-like molecules that
may not have ever been synthesized before are generally much less
reliable. Moreover, conventional MM force fields are not “universal”
in the sense that they use a pre-defined covalent bonding topology
and are thus limited in their ability to model alternative tautomers
and protonation states. This is important as 30% of the compounds
in vendor databases and 21% of the compounds in drug databases
have potential tautomers;18,19 furthermore, it has been estimated that
up to 95% of drug molecules contain ionizable groups18 (∼75% weak
bases and ∼20% weak acids20,21).

Modern semiempirical quantum mechanical (QM) electronic
structure methods22,23 provide an attractive alternative to the gen-
eral MM force fields for drug discovery. The reason is that, unlike
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a typical protein that may contain several thousands of atoms,
∼79% of drugs are between 10 and 40 non-hydrogen atoms, and
the vast majority are less than 100 non-hydrogen atoms.24 This is
of the size range where semiempirical QM methods are able to
be used in combined quantum mechanical/molecular mechanical
(QM/MM) simulations that include explicit MM representations
of the entire protein and surrounding solvent bath under peri-
odic boundary conditions.25–28 Highly efficient [including parallel
and graphics processing unit (GPU)-accelerated] implementations
of semiempirical molecular orbital29 and density-functional tight-
binding30 have been made and are available for molecular dynamics
simulations. More importantly, in the context of AFE simula-
tions, these QM/MM potentials can be efficiently integrated into
thermodynamic cycles using indirect (or sometimes referred to as
“book-ending” or “reference potential”) approaches31–35 that apply
an end-state MM → QM free energy correction to a high-precision
MM AFE simulation.

One potential caveat is the high level of accuracy required by
drug discovery applications that seek to distinguish binding free
energies at a resolution below kBT (0.59 kcal/mol at 300 K).36–38
This is extremely challenging for even the most advanced
modern semiempirical QMmethods. One path forward that appears
promising is to use machine-learning potentials (MLPs) either as
stand-alone alternative models,39–44 or else to augment existing
semiempirical QM methods.45–51 We will refer to the former class
as “pure MLPs” and the latter class as “QM/Δ-MLPs”. MLPs have
emerged as powerful tools to enable fast and accurate chemical
models within the scope of their training.39,41–44 Many such mod-
els have emerged for different applications,52–67 although few, if any,
have been used to their full potential in rigorous AFE simulations.
Application of these models in drug discovery AFE simulations
is challenging because they must: (1) make robust predictions for
molecules within the relevant medicinal chemistry space that may
have never been synthesized or characterized;68 (2) model a wide
range of intra- and intermolecular interactions, including relative
conformational energies, hydrogen bonding,69 π stacking,70,71 Lon-
don dispersion,72 and mixed interactions; (3) quantitatively handle
different tautomers,18,19,73 and protonation states.21 Currently, the
ANI63,74–76 class of models, and particularly the second genera-
tion ANI-2x,76 have received widespread attention. A limitation
of these models is that they were built for neutral molecules, and
their functional forms do not explicitly account for total molecular
charge or spin state. Consequently, they are not able to reliably pre-
dict the energetics of changing protonation states. This is a serious
limitation, as it has been estimated that up to 95% of drug molecules
contain ionizable groups.18 Related to this, some of the pure MLPs
did not initially treat long-ranged electrostatic interactions, although
there have been efforts to remedy this.66 Alternatively, there have
been several recent efforts to develop new QM/Δ-MLPs,45–51,77 the
most relevant in the current context being AIQM1,46 which is
based on the novel ODMx class of semiempirical models78 and
has recently been demonstrated to be robust for transition state
optimizations.79

Very recently, we introduced a first-generationQM/Δ-MLP for
drug discovery.77 The QuantumDeep-learning Potential Interaction
(QDπ) model uses a fast, robust third-order self-consistent density-
functional tight binding (DFTB3/3OB) model80,81 that is corrected
to high-level accuracy through an MLP correction (Δ-MLP) based

on our range-corrected deep-learning potential (DPRc)47,48 as part
of the DeePMD-kit82 interfaced with AMBER.83 The underlying
DFTB3 model is able to capture long-range electrostatic interac-
tions as well as changes in charge, protonation, and spin state. The
intramolecular and short- to mid-range intermolecular interactions
are made quantitatively accurate by training the DPRc model to
correct the total energy and forces to match those of high-level
ab initiomethods.

In the present work, we compare the performance of several
modern semiempirical QM, QM/Δ-MLP, and pure MLP models
against consistent reference data derived from databases relevant
for drug discovery. Of particular focus in the present work is char-
acterizing the ability of different potentials to accurately model
intermolecular interactions, tautomers, and protonation states.
Toward that end, we consider the dataset of natural and syn-
thetic nucleic acids from the artificially expanded genetic informa-
tion system (AEGIS)84–87 that is being used for a wide range of
biotechnology applications.88 The system uses 12 different nucle-
obases in its genetic code, including the four canonical nucle-
obases found in DNA (adenine, cytosine, guanine, and thymine),
in addition to eight synthetic nucleobases. These serve as good test
systems as they contain complex covalent bonding and exhibit a rich
set of tautomer forms, hydrogen bonded complexes, and alterna-
tive protonation states. The remainder of the article is organized
as follows: Sec. II describes the computational details pertaining
to the various semiempirical QM (MNDO/d,89 AM1,90 PM6,91
PM6-D3H4X,92,93 PM7,94 ODM2,78 DFTB3,95 GFN1-xTB,96 GFN2-
xTB,97 and DFTB/ChIMES98), MLP (ANI-1x74 and ANI-2x76), and
QM/Δ-MLP (AIQM146 and most recently QDπ77) models, as well
as the key modified databases (DBs) used as reference data at the
ωB97X/6-31G∗77,99 level. Section III presents and analyzes data for
a set of ten broad-spectrum databases for intermolecular interac-
tions, tautomers, protonation states, and 2D conformational energy
profiles. Further application is made to examine the performance
of modern semiempirical QM, MLP, and QM/Δ-MLPs against the
AEGIS dataset.85,86 Finally, the paper provides contextual examples
of acid/base chemistry relevant for RNA cleavage reactions catalyzed
by small nucleolytic ribozymes and ribonucleases.100

II. METHODS
A. Models compared in the current work
1. Density-functional reference data

ωB97X/6-31G∗99 was performed using Gaussian 16.101 Refer-
ence energy and forces (including geometry optimizations, where
needed) were performed at a consistent ωB97X/6-31G∗99 level of
theory.

2. NDDO-based semiempirical models
Semiempirical quantum mechanical (QM) models based on

the neglect of diatomic differential overlap (NDDO) approxi-
mation enable the number of electron repulsion integrals to be
drastically reduced and the single-particle density matrix to be
decomposed into effective atom-centered atomic orbital products
(and their resulting electrostatics represented as multipoles).102 The
NDDO approximation also eliminates the need to explicitly enforce
orthogonalization of the molecular orbitals that normally would
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be achieved by having an overlap matrix in the generalized eigen-
value equation. Consequently, this may lead to poor modeling of
conformational energies and their barriers if left uncorrected. Much
work has been performed to introduce orthogonalization correc-
tions into the theoretical framework, which has resulted in the
OMX class of methods.103–106 In the current work, the follow-
ing NDDO-based methods are considered: MNDO/d,89 AM1,90
and PM691 that were evaluated with the AMBER 20107 SQM
module;108 the ODM278 method that was evaluated using the
MNDO program109 kindly provided by Dr. Axel Koslowski; and
PM6-D3H4X92,93 and PM794 that were performed using the
MOPAC software.110 PM6-D3H4X and PM7 correct PM6 using
classical potentials and are often claimed to be the most suitable
methodology for drug design among NDDO-based semiempirical
models.111,112

3. DFTB-based semiempirical models
Density-functional tight binding methods offer an intriguing

alternative to the NDDO-based semiempirical models. DFTB meth-
ods use an expansion of the energy113 about a sum of neutral
atom densities together with a two-center integral approximation
to enable a framework for highly efficient calculations (speed is
very comparable with NDDO-based methods). Unlike the NDDO-
based methods, DFTB methods keep the overlap matrix in the
generalized eigenvalue equation and thus explicitly deal with orbital
orthogonalization. However, this complicates the decomposition of
the density matrix, which now contains two-center products. Vari-
ous density-matrix partition schemes can be used to map the density
onto atomic centers such that an atom-centered (typically monopo-
lar) representation can be made for the second-order electrostatic
term in the expansion. The DFTB-based methods considered here
include DFTB395 (3OB parameters114) that was performed using
the AMBER 20107 SQM module;108,115 and GFN1-xTB,96 GFN2-
xTB,97 andDFTB/ChIMES98 (3OB parameters114 andChIMES para-
meters116 kindly provided byDr. CongHuy Pham)models evaluated
with the DFTB+ software.30

Compared to DFTB3 and GFN1-xTB, GFN2-xTB represents
the first broadly parameterized tight-binding method, primarily
designed for the fast calculation of structures and noncovalent
interaction energies, to include electrostatic and exchange-
correlation Hamiltonian terms up to second order in the multipole
expansion.97 In this way, the model takes into account anisotropic
second order density fluctuation effects via short-range
damped interactions of cumulative atomic multipole moments.
DFTB/ChIMES,116 on the other hand, leverages the relative simplic-
ity of linear regression machine learning in the recently developed
Chebyshev Interaction Model for Efficient Simulation (ChIMES)
method.117 Validation tests of DFTB/ChIMES demonstrate the
model exhibits both transferability and extensibility and enables
physical and chemical predictions with up to coupled-cluster
accuracy.116

It should be noted that the use of machine learning methods to
enhance DFTB models in one form or another is not new. Notable
works along these lines, in addition to DFTB/ChIMES, include but
are not limited to the ML-Hamiltonian approach of Yaron and
co-workers,118 the development of many-body potentials from deep
tensor neural networks,119,120 Gaussian process regression,121 and
unsupervised machine learning.122

4. Machine learning potentials (MLPs)
The pure machine learning potentials considered in this work

produce energies and atomic forces of a molecule given the
positions and elements. These potentials are quite fast compared
with semiempirical QM models, and they have more favorable scal-
ing properties. However, some initial pure MLPs were built for
neutral molecules in singlet ground states, so they do not reliably
model changes in charge state that occur with the addition or loss
of electrons and/or protons. The latter of which is important for
drug molecules that contain ionizable sites. The pure MLPs consid-
ered here include ANI-1x74 and ANI-2x76 models performed using
the TorchANI software.123 Both the ANI-1x and ANI-2x models use
the ANI descriptor63 with a cutoff radius of 6 Å and were trained
against ωB97X/6-31G∗ with active learning cycles. The training data
of ANI-1x only include energies, and the training data of ANI-2x
include both energies and forces.

5. Combined semiempirical quantum mechanical
and machine-learning potentials (QM/Δ-MLPs)

An attractive alternative to either semiempirical QM or pure
MLPs is to combine the strengths of both into a combined QM/Δ-
MLP. In this way, it builds off of a fast and robust semiempirical
QM that inherently can accommodate changes in electronic charge
and spin states while using MLPs to greatly enhance the accuracy
across a broad spectrum of chemical environments. The QM/Δ-
MLPs considered here include the QDπ77 model, which is based
on DFTB3/3OB95,107,108,114,115 and the deep-learning potential avail-
able in DeePMD-kit,82,83 and the AIQM1@DFT∗46 model, which
is based on an ODM278,109 model (which includes the D4 disper-
sion correction124) and a trained neural network correction using
TorchANI.123 The MLP component of QDπ uses the DeepPot-
SE descriptor61 with a cutoff radius of 6 Å and was trained against
ωB97X/6-31G∗ energies and forces for 241 M steps; the MLP part of
AIQM1@DFT∗ uses the ANI descriptor63 with a cutoff radius of 6 Å
and was trained against ωB97X/def2-TZVPP energies and forces for
1000 epochs.46

All geometry optimizations using semiempirical QM, MLP,
or QM/Δ-MLP models were performed using the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm125 in the
ASE126 package. Relaxed 2D torsion profiles were made using the
same method described in Ref. 77.

B. Databases and reference data used
in the current work

The reference data used in the current work includes
the modified ANI-1x,74,77,127 the modified COMP5,74,77,128–130
S66x8,74,131,132 HB375x10,77,133 TautoBase (TB),77,134,135 amino acids
(AAs) and nucleic acids (NAs),77,136 PA26 and TAUT15,77,137
RegioSQM20,77,138 and the artificially expanded genetic information
system (AEGIS).77,84–86 All reference data were computed (or re-
computed77) at the ωB97X/6-31G∗ level of theory (consistent with
the most extensive ANI-1x and COMP5 databases).

Among all reference data, the ANI-1x (or modified version)
dataset was used to parameterize DFTB/ChIMES, ANI-1x, ANI-2x,
QDπ, and AIQM1; S66x8 was used to parameterize PM6-D3H4X,
ANI-2x, and QDπ; and TB, AA, NA, PA, and AEGIS were used for
the training of QDπ.
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III. RESULTS AND DISCUSSION
The focus of the current article is on comparing modern

semiempirical electronic structure methods and machine learning
potentials with respect to their ability to accurately model conform-
ers, tautomers, and protonation states of biological and drug-like
molecules. These methods have potential impact for drug discovery
owing to their efficiency and robustness.

A. Comparison of broad-spectrum databases
Important properties for consideration include relative confor-

mational energies, a wide range of intermolecular interactions, as
well as tautomeric and protonation state relative energies. The QDπ
model was trained with the same reference theory level as ANI-2x76
(ωB97X/6-31G∗) and considered a number of DBs that encompass
conformational energies (ANI-1x, COMP5), intermolecular inter-
actions (S66x8, HB375x10), tautomers (TautoBase, Taut15), and
protonation state relative energies (AA, NA, PA26, and
RegioSQM20) that are described in detail elsewhere.77 A com-
parison of 11 semiempirical quantum and machine learning models
is compared against ten databases in Table I.

1. Conformational energy datasets
With respect to the diverse conformational energy datasets

(ANI-1x74,127 and COMP574,77,128–130), the mean absolute errors
(maEs) in the forces are smallest for the MLP and Δ-MLP poten-
tials (QDπ, ANI-2x, AIQM1, and ANI-1x), and the QDπ model
performs the overall best (maE values of 1.16 and 1.14 kcal/mol/Å
for the ANI-1x and COMP5 datasets, respectively). This is likely
due to the fact that the ANI-1x dataset was an integral part of the
training of these models. In general, the DFTB models (GFN1-xTB,

GFN2-xTB, and DFTB3/3OB) have lower force errors with respect
to the reference ωB97X/6-31G∗ values (maE values range from
4.69 to 7.58 and 3.68 to 5.46 kcal/mol/Å for ANI-1x and COMP5,
respectively), whereas the NDDO-based methods have considerably
larger errors (maE values range from 11.98 to 15.14 and 8.54 to
12.13 kcal/mol/Å for ANI-1x and COMP5, respectively), with PM7
performing the best of the NDDOmethods.

2. Intermolecular interaction datasets
With respect to intermolecular interaction DBs (S66x874,131,132

and HB375x10133), several models have ΔE values below 1 kcal/mol
on average (QDπ, AIQM1, GFN1-xTB, GFN2-xTB, PM6-D3H4X,
and PM7), with QDπ and AIQM1 having exceptional agree-
ment with the reference data: QDπ has maE values of 0.13 and
0.44 kcal/mol, and AIQM1 has maE values of 0.57 and 0.71 kcal/mol
for S66x8 and HB375x10, respectively. The ANI-2x model has excel-
lent maE values for S66x8 (maE 0.37 kcal/mol) but does not perform
quite as well for the HB375x10 DB (maE 1.40 kcal/mol). The DFTB3,
DFTB/ChIMES, ODM2, and PM6 methods perform similarly with
ΔE maE values that range from 1.14 to 1.72 (S66x8) and 1.17 to
1.36 (HB375x10) kcal/mol for these DBs. The MNDO/d method
has the largest ΔE errors (6.67–9.36 kcal/mol), stemming from
known limitations in the core–core interactions that particularly
affect hydrogen bonding, which the empirical modified core–core
repulsions in AM1 were designed in part to partially alleviate (AM1
maE values range from 2.17 to 2.57 kcal/mol).

3. Tautomer datasets
With respect to the tautomer databases, TautoBase134,135 (TB)

and Taut15137 (T15), only the QDπ model achieves ΔE errors less

TABLE I. Mean absolute errors for different datasets used for training and testing of the QDπ model.a Boldface denotes a vector.

ANI-1x S66 TB AA NA PA COMP5 HB T15 SQM

E F ΔE ΔE ΔE ΔE ΔE E F ΔE ΔE ΔE

QDπ 0.83 1.16 0.13 0.82 0.09 0.17 0.39 1.48 1.14 0.44 0.70 2.53
AIQM1 ⋅ ⋅ ⋅ 3.10 0.57 2.07 7.30 4.71 5.06 ⋅ ⋅ ⋅ 2.59 0.71 1.37 2.75

ANI-1x 1.48 4.48 1.41 1.73 86.95 52.68 43.02 1.96 3.72 1.25 1.63 16.85
ANI-2x 1.07 2.11 0.37 1.76 70.52 52.48 23.80 1.67 1.86 1.40 1.00 13.64

GFN2-xTB ⋅ ⋅ ⋅ 5.81 0.74 5.68 5.77 8.45 7.35 ⋅ ⋅ ⋅ 4.33 0.85 2.84 4.12
GFN1-xTB ⋅ ⋅ ⋅ 4.69 0.77 5.23 5.00 11.73 4.43 ⋅ ⋅ ⋅ 3.68 0.87 5.32 4.10
DFTB3 ⋅ ⋅ ⋅ 7.58 1.14 5.45 8.63 10.85 12.54 ⋅ ⋅ ⋅ 5.46 1.17 3.65 4.59
DFTB/ChIMES ⋅ ⋅ ⋅ 4.82 1.72 5.04 9.47 9.70 12.87 ⋅ ⋅ ⋅ 4.14 1.36 3.00 6.70

ODM2 ⋅ ⋅ ⋅ 12.80 1.24 3.37 9.13 5.26 6.04 ⋅ ⋅ ⋅ 9.97 1.29 3.64 3.99
PM6 ⋅ ⋅ ⋅ 12.96 1.19 4.90 11.23 11.03 17.84 ⋅ ⋅ ⋅ 9.33 1.24 5.60 5.30
PM6-D3H4X ⋅ ⋅ ⋅ 13.60 0.63 5.44 9.67 11.72 7.78 ⋅ ⋅ ⋅ 10.27 0.84 6.16 6.61
PM7 ⋅ ⋅ ⋅ 11.98 0.84 4.34 7.24 10.72 10.11 ⋅ ⋅ ⋅ 8.54 1.00 3.74 5.93
AM1 ⋅ ⋅ ⋅ 14.95 2.17 5.01 4.43 7.32 13.51 ⋅ ⋅ ⋅ 12.13 2.57 3.99 4.13
MNDO/d ⋅ ⋅ ⋅ 15.14 6.67 9.69 11.71 11.29 13.07 ⋅ ⋅ ⋅ 11.52 9.36 7.78 5.18

aMean absolute errors in the energy (E, kcal/mol), forces (F, kcal/mol/Å), and ΔE for ANI-1x,74,127 S66x8 (S66),74,131,132 TautoBase (TB),134,135 amino acid and nucleic acid proton
affinities (AA and NA),136 PA26 (PA),137 COMP5,74,128–130 HB375x10 (HB),133 Taut15 (T15),137 and RegioSQM20 (SQM)138 databases. The datasets on the right were not part of the
QDπ training.
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FIG. 1. Relaxed 2D torsion profiles for (a)
alanine dipeptide; (b) ibuprofen; and (c)
ketorolac. Each molecule was computed
using ωB97X/6-31G∗, QDπ, AIQM1,
and ANI-2x, respectively. The reference
level of theory is ωB97X/6-31G∗. The
color bars represent the potential energy
(with respect to the minimum energy) in
kcal/mol.

than 1 kcal/mol (maE values of 0.82 and 0.70 kcal/mol for TB and
T15, respectively). The AIQM1 and ANI models perform admirably
with errors generally below 2 kcal/mol (maE values range from 1.73
to 2.07 and 1.00 to 1.37 kcal/mol for TB and T15, respectively).

The remainder of the DFTB-based methods have maE values in
excess of 5 kcal/mol for TB and similar values for the AM1, PM6,
and PM6-D3H4X methods. The ODM2 method makes a notable
improvement with reduced errors relative to the other NDDO-based

FIG. 2. Relaxed 2D torsion profiles for
(a) alanine dipeptide; (b) ibuprofen; and
(c) ketorolac. Each molecule was com-
puted using ωB97X/6-31G∗, GFN2-xTB,
DFTB3, and DFTB/ChIMES, respec-
tively. The reference level of theory is
ωB97X/6-31G∗. The color bars repre-
sent the potential energy (with respect to
the minimum energy) in kcal/mol.
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methods (maE values of 3.37 and 3.64 kcal/mol for TB and T15,
respectively). TheMNDO/dmethod overall performs the worst with
maE values for TB and T15 exceeding 9 kcal/mol.

4. Relative protonation datasets
The relative protonation datasets include amino and nucleic

acid model compounds136 (AA and NA) as well as more gen-
eral proton affinity (PA26137) datasets and a subset of the
RegioSQM20138 (SQM) database containing C, H, O, and N
elements. The latter involves many relative protonation energies
not related to ionizable sites in biological or drug-like molecules,
and hence may be of less relevance for drug discovery. For
the AA, NA, and PA26 datasets, the QDπ model stands alone
with respect to having very high accuracy in relative deproto-
nation energies (maE values range from 0.09 to 0.39 kcal/mol).
The next best models are AIQM1 (maE 4.71–7.30 kcal/mol).
The other semiempirical QM models exhibit much larger ranges:
GFN2-xTB (5.77–8.45 kcal/mol), GFN1-xTB (5.00–11.73 kcal/mol),
DFTB3 (8.63–12.54 kcal/mol), DFTB/ChIMES (9.47–12.87), ODM2
(5.26–9.13 kcal/mol), PM6 (11.03–17.84 kcal/mol), PM6-D3H4X
(7.78–11.72), PM7 (7.24–10.72), AM1 (4.43–13.51 kcal/mol), and
MNDO/d (11.29–13.07 kcal/mol). With respect to the SQM dataset,
again the QDπ and AIQM1 models perform best (maE values of
2.53 and 2.75 kcal/mol, respectively), and the remaining semiempir-
ical QM models perform similarly with maE values that range from

3.99 to 6.70 kcal/mol. The pure MLP models (ANI-1x and ANI-2x)
break down with respect to their ability to predict relative protona-
tion/deprotonation energies, as these potentials were designed for
neutral molecules.

Overall, the QDπ model performs exceptionally well across
all datasets. The AIQM1 model is also impressive in this regard,
with the exception of the protonation/deprotonation energies, where
AIQM1 has larger errors for the AA, NA, and PA datasets. Clearly,
the QM/Δ-MLP form, using DFTB3 or ODM2 as a QM base model,
considerably enhances the accuracy across all datasets listed in
Table I. The pure MLP models, and particularly ANI-2x, generally
perform better than the semiempirical QM models, with the excep-
tion of protonation/deprotonation energies, where the model gives
very large errors. Of the semiempirical QMmodels, the DFTB-based
methods have smaller force errors than the NDDO-based mod-
els. The GFN1-xTB, GFN2-xTB, PM6-D3H4X, and PM7 models
perform well for intermolecular interactions, slightly better than the
DFTB3, DFTB/ChIMES, and ODM2 models. All of the semiempir-
ical QM models are fairly comparable in modeling tautomer energy
differences (with the exception of MNDO/d, which is less accurate),
with ODM2 performing best over a broad range of data. For proto-
nation/deprotonation energies, however, there is no clear trend with
the semiempirical QM potentials—they all deviate from the refer-
ence data with ΔE maE values exceeding 8 kcal/mol for at least one
of the datasets (AA, NA, PA, or SQM).

FIG. 3. Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; and (c) ketorolac. Each molecule was computed using ωB97X/6-31G∗, ODM2, PM6-D3H4X, and
PM7, respectively. The reference level of theory is ωB97X/6-31G∗. The color bars represent the potential energy (with respect to the minimum energy) in kcal/mol.
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FIG. 4. Structures for the artificially expanded genetic information system (AEGIS) base pair dataset77,85,86 with Leontis and Westhof symbols used for the classification of
nucleic acid base pairs.139–141
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In the remainder of the article, we focus on comparisons to the
most recent modern semiempirical QM (DFTB3, DFTB/ChIMES,
GFN2-xTB, ODM2, PM6-D3H4X, PM7), MLP (ANI-2x), and
QM/Δ-MLP (QDπ and AIQM1) models.

B. Comparison of 2D conformation energy profiles
We examined relaxed 2D torsion profiles for three systems: the

alanine dipeptide and the drug molecules ibuprofen and ketorolac,
as illustrated in Figs. 1–3. These figures compare 2D torsion pro-
files at the ωB97X/6-31G∗ reference level with the QM/Δ-MLP/pure
MLP models QDπ, AIQM1, and ANI-2x (Fig. 1), DFTB-based
GFN2-xTB, DFTB3 and DFTB/ChIMES (Fig. 2), and NDDO-based
ODM2, PM3-D3H4X, and PM7 (Fig. 3) models. The relative energy
values for the stationary points are provided in Table S1 of the
supplementary material. All of the models qualitatively predict the
correct trends. A modest exception occurs with PM6-D3H4X and
PM7, which do not predict a pronounced minimum in the β region
(∼180/180) of the ϕ/ψ map (Fig. 3). Overall, the QDπ and AIQM1
models have the closest agreement with ωB97X/6-31G∗, with the

ANI-2x model only slightly worse. The GFN2-xTB, DFTB3, and
ODM2 semiempirical QM models tend to systematically under-
estimate the conformational barriers between minima (Table S1 in
the supplementary material). The largest errors that occur for the
QDπ model are for the transition states in the ibuprofen exam-
ple, which like the semiempirical QM models, are systematically
underestimated.

C. Comparison of hydrogen bond complex energies
for natural and artificial nucleic acids

The natural and modified nucleic acids exhibit a wide range of
canonical and non-canonical hydrogen bonded base pairs, including
some that involve non-standard tautomer forms and protonation
states. The base pairs considered in the AEGIS dataset77,85,86 are
illustrated in Fig. 4. This dataset represents a rich set of hydrogen
bonding interactions between endocyclic and exocyclic amines and
carbonyl and hydroxyl functional groups. The results are listed in

Table II. Hydrogen bond complex energies from ωB97X/6-31G∗ and model errors (kcal/mol) for the artificially expanded genetic information system (AEGIS) base pair
dataset77,85,86 with Leontis and Westhof symbols used for the classification of nucleic acid base pairs,139–141 including complexes that involve alternative tautomers and
protonation states.a

QM/Δ-MLP or MLP DFTB NDDO

ωB97X QDπ AIQM1 ANI-2x GFN2 DFTB3 ChIMES ODM2 D3H4X PM7
Complex ΔE Err Err Err Err Err Err Err Err Err

−32.90 0.16 7.75 9.84 3.66 10.98 0.08 10.35 4.87 1.92
−18.22 −0.14 6.71 3.65 2.15 9.33 2.19 7.51 2.90 0.88
−18.36 0.17 7.39 3.39 2.12 9.35 2.22 7.45 2.94 0.96
−37.40 0.03 10.01 7.67 3.99 11.34 −0.64 10.18 6.62 3.80
−34.52 −0.00 9.70 8.04 2.43 9.32 −2.73 8.57 5.25 1.83
−22.46 −0.08 7.06 6.34 2.13 9.56 1.99 9.14 1.69 −1.24
−33.11 −0.05 8.13 10.77 3.65 10.14 −0.76 10.93 5.50 1.83

−32.50 −0.31 8.20 8.38 3.72 10.21 −0.69 10.13 5.28 1.28
−33.68 0.13 7.45 10.02 4.56 11.02 −0.56 11.61 6.47 1.77
−22.46 0.09 8.76 9.08 3.56 10.54 3.50 9.95 4.24 −0.24

−33.99 0.03 7.28 10.79 4.59 10.11 −3.34 9.56 5.51 3.22
−23.00 0.39 7.82 7.14 3.03 9.49 −0.04 8.55 0.41 −0.67
−25.59 −0.11 8.99 13.00 3.14 10.75 −2.45 8.60 1.71 −3.49
−22.92 −0.03 5.80 6.18 3.04 9.44 0.24 8.88 0.43 −0.08

−144.48 0.10 12.53 79.73 14.30 18.59 8.26 15.79 15.52 15.29
−43.33 −0.07 12.36 11.58 6.69 15.35 3.42 12.16 4.25 1.90
−47.17 0.04 6.77 24.45 3.38 13.41 0.87 9.41 7.35 4.82

maE . . . 0.11 8.46 14.17 4.25 11.22 1.99 10.08 4.87 2.77
rmsE . . . 0.15 8.66 22.51 5.09 11.49 2.83 10.26 5.97 4.44
aModels and datasets are described in Sec. II. An illustration of each of the complexes is provided in Fig. 4. Complexes include adenine (A), cytosine (C), guanine (G), thymine (T),
uracil (U), isoguanine (B), isocytosine (S), 6-amino-5-nitropyridin-2-one (Z), 2-aminoimidazo[1,2a][1,3,5]triazin-4(1H)-one (P), imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione
(X), 2,4-diaminopyrimidine (K), 4-aminoimidazo[1,2-a][1,3,5]triazin-2(8H)-one (J), and 6-amino-3-methylpyridin-2(1H)-one (V).86,142 The “∗” symbol refers to tautomeric form,
and the “+” and “−” symbols refer to the positive and negative charge.
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FIG. 5. Relation between hydrogen bond complex energies calculated by ωB97X/6-31G∗ and QDπ, AIQM1, ANI-2x, GFN2-xTB, DFTB3, DFTB/ChIMES, ODM2, PM6-
D3H4X, and PM7 for the artificially expanded genetic information system (AEGIS) base pair dataset,86 including complexes that involve alternative tautomers and protonation
states. Illustrations of each of the complexes are provided in Fig. 4. The three base pairs that involve ionized nucleobases are excluded from the regression as they have
much larger binding energy values that would artificially skew the correlation.

Table II, and the neutral base pairs are illustrated in Fig. 5. Over-
all, the QDπ model gives excellent agreement with the ωB97X/6-
31G∗ reference level over the entire set with ΔE maE of 0.11
kcal/mol and a maximum error of 0.39 kcal/mol for G∗ T.
The DFTB/ChIMES model has the next lowest error (maE 1.99
kcal/mol), followed by PM7 (maE 2.77 kcal/mol), GFN2-xTB (maE
4.25 kcal/mol), and PM6-D3H4X (maE 4.87 kcal/mol). The remain-
der of the models have maE values in excess of 8 kcal/mol. The
ANI-2x model has a large maE value (14.17 kcal/mol), but the
errors are dominated by base pairs involving ionized nucleobases

that range from 11.58 to 79.73 kcal/mol, whereas the range of errors
for neutral base pairs is much smaller (3.39–13.00 kcal/mol; maE of
the neutral subset is 9.72 kcal/mol).

Examination of the correlation of hydrogen complex energies
for neutral nucleobases reveals that QDπ has the highest corre-
lation (R2 value of 0.999), followed by DFTB/ChIMES, AIQM1,
and ODM2 with R2 values of 0.99. Whereas DFTB/ChIMES is
well aligned with the reference data, the ODM2 and related
AIQM1 models have values that have been systematically shifted
to lower ΔE values. Both PM7 and PM6-D3H4X models show
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impressive correlation (R2 values of 0.97) and low maE val-
ues (1.80 and 4.03 kcal/mol, respectively) for complexes of these
neutral nucleobases.

D. Comparison of tautomer energies for natural
and artificial nucleic acids

The artificially expanded genetic information system (AEGIS)
dataset also exhibits a rich set of tautomeric forms that have been

extensively studied with computational methods.77,85–87 These tau-
tomeric pairs are illustrated in Fig. 6, and their ΔE values are listed
in Table III and illustrated in Fig. 7. Overall, both QDπ and AIQM1
give excellent agreement with the ωB97X/6-31G∗ reference val-
ues, with ΔE maE values of 0.71 and 0.77 kcal/mol, respectively,
and high correlation (R2 value of 0.99). The ANI-2x is the next
most accurate, but with errors roughly twice as large (maE 1.41
kcal/mol) and (R2 value of 0.97). The DFTB/ChIMES and GFN2-
xTBmodels have considerably higher errors (maE values of 2.20 and

FIG. 6. Structures for the artificially expanded genetic information system (AEGIS) tautomer dataset.77,85 Guanine derivatives (1–5, 2: nucleobase code B), codes 6: A, 7:
C, 8: T, 9: S, 10: P, and 11: Z.
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TABLE III. Tautomerization energies from ωB97X/6-31G∗ and model errors (kcal/mol) for the artificially expanded genetic information system (AEGIS) tautomer dataset.a

QM/Δ-MLP or MLP DFTB NDDO

ωB97X QDπ AIQM1 ANI-2x GFN2 DFTB3 ChIMES ODM2 D3H4X PM7
Tautomer pair ΔE Err Err Err Err Err Err Err Err Err

1b–1a 2.43 −0.36 −1.07 −1.35 −2.75∗ −6.25∗ −2.38 3.48 6.60 2.67
1c–1b 17.39 0.36 0.40 0.83 −0.72 2.68 2.58 −6.65 −11.01 −7.46
2b–2a −5.41 −1.12 0.13 −0.29 2.81 −4.39 −1.02 6.31∗ 12.62∗ 8.85∗
2c–2b 4.95 1.22 −0.74 2.30 −2.61 4.74 1.54 −7.50∗ −14.46∗ −10.85∗
3b–3a −6.32 −0.28 −0.16 0.89 3.53 −3.90 −0.77 6.39∗ 12.95∗ 9.24∗
3c–3b 4.05 −0.15 −0.15 3.05 −2.48 4.44 1.02 −7.07∗ −13.56∗ −9.97∗
4b–4a −6.81 0.69 0.37 0.58 3.60 −4.06 −0.94 7.06∗ 13.49∗ 10.01∗
4c–4b 2.76 0.06 −0.82 1.14 −1.90 5.47 1.98 −6.48∗ −12.55∗ −8.93∗
5b–5a −6.12 −0.41 0.66 −0.28 3.07 −4.60 −1.43 7.34∗ 13.36∗ 9.71∗
5c–5b 3.23 −0.57 −0.57 0.49 −1.92 5.97 2.56 −6.59∗ −13.03∗ −9.41∗
6b–6a 12.24 −0.01 −0.20 −2.56 −1.85 −3.22 −3.63 3.76 −4.94 −0.92
6c–6b 20.12 −0.10 −0.35 2.63 −5.80 −3.10 −0.26 −4.60 −8.47 −8.48
7b–7a 20.15 1.40 −0.63 −1.39 −4.87 −5.71 −5.32 5.63 −0.67 −0.43
7c–7b −19.17 −0.96 0.94 −0.22 4.79 6.93 1.64 −0.25 −0.01 2.86
8b–8a 21.32 0.84 −1.79 −0.08 −5.43 −10.25 −2.12 1.57 3.71 1.24
8c–8b −6.16 0.31 −0.43 1.10 −1.52 0.18 1.28 −1.34 −3.27 −3.05
9b–9a 5.42 0.77 −0.89 −0.45 −5.39 −7.41∗ −4.94 4.64 −3.31 −3.53
9c–9b −10.02 −0.74 0.40 0.29 3.20 6.10 1.29 −0.76 −1.38 1.91
10b–10a 7.95 2.11 −0.57 −2.50 −1.83 0.77 −3.26 3.28 −3.84 −1.36
10c–10b 22.20 −2.92 −2.92 −5.08 −6.40 −15.21 0.78 −9.14 −11.36 −9.26
10d–10c 4.01 0.04 1.54 2.86 −1.71 5.13 −3.27 9.90 12.36 7.71
11b–11a −0.86 −0.63 −0.19 −0.36 −0.47 −4.04 −0.58 3.42∗ 7.69∗ 4.68∗
11c–11b 24.35 −0.84 −0.90 −4.13 −4.19 −5.43 −6.39 1.67 −8.47 −6.13
12b–12a 22.00 0.41 −1.80 0.14 −5.51 −10.37 −2.16 1.34 3.73 1.31
12c–12b −7.79 0.54 0.54 0.29 −0.62 0.87 1.78 −0.98 −2.70 −2.59

maE . . . 0.71 0.77 1.41 3.16 5.25 2.20 4.69 7.98 5.70
rmsE . . . 0.97 1.00 1.94 3.59 6.12 2.67 5.42 9.28 6.72
aModels and datasets are described in Sec. II. Illustrations of each of the tautomerization reactions are provided in Fig. 7. Errors corresponding to wrong prediction of more stable
tautomer are indicated by an asterisk (∗).

3.16 kcal/mol, respectively), but maintain high correlation with the
reference values (R2 value of 0.97), whereas DFTB3 and ODM2 have
larger errors (maE values of 5.25 and 4.69 kcal/mol, respectively),
and lower correlation (R2 values of 0.61 and 0.85, respectively). The
largest errors occur for PM7 and PM6-D3H4X (maE values of 5.70
and 7.98 kcal/mol, respectively).

It has been estimated that 30% of the compounds in vendor
databases and 21% of the compounds in drug databases have poten-
tial tautomers.18,19 For drug discovery applications, it is thus vitally
important to be able to model alternative tautomer forms, discern
which forms are relevant for ligand–protein binding, and if binding
induces a change in tautomer state, to quantitatively determine the
tautomerization energy contribution to binding with sub-kcal/mol
accuracy. In some cases, the semiempirical QM models incorrectly
predict the lowest energy tautomer (one case for GFN2-xTB, two
cases for DFTB3, and nine cases each for ODM2, PM6-D3H4X, and
PM7). For the models compared here, only QDπ and AIQM1 are
able to achieve the requisite accuracy for quantitative prediction of
ligand–protein binding applications.

E. Comparison of protonation energies for common
general acids and bases

Modeling protonation states is important for drug discov-
ery applications as it has been estimated that up to 95% of drug
molecules contain ionizable groups18 (∼75% weak bases and ∼20%
weak acids20,21), and protonation states can sometimes change upon
ligand binding. Hence, quantitatively accurate modeling of protona-
tion/deprotonation events at these ionizable sites is critical to obtain
high predictive capability. As an illustrative set of examples, we
examine simple model systems that mimic the acid/base chemistry
associated with RNA cleavage reactions catalyzed by small nucle-
olytic RNA enzymes (ribozymes) and protein enzymes (ribonu-
cleases).100 In these reactions, the 2′OH of an RNA nucleotide,
modeled by the secondary alcohol isopropanol (iPrOH), becomes
activated (deprotonated) by a general base that in ribozymes is often
an ionized (deprotonated) guanine residue (G:N−1 ), and in RNase
A143–145 is generally believed to be a histidine (His:Nϵ) although it
has been speculated that a neutral lysine (Lys:NH2) might also be
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FIG. 7. Relation between tautomerization energies calculated by ωB97X/6-31G∗ and QDπ, AIQM1, ANI-2x, GFN2-xTB, DFTB3, DFTB/ChIMES, ODM2, PM6-D3H4X, and
PM7 for the artificially expanded genetic information system (AEGIS) tautomer dataset. An illustration of each of the complexes is provided in Fig. 6. In the regression plot
shown, the sign convention (direction of the tautomer reaction) is chosen such that the reference ΔE value is positive (this is performed to circumvent “spreading out” of the
data and artificially inflating the correlation).

capable. The activated nucleophile then attacks the scissile phos-
phate, passing through a pentavalent transition state, followed by
the departure of the 5′O leaving group (modeled by the primary
alkoxide ethoxide (EtO−) with the assistance of a general acid that
in ribozymes can be either a protonated adenine at the N1 or N3
positions (A:N1H+ and A:N3H+, respectively) or an ionized (proto-
nated) cytosine (C:N3H+), and in RNase A is a protonated histidine
(His:NϵH+).

Table IV lists relative protonation/deprotonation reactions that
model general acid/base events in RNA cleavage reactions.100 Over-
all, QDπ performs extremely well, with ΔE maE of 0.50 kcal/mol.
Of the semiempirical QM methods, GFN2-xTB is the least inaccu-
rate (maE value of 5.94 kcal/mol), followed by PM7 (6.97 kcal/mol),
with other models notably higher (maE values ranging from 9.12 to
14.67 kcal/mol). As mentioned earlier, the ANI-2x model was
not designed to handle ions; it produces errors on the order of
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TABLE IV. Selected relative protonation/deprotonation energies from ωB97X/6-31G∗ and model error (kcal/mol) relevant to acid/base catalysis in RNA cleavage reactions.a

QM/Δ-MLP or MLP DFTB NDDO

ωB97X QDπ AIQM1 ANI-2x GFN2 DFTB3 ChIMES ODM2 D3H4X PM7
Protonation pair ΔE Err Err Err Err Err Err Err Err Err

[Lys:NH2,iPrOH] 167.76 0.00 −0.64 −115.04 0.04 6.11 −6.87 −15.24 −13.15 −10.15
[His:Nϵ,iPrOH] 158.33 0.08 −9.22 −126.62 −7.02 −11.33 −17.47 −18.74 −12.96 −6.19
[EtO−,His:NϵH+] −160.25 −0.02 12.82 137.70 9.66 11.71 18.09 21.92 12.24 5.36

[G:N−1 ,iPrOH] 43.06 −1.11 −1.15 −28.62 −2.69 −8.63 −11.17 −10.84 0.89 5.45
[EtO−,A:N1H+] −165.06 1.25 12.94 137.24 10.02 15.21 23.15 20.74 8.07 1.25
[EtO−,A:N3H+] −190.89 1.21 12.88 143.42 11.40 16.00 24.17 19.43 17.97 8.39
[EtO−,C:N3H+] −160.33 0.89 12.78 145.20 6.58 4.66 16.93 20.19 7.03 2.22

[G:N−1 ,A:N1H+] −120.07 0.08 8.19 97.55 4.69 6.20 11.36 6.73 9.69 7.53
[G:N−1 ,A:N3H+] −145.91 0.04 8.12 103.73 6.07 6.99 12.38 5.41 19.58 14.67
[G:N−1 ,C:N3H+] −115.34 −0.27 8.03 105.50 1.25 −4.35 5.14 6.17 8.64 8.51

maE . . . 0.50 8.68 114.06 5.94 9.12 14.67 14.54 11.02 6.97
rmsE . . . 0.72 9.72 118.72 6.96 9.96 15.87 15.84 12.17 7.88
aModels and datasets are described in Sec. II. Protonation pairs are written in the general form as follows: [B, A]: B + A→ BH+ + A− , or [B− , AH+]: B− + AH+ → BH + A. Here,
B/BH+ and B−/BH are the base/conjugate acid pairs and A/A− and AH+/A are the acid/conjugate base pairs. These are model systems for general acid and base catalysis in RNA
cleavage reactions by small nucleolytic ribozymes and ribonucleases.100 The molecules indicated are isopropanol (iPrOH), ethoxide (EtO−), neutral lysine (Lys:NH2), neutral histidine
(His:Nϵ), protonated histidine (His:NϵH+), deprotonated guanine at the N1 position (G:N−1 ), protonated adenine at the N1 and N3 positions (A:N1H+ and A:N3H+), and protonated
cytosine at the N3 position (C:N3H+).

100 kcal/mol. The AIQM1model is greatly improved with respect to
ANI-2x andODM2 (the base QMmodel). The QDπ ΔEmaE value is
dominated by large positive errors involving the ethoxide and pro-
tonated nucleobases (0.89–1.25 kcal/mol). The ethoxide anion is a
primary alkoxide that is only marginally stable in the gas phase,
and thus especially challenging. The QDπ model is by far the most
accurate for protonation/deprotonation energies. It is a promising
candidate for use in drug discovery applications.

IV. CONCLUSION
We have compared the performance of several NDDO-based

(MNDO/d, AM1, PM6, PM6-D3H4X, PM7, and ODM2) and
density-functional tight-binding based (DFTB3, DFTB/ChIMES,
GFN1-xTB, and GFN2-xTB) semiempirical models with pure
machine learning potentials (ANI-1x and ANI-2x) and hybrid quan-
tum mechanical/machine learning potentials (AIQM1 and QDπ).
We examine broad datasets computed at a consistent ωB97X/6-
31G∗ level of theory that includes conformational energies, inter-
molecular interactions, tautomers, and protonation states. The
methods were further compared against the AEGIS dataset and
acid/base chemistry relevant for RNA cleavage reactions catalyzed
by small nucleolytic ribozymes and ribonucleases. Overall, the
recently developed QDπ model performs exceptionally well across
all datasets, with especially high accuracy for tautomers and proto-
nation states relevant to drug discovery. The AIQM1 model also has
impressive performance in many cases, including tautomerization
energies. All other methods examined have various strengths and
weaknesses, but none have the broad range of quantitative accuracy

of the QDπ model for the data examined. Taken together, this sug-
gests that QM/Δ-MLPs such as QDπ and AIQM1 have considerable
promise as universal force fields for drug discovery applications.

SUPPLEMENTARY MATERIAL

See the supplementary material for relative energies for the
minima and transition states of the alanine dipeptide, ibuprofen, and
ketorolac.
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