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ABSTRACT
We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid
quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics
program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and
an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that
circumvent the need to perform “system calls” and enable the incorporation of long-range Ewald electrostatics into the external software’s
self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM–ΔMLP
potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies
and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string
method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket
communication protocol used in the i-PI client–server model. The new interface with i-PI allows for the treatment of nuclear quantum effects
with semiempirical QM/MM–ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-
thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular
software for performing free energy simulations of chemical reactions that are important in a wide range of applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0211276

INTRODUCTION

Free energy simulations are used to study a wide range of reac-
tive chemical processes in the condensed phase.1,2 The calculation of
multi-dimensional free energy surfaces3,4 (FES) and minimum free
energy paths5–9 (MFEP) can be used to predict mechanisms. The

insight gained by these predictions can aid in the interpretation of
experimental data, guide new experiments, and ultimately inform
the design of new technology. Ab initio quantum mechanical mod-
els can provide high accuracy in these simulations; however, their
computational cost can severely limit the size of the quantum system
and/or the degree of sampling that can be realized. This limitation is
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further amplified if path integral molecular dynamics (PIMD)10–15 is
required to introduce nuclear quantum effects, as these simulations
are even more computationally intensive.

An attractive alternative to ab initio quantum mechani-
cal/molecular mechanical (QM/MM) simulation is the design
of quantum mechanical force fields2,16,17 and machine learning
models.18–23 Of particular relevance to the current work is the
development of QM/MM–ΔMLP models, whereby the energies and
forces of a fast, approximate QM model are corrected with machine-
learning potential.20,24–30 These models have the potential to offer
the computational efficiency needed to address complex chemical
mechanisms that require sampling of high-dimensional free energy
surfaces while providing accuracy comparable to high level QM
methods. A barrier to progress in the development and validation of
such methods is their availability in flexible software packages that
enable a wide range of applications in the condensed phase.

The purpose of the present work is to report the develop-
ment and testing of interoperable simulation software in Amber
for performing free energy simulations (including PIMD) with
QM/MM–ΔMLP models. A list of software components is item-
ized in Table I and Fig. 1 illustrates their interoperation. Specifically,
we have extended the QM/MM capabilities of the Sander molec-
ular dynamics program by introducing interfaces to the DFTB+42

and xTB38–41 semiempirical QM packages. This enables access to a
wide range of powerful new density-functional tight-binding models
with enabled dispersion and hydrogen bonding corrections for use
in condensed phase QM/MM simulations with rigorous long-ranged
electrostatics under periodic boundary conditions.37,52–54 Further-
more, we incorporated the DeePMD-kit software43–45 into Sander31

to evaluate new machine-learning potentials. Path integral molecu-
lar dynamics (PIMD) has been enabled through a new interface with
the i-PI software.46 Finally, a recently developed surface-accelerated
finite-temperature string method9 has been incorporated into the
FE-ToolKit software51 (distributed within AmberTools31) to locate
minimum free energy paths.

FIG. 1. Interoperable software in Amber for conducting free energy simulations in
the condensed phase with QM/MM–ΔMLP models. An Amber-colored rectangle
indicates the Sander program with general internal components encircled by blue.
Arrows indicate the calling sequence. Green ovals are external software packages
not distributed with Amber/AmberTools, whereas blue ovals indicate new cyber-
infrastructure distributed with Amber. The program names and functionality are
described in Table 1.

The Methods section describes the interfaces between Sander,
the DFTB+ and xTB semiempirical packages, the DeePMD-kit soft-
ware, and i-PI. The nature of the QM/MM interactions and the
incorporation of Ewald electrostatics within the self-consistent field

TABLE I. Summary of program acronyms and functionality.

Program Function

Sander A molecular dynamics program with support for QM/MM potentials31

QUICK A GPU-accelerated ab initio QM program32–36

HFDF An ab initio QM program optimized for large memory CPU machines37

xTB A semiempirical tight-binding program that implements
the GFN1-xTB and GFN2-xTB models38–41

DFTB+ A self-consistent charge density functional tight binding program that implements
the DFTB2 and DFTB3 methods and various dispersion models42

DeePMD-kit A machine learning library for performing deep potential
training and inference based on the TensorFlow platform43–45

i-PI A program for performing path integral molecular dynamics46

PLUMED A library that implements enhanced-sampling algorithms,
collective variable definitions, and biasing potentials to calculate free energy surfaces47,48

WESTPA An interoperable, scalable software package for weighted ensemble simulation and analysis49,50

FE-ToolKit A collection of programs used to analyze alchemical
free energy simulations and umbrella window sampling51
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(SCF) procedures are discussed. We demonstrate the features of
the software framework through an example application that exam-
ines guanine-thymine mispair tautomerization reactions in B-DNA.
These mispairs are enabled by the formation of rare tautomer
forms and have been implicated in the formation of mutations
in deoxyribonucleic acid (DNA) replication and translation.55,56

The Results and Discussion section begins with a validation of the
implementation by demonstrating QM/MM and QM/MM–ΔMLP
energy conservation in simulations performed in the microcanoni-
cal ensemble. We then compare free energy profiles generated from
ab initio, semiempirical, and ΔMLP-corrected semiempirical meth-
ods obtained from QM/MM umbrella sampling. Finally, we perform
QM/MM umbrella sampling with PIMD to explore how nuclear
quantum effects alter the profiles.

METHODS

The QM/MM–ΔMLP force fields supplement the QM/MM
energy with a nonelectrostatic correction, EML({r}), where {r} is
the 3N array of atomic positions,

EQM/MM–ΔMLP = EMM({r}) + EQM({r}; P) + EQM/MM({r}; P)
+ EML({r}), (1)

where EMM and EQM are the MM and QM contributions to the
energy, and EQM/MM is their interaction. EML is the machine learning
correction (referred to as a machine learning potential correction,
ΔMLP). EQM and EQM/MM depend on the single particle density
matrix, P. In the present work, we incorporated the DFTB+ and xTB
packages into Sander for calculating EQM, and the interface to the
DeePMD-kit is used to evaluate EML. The details of the implemen-
tation and a description of the QM/MM interactions are discussed
below.

Sander interface with DFTB+ and xTB

The DFTB+ and xTB source codes57,58 are not distributed with
AmberTools, but they can be downloaded and compiled as stan-
dalone applications and/or software libraries to be used in other
applications. In our implementation, we directly link the DFTB+
and xTB libraries with the Sander executable during compilation.
Unlike many of the other QM/MM interfaces supported by Sander,
this strategy circumvents the cost associated with writing an input
file for the external QM program, executing the external program
via a system call, and reading the external program’s output file
at each molecular dynamics step. Instead, Sander directly interacts
with DFTB+ and xTB via function calls. Furthermore, this allows us
to incorporate variational long-range Ewald electrostatics into their
SCF procedures.37,52–54 Detailed instructions for configuring Sander
with DFTB+ and xTB support are provided in the AmberTools 2024
user manual.

The QM/MM interaction is performed with electrostatic
embedding,

EQM/MM = EQM/MM,LJ + ∑
b∈MM

′
∬

qQM(r′)qb(r − rb)

∣r − r′∣
d3rd3r′

+ ∑
a∈QM

qa(ΔϕMM(ra) +
1
2

ΔϕQM(ra)) (2)

where EQM/MM,LJ is the Lennard-Jones interaction between the QM
and MM atoms. The second term is the electrostatic interaction
between the QM charge density (determined from the density
matrix), qQM(r), and the field of nearby MM charges, qb(r − rb).
The primed summation denotes that only those MM atoms within
a cutoff of the QM region are included. The last term accounts for
the long-range electrostatic interactions. The QM charge density is
modeled by Mulliken charges, qa, where ΔϕMM(ra) is the electro-
static potential caused by all MM atoms outside of the cutoff and
ΔϕQM(ra) is the interaction between the QM region and its periodic
images,

ΔϕMM(ra) = Re∑
k≠0

4π
k2V

e
ikT ⋅ra− k2

4β2
∑

b∈MM
qbe−ikT ⋅rb

− ∑
b∈MM

′ qb erf(βrab)

rab
−

πQMM

β2V
, (3)

ΔϕQM(ra) = Re∑
k≠0

4π
k2V

e
ikT ⋅ra− k2

4β2
∑

b∈QM
qbe−ikT ⋅rb

− ∑
b∈QM

qb erf(βrab)

rab
−

πQQM

β2V
. (4)

The first term in Eqs. (3) and (4) is the reciprocal space potential of
the MM and QM charge densities, respectively. V is the volume of
the unit cell, β is the Ewald coefficient, k is the angular wave number
of the plane wave, and QMM and QQM are the net charges of the MM
and QM regions. The second term in Eqs. (3) and (4) is a real-space
correction that removes the potential caused by the nearby Ewald
Gaussian functions. The third term in Eqs. (3) and (4) is a neutral-
izing uniform background correction for charged systems. The MM
energy, EMM({r}), contains an analogous background correction,
−πQ2

MM/(2β2V), such that the net correction for the entire system
is −π(QMM +QQM)

2
/(2β2V).

The Sander program is responsible for calculating EMM, EMM,LJ,
ΔϕMM, and ΔϕQM. The DFTB+ and xTB libraries are responsible
for calculating EQM, qa, and the second term in Eq. (2). A similar
separation of responsibilities occurs when calculating atomic forces.
At each step of dynamics, Sander evaluates ΔϕMM with the particle
mesh Ewald (PME) method,59,60 and it precomputes the exponen-
tials appearing in Eq. (4). The MM atoms are imaged around the
QM region, and a list of MM atoms within a cutoff of any QM atom
is generated. A SCF calculation is requested by providing the cur-
rent set of QM atomic coordinates and the locations, charges, and
“hardness” values of the nearby MM atoms. The xTB software uses
the hardness values to represent the nearby embedding charges as
diffuse monopoles. For example, in GFN2-xTB, the second term in
Eq. (2) is given by Eq. (5), where s indexes the atomic orbital shells
and qs is a shell-resolved partial charge,

∑
b∈MM

′
∬

qQM(r′)qb(r − rb)

∣r − r′∣
d3rd3r′

≈ ∑
b∈MM

′
∑

a∈QM
∑
s∈a

qsqb
√

r2
ab + [

ηs+ηb
2 ]

−2
. (5)

In the present work, we assign all MM atoms the hardness of hydro-
gen. The Sander interface with DFTB+ currently treats the MM
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atoms as point charges; however, this can be generalized in a similar
fashion in the future.

The interfaces to both QM packages take advantage of object
oriented features of the Fortran 2008 programming language to
communicate the variational contribution of the long-range elec-
trostatics within the SCF procedure. The DFTB+ interface with
Sander is contained in the file dftbplus_module.F90, located in the
Sander source directory of the AmberTools 2024 package. The inter-
face creates a child class that inherits from the TQDepExtPotGen
data structure provided by the DFTB+ software.57 This class was
specifically designed by the DFTB+ developers to include charge-
dependent external potential corrections. The xTB interface with
Sander is similarly contained in the file xtb_module.F90 within the
Sander source directory. The xTB interface inherits from the TSol-
vation structure defined within the xTB software.58 xTB normally
uses this class to interact with the QM region with an implicit sol-
vent model. In both interfaces, the child class redefines the parent
class methods to evaluate the last term in Eq. (2) and the “shift” in
the atom potentials: ΔϕMM(ra) + ΔϕQM(ra).

One enables QM/MM calculations by setting ifqnt = 1
in the Sander input file, which will cause the options in the
& qmmm Fortran namelist to be read. Setting the option qm_theory
= “DFTBPLUS” or qm_theory = “XTB” will read the interface-
specific options in the & dftbplus or & xtb namelists, respectively.
Additional details are described in the upcoming AmberTools 2024
documentation, due to be released in the spring of 2024.

Sander interface with DeePMD-kit

The design of the DeePMD-kit interface43–45 with the
Sander program31 is heavily influenced by the development of
QM/MM–ΔMLP potentials.20,21,61–64 In the Sander input file, the
user makes a selection of atoms to be corrected with a MLP. In the
context of evaluating a QM/MM–ΔMLP, the MLP selection is the
set of atoms in the QM region. One must also provide the name of
the file containing the DeePMD-kit neural network definition and
parameters. The Deep-Potential Range-Corrected model (DPRc)20

corrects the interactions between the QM atoms and the interac-
tions between the QM and nearby MM atoms in a manner that
conserves energy. That is to say, the MLP correction to the QM/MM
interactions smoothly approaches zero as the MM atom reaches a
specified cutoff distance. When using a DPRc model, the Sander
input file must also specify the MLP cutoff for the QM/MM inter-
actions. Previous parametrizations of DPRc-based MLP models
have used a 6 Å cutoff, which is also used in the present work.
At each step of dynamics, Sander will request the MLP energy
and forces from the DeePMD-kit by providing the position and
“type” of each QM and (optionally) nearby MM atoms. A QM
atom type is its 2-character element symbol, whereas the MM atom
type, from the perspective of DeePMD-kit, is the element symbol
prefixed with the letter “m.” This strategy allows the neural net-
work to correct a QM/QM interaction differently than a QM/MM
interaction,

The DPRc energy is the sum of atomic contributions, Ei,

EDPRc =
N

∑
i=1

Ei(ri,{rj}j∈n(i)), (6)

where N is the number of atoms, ri is the location of atom i, and
n(i) denotes the set of neighboring atoms (i.e., atoms within the
DPRc cutoff radius). The expressions for the Ei values from the neu-
ral network can be found elsewhere.20,21 The atomic decomposition
of the DPRc model is readily amenable to parallel calculation. The
DPRc contribution to the energy is activated by setting the idprc
= 1 option within the Sander input & dprc Fortran namelist.

As written, the DPRc application programming interface is
specific to the DeePMD-kit because it instantiates software objects
defined within the DeePMD-kit library. Many emerging MLPs,
such as Allegro65 and Mace,66 are based on the PyTorch frame-
work.67 We are currently developing a generic Sander/PyTorch
QM/MM–ΔMLP interface to evaluate these models.

Sander interface with i-PI

The i-PI software46 is a standalone molecular dynamics pro-
gram that supports state-of-the-art path integral sampling,68 includ-
ing the PIGLET thermostat, which has been shown to dramatically
reduce the expense of computing quantum kinetic energy.69,70 The
path integral dynamics is performed with a ring polymer Hamil-
tonian, consisting of several replicas (beads) that are harmonically
restrained in series. At each time step, the potential energy of each
bead must be computed; however, these calculations are indepen-
dent and can be performed in parallel. The i-PI software defines
a client-server communication protocol to evaluate the potential
energy of external driver programs. We have implemented the
“internet socket” variation of the protocol, where multiple instances
of Sander can be launched on different computers. When launch-
ing a Sander instance, one must provide the hostname (internet
protocol address) and port number used for interprocess commu-
nication. These quantities are specified as command-line arguments
-host and -port, respectively. Furthermore, the Sander input file
must set the option imin = 7, which causes the program to wait for
communication from the server process.

Free energy profiles of tautomer reactions
from classical molecular dynamics

We prepared a B-form DNA system (PDB ID: 113D)71 to
demonstrate the functionality of the new software infrastructure.
The B-DNA crystal structure71 has drawn interest due to the pres-
ence of two G-T wobble pair mismatches,55,72,73 which could give rise
to errors in replication74,75 and translation.76 This subsequently led
to the computational investigation of G-T tautomerization reactions
with QM/MM.56

In the present work, we explore tautomerization reactions
involving residues G4 and T21. The B-DNA system consists of 762
solute atoms solvated by 5151 waters in a truncated octahedron
with 59.3 Å real-space lattice vector lengths. A total of 13 Cl− and
35 Na+ ions were added to neutralize the charge and achieve a
0.14M ion concentration. The system was prepared using an elabo-
rate 15-step procedure described in Ref. 77 using a MM potential.
The preparation procedure involves geometry optimization, heat-
ing, solvent annealing, and equilibration of the system density while
restraining solute heavy atoms. Over the course of the equilibration
procedure, the solute restraints are gradually reduced. In total, this
procedure involved 6.2 and 2.6 ns of simulation in the NVT and
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NPT ensembles, respectively, using a 1 fs time step. The system was
then equilibrated for an additional 100 ns in the NPT ensemble. The
temperature was maintained at 298 K with a Langevin thermostat78

(5.0 ps−1 collision frequency), and the density was equilibrated at
1 atm using the Berendsen isotropic barostat. The MM potential
modeled the DNA with the OL15 force field,79 and the solvent envi-
ronment was modeled with SPC/Fw waters80 and the Li et al. ion
parameters.81 Electrostatics were calculated with the particle mesh
Ewald method59,60 using 10 Å real-space cutoffs, a 1 Å reciprocal
space grid spacing, and tinfoil boundary conditions.

Free energy profiles of the tautomeric reactions depicted in
Fig. 3 were calculated from QM/MM umbrella sampling using a
variety of ab initio and semiempirical methods. The reactions are
decomposed into three steps connecting 3 tautomeric forms. The
“wGT” state corresponds to the G-T wobble base pair in which
the T21:N3 position is protonated. The “GT∗” state is a tautomer
in which the T21:H3 proton is covalent bonded to the T21:O4
position. Similarly, the “G∗T” state is a tautomer in which the H3
proton is bound to the G4:O6. The three steps involve the proton
displacement between these states: wGT → GT∗, GT∗ → G∗T, and
G∗T → wGT. The QM/MM methods compared in this work are
PBE0/6-31G∗, GFN2-xTB,41 DFTB3-D3 DFTB3-D4(2b), DFTB3-
D4(3b), and AM1/d.82–84 The DFTB3-D3 model applies Grimme’s
D3 dispersion correction85,86 to the DFTB3/3ob Hamiltonian.87,88

Similarly, the DFTB3-D4(2b) and DFTB3-D4(3b) models sup-
plement the DFTB/3ob method with the D4 dispersion model.89

The DFTB3-D4(3b) method includes a 3-body contribution to the
dispersion, whereas the DFTB3-D4(2b) is limited to 2-body
contributions. Furthermore, we parametrized a reaction-specific
DPRc correction for the AM1/d model (described in the next
section), which will be denoted AM1/d+ML. The QM region
consists of 51 atoms (the nucleobase and sugar of G4 and T21),
and it has a net neutral charge. The minimum free energy path of
each step was independently optimized for every QM/MM model.
The optimizations were performed with the surface-accelerated
finite temperature string method9 in the space of 5 reaction
coordinates. The reaction coordinates are distance differences
meant to represent the transfer of H3 proton and the relative
displacement of the hydrogen bond pattern: ξ1 = RN3–H3–RO6–H3,
ξ2 = RO6–H3–RO4–H3, ξ3 = RN1–H1–RN3–H1, ξ4 = RN1–O2–RN2–O2,
and ξ5 = RN2–O2–RN1–N3. All umbrella sampling described in
this work used 200 kcal mol−1 Å−2 force constants for each
reaction coordinate. The string method began with an initial
guess that linearly interpolated the reaction coordinates between
the step’s reactant and product states. Each string was sampled
with 32 umbrella windows. The initial configurations of each
window were sequentially prepared, starting from the reactant
state. The QM/MM structure of each window was optimized
for 1000 steps of conjugate gradient minimization. The temper-
ature was gradually raised from 0 to 298 K over the course of
40 ps, and an additional 10 ps of QM/MM umbrella sampling
was performed in the NVT ensemble. 50 iterations of the string
method were performed with 4 ps/window/iteration of sampling
and a 1 fs time step. Production sampling of the final path was
performed for 25 ps, and each production simulation was repeated
4 times with different thermostat random number seeds. The
reaction coordinate values were recorded every 10 fs, and the aggre-
gate sampling from all three reaction steps was analyzed with the

multistate Bennett’s acceptance ratio (MBAR) method90 imple-
mented in the ndfes software4,51 to produce 5-dimensional free
energy surfaces. The profiles presented in the paper are the free
energies along the minimum free energy path. The PBE0/6-31G∗

simulations are very expensive in relation to the other models. In this
case, only 10 iterations of the string method were performed, start-
ing from the optimized AM1/d path. Each string was sampled for
2 ps/window/iteration, and 4 sets of production simulations were
run for 10 ps/window/trial with a 1 fs time step. The ab initio
QM/MM electrostatics were calculated with the ambient-potential
composite Ewald method37 using a 10 Å real-space cutoff, 1 Å
reciprocal space grid spacing, and tinfoil boundary conditions.

Free energy profiles of tautomer reactions from path
integral molecular dynamics

We recalculated the free energy profiles from path integral
molecular dynamics (PIMD) umbrella sampling performed with the
new interface to the i-PI software.68 The profiles generated from
classical and path integral dynamics are compared to explore how
nuclear quantum effects change free energy predictions. The PIMD
dynamical motion was propagated with 6 beads (replicas) at a 0.25 fs
timestep at 298 K using the PIGLET quantum thermostat;69,91 there-
fore, up to 6 Sander instances can be launched. The parameters for
the PIGLET thermostat were taken from the GLE4MD website.92,93

The parameters were chosen to reproduce the quantum fluctuations
at 298 K and span a range of frequencies up to 4142 cm−1. Each
step’s path was sampled with 32 umbrella windows using
200 kcal mol−1 Å−2 force constants. The PIMD restraint potentials
were applied to the centroid positions (the bead-averaged posi-
tions) by making use of the i-PI interface to PLUMED.47,48 PIMD
umbrella sampling was performed at 32 windows positioned along
the path previously optimized for classical sampling. Each window
was sampled for 2.5 ps and repeated 4 times with different ther-
mostat random number seeds. The reaction coordinate values were
calculated from the centroid positions, and the free energy sur-
face was generated from MBAR analysis of the aggregate sampling
obtained from the 3 reaction steps.

QM/MM–ΔMLP model training

We demonstrate the new interface between Sander and
DeePMD-kit by parametrizing a DPRc correction for the AM1/d-
PhoT Hamiltonian. The architecture of the DPRc neural network
was previously described in Ref. 94, and we have summarized
the model in the supplementary material for completeness. The
AM1/d+ML neural network parameters were optimized with the
DP-GEN software95 to reproduce PBE0/6-31G∗ QM/MM energies
and forces in the B-DNA system. The DPRc MLP corrects the
interactions between the QM atoms and the QM/MM interactions
within a 6 Å cutoff. Four sets of neural network parameters were
trained against 93 617 samples extracted from the AM1/d-PhoT
string calculations using the Adam stochastic optimizer with differ-
ent random number seeds.96 The parameter sets were then updated
through 7 iterations of active learning. An active learning iteration
consists of three steps: exploration, labeling, and retraining. The
exploration step uses the current set of neural network parameters to
perform QM/MM+ΔMLP umbrella sampling. For each saved sam-
ple, the energy and forces produced by the 4 parameter sets are

J. Chem. Phys. 160, 224104 (2024); doi: 10.1063/5.0211276 160, 224104-5

Published under an exclusive license by AIP Publishing

 10 June 2024 16:39:00

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7235194


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

compared; if the models disagree, then the sample is categorized
as a “candidate.” The “labeled” samples are a random selection of
(up to) 2000 samples drawn from the pool of candidates. The energy
and forces of labeled samples are recalculated with PBE0/6-31G∗

QM/MM and included as additional reference data within the next
round of training. The active learning procedure terminates when
10% (or fewer) of the samples are selected for labeling.

Each active learning iteration sampled 1920 umbrella windows
for 2 ps and saved 50 samples/simulation. These simulations cor-
respond to the first 20 and 40 iterations of the finite temperature
string method applied to the wGT → GT∗ and GT∗ → G∗T reac-
tion steps, respectively. A sample was considered a candidate if the
standard deviation in the MLP energy corrections was larger than
10−4 eV/atom or the standard deviation in the force correction
exceeded 0.08 eV/Å for any atom. The active learning procedure
terminated after 7 iterations, requiring a total of 9293 ab initio
QM/MM evaluations. Neural network parameters were produced
from 4 × 106 steps of Adam stochastic optimization with a learning
rate that exponentially decays from 10−3 to 5 × 10−8.96 As previously
described, production sampling of the B-DNA tautomeric reactions
was simulated 4 times with different random numbers of seeds. The
AM1/d+ML production sampling was repeated with each of the 4
neural network parameter sets (1 trial/parameter set), and the results
were averaged.

RESULTS AND DISCUSSION
Validation tests: Force evaluation and energy
conservation in NVE simulations

In this section, we validate the Sander interface with DFTB+
and xTB software by performing DFTB3-D3 and GFN2-xTB
QM/MM simulations of the B-DNA system in the microcanoni-
cal ensemble and monitor the total energy. Energy conservation

is achieved when the potential energy is smooth and the analytic
atomic forces are numerically consistent with the potential energy
gradients.

Figure 2 plots the total energy of the B-DNA reactant state as
a function of time. The lines labeled “QM/MM Ewald” were simu-
lated with Ewald electrostatics using 10 Å real-space cutoffs, whereas
“QM/MM Cutoff 14 Å” truncates the QM/MM electrostatics at 14 Å
(and it does not model the long-range QM/MM electrostatics). We
ran the simulations with truncated electrostatics twice, starting from
the GFN2-xTB (Ewald) or DFTB3-D3 (Ewald) configurations at
times 0 and 5 ps. The “m” values are the slopes of the energy from
linear regression. Each simulation was performed for 20 ps using a
1 fs time step.

The QM/MM Ewald interface described in the meth-
ods section assumes that the short-range QM/MM electrostatic
interactions [the second term in Eq. (2)] behave like point
monopoles at the real-space cutoff; the Ewald correction mod-
els the electrostatics outside of the cutoff from a point charge
approximation. The short-range electrostatics [Eq. (5)] adopt the
Mataga–Nihshimoto–Ohno–Klopman97–99 damped Coulomb inter-
action model. This model mimics a point charge interaction at large
distances.

Figure 2 suggests that the slight discrepancy between Eq. (5)
and point charge electrostatics is negligible when using a 10 Å
real-space cutoff for both GFN2-xTB and DFTB3-D3. The energy
conservation of GFN2-xTB is almost identical to DFTB3-D3 in
DFBT+. Both models exhibit negligible energy drift over 20 ps
(slopes of 0.01 kcal/mol/ps). However, when the GFN2-xTB and
DFTB3-D3 QM/MM electrostatics are truncated at 14 Å, large devi-
ations in the total energy are encountered, and the self-consistent
field procedure often fails to converge within a few picoseconds of
simulation. Similar behavior has been illustrated elsewhere in vali-
dation tests that compare the stability of QM/MM simulations with
and without long-ranged electrostatic interactions.37

FIG. 2. QM/MM energy conservation of B-DNA in the microcanonical ensemble. (a) DFTB3-D3 performed with Sander/DFTB+. (b) GFN2-xTB performed with Sander/xTB.
All methods compute the MM/MM electrostatics with particle mesh Ewald. The QM/MM Ewald method similarly models the QM/QM and QM/MM electrostatics with Ewald.
The QM/MM cutoff 14 Å method truncates the QM/MM interactions beyond 14 Å, and long-range QM/QM interactions are ignored. The QM/MM cutoff 14 Å simulations were
repeated at different starting configurations taken from the QM/MM Ewald trajectory. The “m” values are the slope of the energy obtained from linear regression.
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Free energy surfaces for guanine-thymine mispair
tautomerization reactions

In this section, we examine the free energy profiles of guanine-
thymine mispair tautomerization reactions using a wide range of
ab initio and semiempirical/DFTB QM/MM and QM/MM-ΔMLP
models. Free energy surfaces (FESs) and minimum free energy
paths (MFEPs) were determined using the surface-accelerated string
method9 with five different reaction coordinates, as described in
the Methods section. Figure 3 compares the 1D free energy profiles
for the MFEPs for the following QM/MM models: PBE0/6-31G∗,
AM1/d, GFN2-xTB, DFTB3-D3, DFTB3-D4(2b), and DFTB3-
D4(3b). PBE0/6-31G∗ is an ab initio QM/MM model, and it is ∼500
times slower than the other semiempirical/DFTB QM/MM mod-
els for these systems. Several QM/MM models based on DFTB3
are available through the interface with DFTB+, and in particular,
the use of different dispersion models is examined. The notation
“D3” and “D4” refers to the dispersion correction; (2b) and (3b)
mean 2-body and 3-body interaction, respectively, as described in
the Methods section. In addition, the GFN2-xTB model is exam-
ined through an interface with the xTB package. The AM1/d model
is an NDDO-based semiempirical Hamiltonian available within the

SQM module of Sander. AM1/d also serves as the base QM model
upon which the QM/MM-ΔMLP was developed (AM1/d + ML)
through an interface with DeePMD-kit.43–45 Neural network para-
meters were trained to reproduce PBE0/6-31G∗ QM/MM energies
and forces. In this way, functionality for a wide range of QM/MM
models is demonstrated, and their results are compared.

The reaction itself is decomposed and presented in three steps
that form a closed thermodynamic cycle, as illustrated at the top
of Fig. 3. In the first step, a G-T wobble pair (wGT) undergoes
a coupled proton transfer/hydrogen bond register shift to a G-T∗

base pair, where T∗ represents the thymine enol tautomer. In the
second step of the reaction, the GT∗ undergoes a second proton
transfer/hydrogen bond register shift to form a (G∗)-T base pair,
where G∗ is the guanine enol tautomer. The third step of the reac-
tion involves a coupled proton transfer/hydrogen bond register shift
to return to the original GT wobble base pair.

It is immediately evident from Fig. 3 that there are large vari-
ations in the free energy profiles for the various QM/MM models.
Most notably, none of the semiempirical/DFTB-based QM/MM
models closely reproduce the ab initio PBE0/6-31G∗ profile. The
AM1/d model systematically overestimates the profile with respect

FIG. 3. Helmholtz free energy profiles for guanine-thymine mispair tautomerization reactions using different ab initio and semiempirical/DFTB QM/MM and QM/MM-ΔMLP
models performed in the canonical ensemble. (a) wGT → GT∗; (b) GT∗ → G∗T; (c) G∗T → wGT. “wGT” indicates a G-T wobble pair, and G∗ and T∗ are non-standard
tautomer states of G and T, respectively, as indicated in the figure and described in the text.
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to the wGT state, whereas the DFTB models underestimate the pro-
files with respect to the wGT state. The GFN2-xTB model, in this
example, further predicts that the tautomer base pairs (GT∗ and
G∗T) are more favorable than the GT wobble (wGT), where the
nucleobases are in their most stable tautomer keto forms.

Table II (top) lists the values of key stationary points along
the free energy profiles calculated with classical molecular dynamics
shown in Fig. 3 and compares them to experimentally derived ref-
erence values. Overall, the ab initio PBE0/6-31G∗ QM/MM model
does the best job at reproducing the experimentally derived values.
The differences in ΔA are less than 1 kcal/mol, and the differences
in ΔA‡ are less than 3.5 kcal/mol. It should be noted that the com-
parison with the experiment here is only approximate in the sense
that the ΔA‡ is only crudely approximated from the experimental
rates using transition state theory with unit transmission coefficient.
Taking the PBE0/6-31G∗ values as a high-level theoretical refer-
ence, it is clear that the other QM/MM models differ considerably.
For example, the difference between PBE0/6-31G∗ and the semiem-
pirical/DFTB model wGT → GT∗ ΔA‡ values ranges from −6.4 to
5.6 kcal/mol. Only the machine-learning potential corrected model
AM1/d+ML gives results that are close to the ab initio values. The
ΔA and ΔA‡ values agree with PBE0/6-31G∗ to within 0.5 and 0.8
kcal/mol, respectively. The AM1/d+ML QM/MM model is thus by
far the closest agreement with the ab initio QM/MM model, despite
the uncorrected AM1/d model having very large differences (maxi-
mum differences for ΔA and ΔA‡ of 5.6 and 3.5 kcal/mol for ΔA and
ΔA‡, respectively).

The main point of this section is to demonstrate that (1)
ab initio QM/MM simulations provide reasonable agreement with
experimental results such that they can provide, at very high
computational cost, a valuable molecular-level interpretation and
can potentially be used for prediction; (2) existing semiempiri-
cal/DFTB models may not be able to accurately describe a chem-
ical process that was outside the scope of their development; and
(3) machine-learning potential corrections can provide an avenue
toward improving efficient semiempirical/DFTB QM/MM models
for specific applications. The software infrastructure reported here
enables new types of QM/MM-ΔMLP models to be developed and
applied in Amber to efficiently compute free energy surfaces and
minimum free energy paths.

Nuclear quantum effects on guanine-thymine mispair
tautomerization reactions

In this section, we demonstrate the new interface with the i-PI
software by calculating free energy profiles from PIMD simulation,
as described in the Methods section. These calculations are con-
siderably more computationally intensive (by roughly an order of
magnitude, or more depending on the number of replicas used in the
ring polymer Hamiltonian). Nonetheless, inclusion of nuclear quan-
tum effects is important, especially for modeling chemical reactions
that involve proton transfer events such as those presented here.
Other recent works have addressed the issue of computational cost

TABLE II. Tautomer free energies and forward reaction barriers (kcal/mol) determined from classical and path integral molecular dynamics umbrella sampling.a

wGT → GT∗ GT∗ → G∗T G∗T→ wGT

Method ΔA ΔA‡ ΔA ΔA‡ ΔA ΔA‡

Expt. 4.43 16.88 −0.62 9.21 −3.82 ⋅ ⋅ ⋅

Classical MD

PBE0/6-31G∗ 3.97(0.04) 20.41(0.05) −0.91(0.03) 6.72(0.05) −3.06(0.04) 17.02(0.05)
AM1/d 9.54(0.04) 23.51(0.06) −1.36(0.03) 10.26(0.03) −8.16(0.04) 15.36(0.04)
AM1/d+ML 3.67(0.07) 21.01(0.07) −0.43(0.07) 7.06(0.07) −3.24(0.07) 17.78(0.07)
GFN2-xTB −2.44(0.06) 12.09(0.05) 1.94(0.08) 4.68(0.06) 0.50(0.06) 12.59(0.07)
DFTB3-D3 3.27(0.07) 10.91(0.08) 4.58(0.08) 10.41(0.08) −7.85(0.09) 5.83(0.09)
DFTB3-D4(3b) 2.01(0.10) 10.81(0.09) 5.13(0.12) 10.75(0.09) −7.14(0.12) 5.59(0.11)
DFTB3-D4(2b) 2.63(0.07) 10.75(0.07) 5.46(0.07) 10.91(0.06) −8.09(0.07) 5.43(0.06)

PIMD

AM1/d 7.98(0.07) 21.87(0.08) −1.46(0.08) 6.90(0.06) −6.51(0.09) 15.41(0.08)
AM1/d+ML 3.48(0.03) 20.65(0.04) 0.26(0.03) 4.21(0.08) −3.75(0.04) 16.88(0.04)
GFN2-xTB −3.10(0.06) 10.93(0.06) 1.70(0.05) 2.47(0.06) 1.34(0.06) 12.26(0.05)
DFTB3-D3 1.68(0.09) 10.59(0.08) 4.41(0.09) 7.96(0.08) −6.03(0.09) 4.57(0.08)
DFTB3-D4(3b) −0.57(0.08) 9.99(0.10) 5.12(0.07) 8.12(0.07) −4.55(0.07) 5.44(0.09)
DFTB3-D4(2b) 2.17(0.07) 9.78(0.08) 4.20(0.08) 7.04(0.07) −6.37(0.08) 3.40(0.08)
aEach free energy profile was computed 4 times from independent sets of simulations. The tabulated values are the means of the 4 trials. The numbers in parentheses are the standard
error of the mean. Experimental reference values were derived from rates measured in Ref. 55, and free energy values were approximated from transition state theory assuming a unit
transmission coefficient.
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in PIMD simulations using fast density-functional tight-binding
models100 or machine learning potentials10 optimized for high-level
reference data.

Figure 4 compares the classical (solid lines) and path-integral
molecular dynamics (dashed lines) free energy profiles for different
semiempirical/DFTB QM/MM and QM/MM-ΔMLP models.
Table II (bottom) lists the values of key stationary points along
the free energy profiles calculated with the PIMD shown in Fig. 4
and compares them to corresponding classical and experimentally
derived reference values. Table S2 summarizes the differences
between classical and PIMD free energy values. Overall, the
inclusion of nuclear quantum effects generally lowers the free
energy barrier (ΔA‡

) for proton transfer steps, in some cases
exceeding 3 kcal/mol, whereas the effect on ΔA is variable (ranging
up to roughly ±2.5 kcal/mol). The PIMD free energy profiles were
calculated from the ring polymer centroid positions. These profiles

generally have lower barriers than those produced from classical
molecular dynamics. The apparent smoothing of the profile is due
to the delocalization of the nuclear wave packet, which can partially
be attributed to tunneling effects.101–103 The current demonstra-
tion examines differences between independently calculated free
energy profiles; however, other applications of i-PI can directly
evaluate equilibrium and kinetic isotope effects from umbrella
sampling using thermodynamic perturbation and frequency
factors.21,104

The main point of this section is to demonstrate that the
inclusion of nuclear quantum effects can have important quan-
titative effects on the free energy profiles and ΔA‡ values for
the tautomerization reactions considered here. These calcula-
tions are made practical in Amber with fast semiempirical/DFTB
QM/MM and QM/MM-ΔMLP models and enabled by the interface
with i-PI.46

FIG. 4. Classical and path-integral molecular dynamics free energy profiles for guanine-thymine mispair tautomerization reactions using different semiempirical/DFTB QM/MM
and QM/MM-ΔMLP models described in the text: (a) wGT→ GT∗ (a), (d), (g), (j), (m), (p); (b) GT∗ → G∗T (b), (e), (h), (k), (n), (q); (c) G∗T→ wGT (c), (f), (i), (l), (o), (r).
Here “wGT” indicates a G-T wobble pair, and G∗ and T∗ are non-standard tautomer states of G and T, respectively. Profiles from classical and PIMD are shown as solid and
dashed lines, respectively. The color schemes for different models are the same as those shown in Fig. 3.
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TABLE III. Classical molecular dynamics performance using Sander with several
QM/MM potentials. The values are time steps/day.

QM/MM Ewald QM/MM cutoff QM/MM cutoff
Potential Linked Linked File-based

DFTB3-D3 163 000 99 000 80 000
GFN2-xTB 133 000 88 000 80 000
AM1/d 133 000 86 000 ⋅ ⋅ ⋅

AM1/d+ML 66 000 51 000 ⋅ ⋅ ⋅

PBE0/6-31G∗ 200 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Performance

We measured the performance of the B-DNA microcanonical
QM/MM simulations shown in Fig. 2 on a single Intel Xeon E5-2630
v3 CPU core clocked at 2.40 GHz. Table III expresses the perfor-
mance as the number of classical molecular dynamics time steps per
day. For example, 1000 steps/day would correspond to 1 ps/day of
sampling using a 1 fs time step. More efficient sampling with a longer
integration time step may be obtained by using the “middle” ther-
mostat scheme described in Refs. 105 and 106 in conjunction with
hydrogen mass repartitioning.107 The “QM/MM Ewald” timings use
10 Å real-space cutoffs, whereas the “QM/MM Cutoff” timings trun-
cate the QM/MM interactions at 14 Å. The subheadings “Linked”
and “File-based” refer to the communication between Sander and
the QM program: Linked means there is direct communication via
function calls, whereas File-based relies on disk input/output and
system calls.

Table III suggests that linking the semiempirical programs into
the Sander executable increases the performance by 10%-to-20%
over file-based communication. Direct linkage further improves the
performance by enabling the use of the QM/MM Ewald method,
which achieves stable dynamics with smaller real-space cutoffs.
The single core performance of AM1/d, GFN2-xTB, and DFTB3-
D3 is very similar. The inclusion of the DPRc ΔMLP halves the
AM1/d performance; however, previous examination of DPRc tim-
ings found that it decreases the performance by only 10% when
the ΔMLP is evaluated on an Nvidia V100 GPU. The AM1/d+ML
performance on a single CPU core is 300 times faster than
the PBE0/6-31G∗ QM/MM evaluation using the HFDF ab initio
program.

TABLE IV. AM1/d QM/MM path integral molecular dynamics performance using i-PI
and multiple Sander instances. N is the number of Sander instances. The path integral
dynamics is propagated with 6 beads.

N Steps/day

1 17 000
2 27 000
3 37 000
4 37 000
5 37 000
6 60 000

The high cost of ab initio QM/MM evaluation often prevents
its use within PIMD simulations. To illustrate the cost of PIMD sim-
ulations, we measured the performance of the wGT reactant state
discussed in the previous section. The PIMD simulations were run
with 6 beads; therefore, a pool of up to 6 Sander instances can be
launched. Table IV reports the simulation performance as the num-
ber of PIMD time steps evaluated per day. The total number of
CPU cores is N + 1, where N is the number of Sander instances; the
additional core is reserved for the i-PI dynamics program. At each
time step, 6 potential energy evaluations are required for the corre-
sponding set of 6 beads; therefore, running 4 or 5 Sander instances
does not improve the 3-instance performance because they are not
divisors of the number of beads. When 6 instances are used, the per-
formance is about half of what is obtained during classical dynam-
ics due to the communication between the i-PI and the Sander
instances.

CONCLUSION

We reported a new integrated software infrastructure for con-
ducting free energy simulations in the condensed phase under
periodic boundary conditions with long-ranged PME/Ewald electro-
statics using a wide range of fast QM/MM potentials made available
through interfaces with DFTB+ and xTB. Furthermore, integration
with the DeePMD-kit enables new QM/MM-ΔMLP models to be
developed and efficiently applied. Nuclear quantum effects (beyond
the harmonic approximation) can be treated using free energy sur-
face sampling with path integral molecular dynamics. The software
infrastructure reported here extends the capabilities of Amber for
developing new QM/MM-ΔMLP models and using them to com-
pute free energy surfaces and related properties for a wide range
of applications. Near-future directions for development will involve
expanding the scope of interoperability to include interfaces with
enhanced sampling software, and in particular with WESTPA,49,50 a
scalable software package for high-performance weighted ensemble
simulation and analysis.

SUPPLEMENTARY MATERIAL

See the supplementary material for a description of the DPRc
neural network and tables of tautomeric reaction free energy
differences.
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