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ABSTRACT
We use the modified Bigeleisen–Mayer equation to compute kinetic isotope effect values for non-enzymatic phosphoryl transfer reactions
from classical and path integral molecular dynamics umbrella sampling. The modified form of the Bigeleisen–Mayer equation consists of a
ratio of imaginary mode vibrational frequencies and a contribution arising from the isotopic substitution’s effect on the activation free energy,
which can be computed from path integral simulation. In the present study, we describe a practical method for estimating the frequency ratio
correction directly from umbrella sampling in a manner that does not require normal mode analysis of many geometry optimized structures.
Instead, the method relates the frequency ratio to the change in the mass weighted coordinate representation of the minimum free energy
path at the transition state induced by isotopic substitution. The method is applied to the calculation of 16/18O and 32/34S primary kinetic
isotope effect values for six non-enzymatic phosphoryl transfer reactions. We demonstrate that the results are consistent with the analysis of
geometry optimized transition state ensembles using the traditional Bigeleisen–Mayer equation. The method thus presents a new practical
tool to enable facile calculation of kinetic isotope effect values for complex chemical reactions in the condensed phase.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147218

I. INTRODUCTION

The understanding of reaction mechanisms in the condensed
phase is of broad interest in biology, medicine, and catalyst design.1
Mechanistic studies of biocatalysis are particularly challenging, often
requiring coordinated experimental and computational efforts.2 A
key goal of computational studies is to characterize the chemical
mechanism by determining the minimum free energy paths pass-
ing through distinct rate-controlling transition states. By examining
the sensitivity of the minimum free energy path in response to
environmental perturbations, one gains insight into the key fac-
tors that control reactivity and thereby facilitate enzyme design.3
The validation of computational predictions can be challenging,
however, due to the inherent difficulty of directly observing tran-
sition state ensembles from the experiment. Kinetic isotope effect
(KIE) measurements are one of the most sensitive experimental
techniques to probe the changes in structure and bonding as a reac-
tion proceeds to the transition state.4–6 The primary and secondary

KIE measurements are often able to distinguish between competing
mechanistic pathways;4,7 however, these measurements frequently
require recourse to computational modeling to fully interpret.
Hence, a vital component of computational mechanistic studies
is the ability to calculate KIE values that are consistent with the
predicted pathways and transition state ensembles.

KIE values for reactions of small molecules in the gas phase
or implicit solvent environments are often computed from the
Bigeleisen–Mayer equation (BME).8 The BME introduces nuclear
quantum effects from a harmonic approximation of the uncoupled
vibrations determined from normal mode analysis, and it ignores
quantum tunneling effects. To apply the BME, one performs geom-
etry optimizations on a single (or small number of) reactant state
(RS) and transition state (TS) structure(s) to obtain the vibra-
tional frequencies of the light and heavy isotopologues from normal
mode analysis. Similar approaches based on generalized transition
state theory have also been developed to include multi-dimensional
tunneling and anharmonicity effects.9–11
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In explicitly modeled condensed phase environments, the reac-
tant and transition states are described by an expanded ensemble of
structures identified by the stationary points along a minimum free
energy path traversing a multi-dimensional free energy surface.12

The expanded ensemble requires one to introduce an averaging pro-
cedure to account for the structural variations of both the solute
and environment13 because the KIE estimated from individual sam-
ples may span a relatively wide range.14 Rather than performing
an exhaustive set of geometry optimizations for each reactant and
transition state structure in the ensemble, one can leverage the
configurational averaging provided by centroid path integral molec-
ular dynamics (PIMD) sampling15–19 and calculate the KIE from
a modified form of the BME that introduces anharmonicity and
quantum tunneling within Feynman’s path integral framework.20–24

The modified BME has two components: a ratio of imaginary mode
vibrational frequencies and a component resulting from the change
in activation free energy due to isotopic substitution. The frequency
ratio correction (FRC) is the imaginary mode’s contribution to the
BME originating from the Redlich–Teller product rule.25–27 The
change in activation free energy can be computed from PIMD
umbrella sampling,15,16,28–31 but the calculation of an average FRC
might appear, at first, to require geometry optimization and normal
mode analysis of a transition state ensemble.

We describe a simple method for estimating the FRC directly
from umbrella sampling that does not require normal mode analy-
sis of geometry optimized structures. The method relates the FRC
to the change in the mass weighted coordinate representation of the
minimum free energy path at the transition state induced by iso-
topic substitution. We apply the method to the calculation of FRC
and KIE values for a series of six non-enzymatic phosphoryl trans-
fer reactions (Fig. 1) simulated under periodic boundary conditions
with explicit solvent.14 We validate the approach by generating dis-
tributions of reference FRC values from normal mode analysis of
geometry optimized umbrella sampling configurations. The refer-
ence normal mode analysis distributions are compared to the FRC
values produced by the new method, and the two approaches are
shown to yield consistent results. We compute the 16/18O and 32/34S
primary KIE values from the modified BME using the new FRC val-
ues and the change in activation free energy obtained from PIMD
simulations.14 In this manner, the modified BME is evaluated purely
from the analysis of classical and PIMD umbrella sampling without
recourse to geometry optimization. The modified BME KIE values
are validated against distributions of reference BME results calcu-
lated from geometry optimized umbrella sampling configurations,
and the two approaches are shown to be in excellent agreement.

The remainder of the paper is outlined as follows. Sec. II pro-
vides the relevant background for the BME and modified BME
approaches and gives an overview of a strategy to compute KIE val-
ues using the new method. Section III formulates the new approach
for calculating the FRC, and we detail our simulation protocol.
Section IV presents and discusses our FRC and KIE results for six
nonenzymatic phosphoryl transfer reactions. Section V summarizes
the main conclusions of the paper.

II. BACKGROUND
A KIE is defined as the ratio η = kL/kH of light (L) and heavy

(H) isotopologue rate constants, k. The KIE is a phenomenon

FIG. 1. Illustration of the nonenzymatic phosphoryl transfer models explored in this
study. The X2′, X3′, and X5′ refer to the RNA naming scheme for these positions,
and X1P and X2P are the nonbridge positions. The schematic depicts the transition
state, and the reactant state is characterized by a fully formed P–X5′ bond and a
cleaved P–X2′ bond. The native model has oxygen at all positions. The remaining
five models involve sulfur substitutions at key positions: S12 (X1P and X2P), S1P
(X1P), S2′ (X2′), S3′ (X3′), and S5′ (X5′). These substitutions are commonly
used as mechanistic probes in experimental studies of RNA catalysis. X2′ and X5′

KIE values refer to either 16O/18O or 32S/34S isotopic substitutions as appropriate
for each model.

that primarily arises from the mass influence on the nuclear wave-
function ψN (within the Born–Oppenheimer approximation) and
is exhibited, in part, by a relative change in the reactant and tran-
sition state zero point energies. The primary 16/18O KIE values in
RNA 2′-O-transphosphorylation reactions require precise experi-
mental measurements and careful computational protocols because
their values are typically within 3% of unity and the reactions occur
in complex biological environments.4,23,32 For these systems, KIE
values should be estimated to within 1% error to categorize them
as being “large inverse” (<0.97), “inverse” (0.97–0.99), “near unity”
(0.99–1.01), “normal” (1.01–1.03), or “large normal” (>1.03).4,32

Reported uncertainties in the experimental 16/18O KIE measure-
ments of transphosphorylation reactions have been in the range of
0.3%–0.4%;23 however, the reliability of calculated values heavily
depends on the approach undertaken.33

A. Bigeleisen–Mayer equation and related
ensemble approaches

The BME uses a rigid rotor, harmonic oscillator approximation
of ψnuc, and the Redlich–Teller product rule25–27 to derive an expres-
sion for the KIE that depends on the vibrational frequencies of the
reactant state (ωi) and transition state (ω‡

i ) determined from nor-
mal mode analysis.8,34 When tunneling effects are ignored, the BME
is given by Eq. (1),

ηBME =
ω‡

L,1

ω‡
H,1

⎛

⎜
⎜
⎜

⎝

∏
3N−6
i=2

ω‡
L,i

ω‡
H,i

sinh (h̵βω‡
H,i/2)

sinh (h̵βω‡
L,i/2)

∏
3N−6
i=1

ωL,i
ωH,i

sinh (h̵βωH,i/2)
sinh (h̵βωL,i/2)

⎞

⎟
⎟
⎟

⎠

. (1)

A derivation of Eq. (1) is provided in the supplementary material.
The ratios of vibrational frequencies are the contributions of the
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translational and rotational partition functions to the KIE upon
enforcing the Redlich–Teller product rule, and the hyperbolic sine
functions are contributions from the vibrational partition functions
in the harmonic oscillator approximation. The term in brackets is
the exponentiated change in activation free energy induced by iso-
topic substitution when the motion along the imaginary mode is
constrained to be located at the transition state. The leading ratio
of imaginary mode frequencies is the contribution of the miss-
ing degree of freedom to the translational and rotational partition
functions.

When the BME is applied to explicitly-modeled condensed-
phase environments, one can observe large variations in the pre-
dicted KIE values because many plausible reactant and transition
state structures can be found.14,35 For example, when nonenzymatic
phosphoryl transfer reactions were optimized from different initial
configurations in explicit solvent, the BME led to 2′ and 5′ KIE val-
ues distributed over a wide 3% range with a 1% standard deviation.14

This observation is not a criticism; a range of values is expected, but
it does imply that the confidence in any single result is low, so the
result of many optimizations should be averaged.

Ensemble-averaged variational transition state theory (EA-
VTST) is another approach that similarly initiates a series
of transition state searches departing from umbrella sampling
configurations.36–39 The EA-VTST method performs canonical vari-
ational theory analysis on each structure to produce a distribu-
tion of transmission coefficients.40 The transmission coefficients
can include tunneling and recrossing corrections,41,42 thus making
EA-VTST an attractive alternative to the BME. Although sophis-
ticated modeling of transmission coefficients may be necessary for
some situations,43,44 the BME continues to see widespread use and
success.45,46

B. Path integral molecular dynamics
with thermodynamic free energy perturbation

The need for configurational averaging is one of the main
appeals for using centroid PIMD to compute KIE values.15–19 PIMD
directly includes a model47 for ψN that can be used to evaluate the
free energy of changing isotopic masses (light–to–heavy) with a free
energy perturbation approach pioneered by Gao et al.15,16,29–31 This
was followed by the development of the thermodynamic free energy
perturbation (TD-FEP) method,28 which employs a conceptually
similar strategy. The TD-FEP method has been implemented into
the i-PI software48 to take advantage of new generalized Langevin
thermostats49,50 intended to make PIMD simulations more practical
by requiring fewer ring polymer beads to reach convergence. By per-
forming TD-FEP analysis of the PIMD sampling at the reactant and
transition states (producing isotopic substitution free energies ΔGRS
and ΔGTS), one obtains the change in activation free energy induced
by isotopic substitution (ΔΔG = ΔGRS − ΔGTS), and the KIE can be
estimated from the modified BME [Eq. (2)],20–24

ηmBME =
ω‡

L

ω‡
H
ηPIMD, (2)

ηPIMD = exp(−βΔΔG). (3)

The isotopic substitution free energy at the transition state, ΔGTS,
is estimated from constrained sampling performed at a first-order

saddle point on the free energy surface. In practice, one often
approximates the use of a constraint by subjecting the system
to a sufficiently large biasing potential that maintains the tran-
sition state structure along the minimum free energy path in a
reduced-dimensional space of reaction coordinates. The leading fac-
tor of imaginary mode frequencies, referred to as the frequency
ratio correction (FRC), is the contribution of the rotational and
translational partition functions to the KIE from the unsampled
degree of freedom in accordance with the Redlich–Teller product
rule. By evaluating ΔΔG from PIMD/TD-FEP umbrella sampling,
one extends the BME to include anharmonicity and tunneling
effects within the path integral framework.21 The modified BME
first appeared in Appendix B of Ref. 51; it has been successfully
applied in previous studies,20,22–24 and an extended discussion of
the relationship between the BME and the modified BME has been
the subject of review.21 Previous applications have frequently used
Feynman path integrals to evaluate the modified BME within the
context of Kleinert’s variational perturbation theory.52 Recently,
we have used the modified BME to calculate KIE values from
explicit PIMD umbrella sampling performed with the i-PI soft-
ware.14 The supplementary material includes a comparison of KIE
values calculated from the BME and modified BME in the harmonic
approximation.

C. Overview of the strategy to compute KIE
values from umbrella sampling

The presence of the FRC in Eq. (2) gives the impression that one
might still need to optimize transition state structures and perform
normal mode analysis to obtain a distribution of its value,14,20,35 or
by approximating it from an optimized transition state in a dielec-
tric continuum22 or microsolvated environment.53 In the present
study, we describe a simple method for estimating the FRC directly
from umbrella sampling; that is, we explore an approximation for
the FRC that does not require normal mode analysis of geometry
optimized structures. Instead, the method relates the FRC to the
change in the mass weighted coordinate representation of the min-
imum free energy path at the transition state induced by isotopic
substitution.

The reader may question how the transition state and imagi-
nary mode are defined if geometry optimization and normal mode
analysis on the potential energy surface are not first performed. In
the context of simulation, the transition state is the location of a
first-order saddle point on a reduced dimensional free energy surface
described by one or more reaction coordinates. The reactant state is
similarly defined as a minimum on the free energy surface. In other
words, the reactant and transition states are ensembles character-
ized by their reaction coordinate values as opposed to being specific
structures corresponding to potential energy stationary points. The
sampling of the free energy surface is often enhanced by including
umbrella biasing potentials, and the unbiased free energy surface is
calculated from either umbrella integration,54 weighted histogram
analysis,55 the multistate Bennett acceptance ratio method,56 or
the variational free energy profile method.57,58 The minimum free
energy path is a parametric curve of reaction coordinates connect-
ing the reactant and product states by traversing a first-order saddle
point on the reduced dimensional surface. The “imaginary mode”
is the minimum free energy path as it passes through the transition
state.
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With the approach described here, one could estimate a KIE
using the following strategies:

1. Perform the umbrella sampling finite temperature string
method to obtain a minimum free energy path.59–62 This is a
classical minimum free energy path without nuclear quantum
effects. As such, both the light and heavy isotopologues share
the same pathway.

2. Sample the reactant state and transition state (as identified
by the minimum free energy path) with PIMD/TD-FEP to
compute ηPIMD.28

3. Analyze the umbrella sampling performed in step 1 to obtain
the mass weighted coordinate atomic displacements along the
minimum free energy path. The FRC estimate is a harmonic
analysis made from these displacements.

4. Calculate the KIE with Eq. (2).

Section III describes the method for approximating the FRC in
more detail.

III. METHODS
A. Estimation of the FRC from umbrella sampling

The method for estimating the FRC is founded upon a solution
of the Euler–Lagrange equation for the harmonic motion of a sys-
tem of N classical particles with masses ma and Cartesian positions
rak(q) constrained to move along a generalized coordinate q near
a stationary point. In other words, rak(q) is a 3N parametric curve
describing the minimum energy path, and q is the curve’s progress
variable. Let sak(q) = m1/2

a rak(q) denote the path in mass weighted
coordinates, then one can show,

ω‡
L

ω‡
H
=
∣∣s′H(q‡

)∣∣

∣∣s′L(q‡
)∣∣

, (4)

where ∣∣s′(q‡
)∣∣ is the magnitude of the mass weighted coordinate

displacement vector along the path at the transition state, q‡,

∣∣s′(q‡
)∣∣ = [

N

∑

a=1
ma

3

∑

k=1
(∂rak(q

‡
)/∂q)2

]

1/2
. (5)

A derivation of Eq. (4) is provided in the supplementary material.
The squared magnitude of the displacement is proportional to the
reduced mass of the mode, μ = α∣∣s′(q‡

)∣∣
2, in the curvilinear coor-

dinate system parametrized by q.63,64 Equation (4) effectively reads:
ω‡

L/ω
‡
H =
√

μH/μL because the normalization factors α = ∣∣r′(q‡
)∣∣
−2

cancel in the ratio.
In the context of simulation, q is the progress of the reaction

along a minimum free energy path, which we regard as a paramet-
ric curve in a reduced set of reaction coordinates, ξ(q), that define
the umbrella potential locations used to perform umbrella sampling
along the path. The reaction coordinates are often chosen to be
internal coordinates rather than Cartesian positions, and they are
assigned by chemical intuition so that the minimum free energy path
is characterized by the relative displacement of a select few atoms. By
construction, the average relative displacement between the selected
atoms has a dependence on q. Umbrella sampling performed at ξ(q)
yields a trajectory of atomic positions from which we extract the

3Nsele coordinates of the selected atoms. Because ξ(q) only describes
the internal displacements of the atoms, the extracted coordinates
are translated to a common center of mass and aligned to reduce the
coordinate root mean square deviation. The average aligned coor-
dinates will be denoted ⟨rak⟩q. This procedure can be applied to the
umbrella sampling performed on either side of q‡ to approximate
the derivative ∂⟨rak⟩q‡/∂q from finite difference, leading to Eq. (6),

⟨
ω‡

L

ω‡
H
⟩ ≈

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
Nsele
a=1 mH,a∑

3
k=1 (⟨rak⟩q‡+Δq − ⟨rak⟩q‡−Δq)

2

∑
Nsele
a=1 mL,a∑

3
k=1 (⟨rak⟩q‡+Δq − ⟨rak⟩q‡−Δq)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1/2

. (6)

The coordinates ⟨rak⟩q‡+Δq and ⟨rak⟩q‡−Δq are translated and aligned
before taking their difference. In the classical approximation, the
difference ⟨rak⟩q‡+Δq − ⟨rak⟩q‡−Δq is mass-independent (because the
minimum free energy path is mass-independent); however, the cal-
culation of the averages required us to center and align the atoms.
For this purpose, we use light isotopes. The use of the heavy isotopes
does not produce a meaningful difference in our results.

The “selected atoms” are those atoms used to describe
the motion of the imaginary frequency at the transition
state [∂rak(q‡

)/∂q ≠ 0], whereas all other atoms are ignored
[∂rak(q‡

)/∂q = 0]. The decision of which atoms to “select” has been
the topic of discussion for decades.46,65–72 These discussions have
typically been in the context of computing the nuclear quantum
effects from a truncated Hessian to approximate the relevant vibra-
tions of a larger system. Stern and Wolfsberg introduced the “two
bond rule,” which suggests the KIE can be reasonably approximated
by excluding all atoms located more than two bonds from the
isotopic substitution so long as the estimate is made around room
temperature and the force constants of the truncated modes do
not significantly differ from the full system.65,66 The present study
does not diagonalize a Hessian because the vibrational motion
is constrained to a single coordinate (the minimum free energy
path), and the nuclear quantum effects are modeled through PIMD.
Instead, the selected atoms are exclusively used in Eq. (6), so the
selection should include those atoms that significantly contribute
to the mass weighted coordinate displacement. Motivated by Stern
and Wolfsberg’s rule, we examine an analogous set of rules in
the supplementary material (Tables S1 and S2) for a series of 20
nonenzymatic phosphoryl transfer models whose transition states
were found in the gas phase with B3LYP/6-31++G(3df,2p).73 The
2′ and 5′ FRCs were computed from the normal mode analysis of
the full Hessian and compared to Eq. (4) by approximating s′(q‡

)

from finite differentiation of the imaginary mode using only those
atoms within B bonds of P. In summary, the mean relative percent
error of the FRCs was 0.3% when all atoms within two bonds of P
were included, which is similar in magnitude to the uncertainty in
the experimental KIE measurements.23

In order to apply Eq. (6), one must be mindful of whether the
reaction coordinates are a sufficient description of the atom’s relative
motion with consideration for those atoms that are located several
bonds from the chemical event. Equation (6) tacitly assumes that the
Cartesian distributions of the selected atoms are monomodal. If this
assumption is not true, then it may be necessary to redefine the min-
imum free energy path to include additional reaction coordinates
that prevent rotations around a bond, for example. Furthermore, a
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meaningful result will only be obtained if the statistical uncertainty
in the averages is less than the displacement used to approximate
∂⟨rak⟩q‡/∂q. In contrast, excessively large displacements will also
be a poor approximation of the derivative. We will explore the
sensitivity of the results to displacement size and sampling.

B. Computational details
We previously examined the six nonenzymatic phosphoryl

transfer models in Ref. 14 to train a deep potential range corrected
(DPRc) machine learning potential (Δ-MLP)74 that supplements the
second order density functional tight binding75–77 (DFTB2) quan-
tum mechanical (QM)/molecular mechanical (MM) Hamiltonian
with a nonelectronic neural network correction parametrized to
reproduce PBE0/6-31G∗ QM/MM energies and forces. The DFTB2
model is evaluated with the MIO parameter set and referred to as
DFTB2/MIO. Because the primary concern of the present study
is the estimation of the FRC, we reuse some of our previous
results reported in Ref. 14. Specifically, the reactant and transi-
tion state locations along the minimum free energy path defined
by the reaction coordinate ξPT = RP–X5′ − RP–X2′ were previously
identified by umbrella sampling; ηPIMD was previously calculated
from PIMD/TD-FEP sampling performed at the reactant state and
transition state; and many structures departing from reactant and
transition state umbrella sampling configurations were optimized to
produce distributions of ηBME and FRC values from normal mode
analysis. In the present study, we perform new umbrella sampling in
the vicinity of the transition state to evaluate Eq. (6) from simulation,
and we compare these FRC distributions to our previously reported
normal mode analysis values. We calculate KIE values from Eq. (2)
using the new FRC estimates and our previously reported ηPIMD val-
ues. These KIE values are then compared to our previously reported
distribution of ηBME results obtained from normal mode analysis of
optimized structures.

In this paragraph, we briefly summarize some of the rele-
vant computational details in Ref. 14 to facilitate the comparison
with our new results. We implemented the DPRc correction into
the DeePMD-kit software package78 and interfaced it to a devel-
opment version of AMBER’s SANDER program,79 which was used
to compute free energy surfaces of the reactions from DFTB2/MIO
QM/MM+DPRc umbrella sampling in a periodic box of 1510
TIP4P/Ew waters.14 These surfaces were used to identify the reactant
state and transition state. PIMD/TD-FEP sampling was performed
at the reactant and transition states to calculate ηPIMD, and distri-
butions of FRC and ηBME values were obtained from normal mode
analysis of optimized reactant and transition state geometries. The
optimizations were performed with DFTB2/MIO QM/MM+DPRc
with explicit solvent in periodic boundary conditions; however, only
the coordinates of the solute and 6 Å of nearby waters were allowed
to move. In this manner, reactant state optimizations were readily
performed to produce Hessians whose dimensions were ∼750 × 750.
The transition state structures were found by partial optimization
of the solute and 6 Å of nearby waters with a constrained value
of ξPT. This relaxation was followed by an unrestrained transition
state search that included 3 Å of nearby waters (producing Hessians
whose dimensions were ∼300× 300). This process was repeated from
different starting configurations, leading to a normal mode analy-
sis of 26, 19, 62, 30, 19, and 111 transition state structures for the

native, S12, S1P, S2′, S3′, and S5′ model reactions. The distributions
of normal mode analysis FRC values are characterized by their mean,
standard deviation, and maximum and minimum observed values.

The normal mode analysis FRC distributions are compared
to estimates made from umbrella sampling using Eq. (6). For
each nonenzymatic phosphoryl transfer reaction, we ran new
DFTB2/MIO QM/MM+DPRc simulations in the vicinity of the
transition state. Specifically, we sampled the reaction with classical
molecular dynamics at six ξPT locations corresponding to three dis-
placements from the transition state: ±0.1, ±0.2, and ±0.3 Å. The
umbrella sampling was performed with SANDER in the canoni-
cal ensemble using a 1 fs time step and the Langevin thermostat
to maintain a temperature of 298 K.80 The ξPT reaction coordinate
was harmonically restrained with a 200 kcal mol−1 Å−2 force con-
stant. Electrostatics were modeled with the QM/MM particle mesh
Ewald method using a 1 Å3 grid spacing, an 8 Å real-space cutoff,
and tinfoil boundary conditions.81–84 The Lennard-Jones interac-
tions were truncated at 8 Å, and a long-range tail correction was
used to model the long-range interactions.85 The initial configura-
tions were restarts departing from the production sampling reported
in Ref. 14, whose densities were previously equilibrated for 100 ps
at a pressure of 1 atm with a Berendsen barostat86 at 298 K. In the
present study, we carried out each simulation for 100 ps, produc-
ing a trajectory of 1000 saved configurations, and we repeated the
simulations four times using different thermostat random number
seeds and each of the four neural network parameter sets devel-
oped in Ref. 14. When only the ξPT coordinate is restrained, the
ethoxide leaving group is free to rotate around the P–X5′ bond,
which causes a diffusion of the C2′ and C5′ distributions; there-
fore, we introduce additional C5′–X5′–P–XP1 and C2′–X2′–P–XP2
torsion restraints to concentrate the distributions of these atoms.
These torsions were restrained with a force constant of 20 kcal mol−1

radian−2, and the equilibrium positions were chosen by partition-
ing the unrestrained angular distributions observed in the windows
near the transition state into two clusters and calculating the mean
of the most probable cluster. All six of the displaced simulations
use the same torsion restraints, and the equilibrium values for
each nonenzymatic phosphoryl transfer model are listed in the
supplementary material (Table S3). Although the torsion restraints
were introduced out of an abundance of caution, they had only a
minor effect on our results; the KIE values analyzed from sampling
performed without the torsion restraints reproduce our reported
results with a mean absolute deviation (MAD) of 0.1%, which is an
order of magnitude smaller than their standard deviations. A com-
parison of KIE values with and without torsion restraints is shown
in Fig. S1 within the supplementary material.

IV. RESULTS AND DISCUSSION
We examine the nucleophile (X2′) and leaving group (X5′),

16/18O and 32/34S FRC, and primary KIE values for the series of
nonenzymatic phosphoryl transfer reactions illustrated in Fig. 1.
The X2′ and X5′ FRC distributions produced from Eq. (6) and
normal mode analysis are compared in Fig. 2. To generate a dis-
tribution of values using Eq. (6) with a displacement of ΔξPT, we
read the 4000 saved frames from the simulations performed at
ξ‡PT + ΔξPT and split them into 20 equal segments, each containing
200 frames, to yield 20 sets of coordinate averages. The procedure is
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FIG. 2. Sensitivity of the X2′ and X5′ FRC with respect to atom selection (a) and (b), finite difference step length (c) and (d), and sampling (e) and (f). Parts (a)–(d) use
100 ps/window of sampling. Parts (a), (b), (e), and (f) use the aggregate distribution of results from the 0.1, 0.2, and 0.3 Å displacements. Parts (c)–(f) use atom selection
set 4. NMA refers to the distribution of values obtained from the normal mode analysis of optimized structures in an explicit MM solvent (taken from Ref. 14). The box
plots describe the distribution of FRC values. The white circle is the mean, the colored box spans 1 standard deviation on either side of the mean, and the bars reach the
minimum and maximum values.

repeated to obtain 20 sets of coordinate averages from the ξ‡PT − ΔξPT
simulations, and Eq. (6) is applied 400 times corresponding to each
combination of averages. The mean, standard deviation, and min-
imum and maximum values of these distributions are illustrated
in Fig. 2. Figures 2(c) and 2(d) compare the distributions obtained
using different displacements, whereas Figs. 2(a), 2(b), 2(e), and 2(f)
illustrate the distribution of 1200 aggregate estimates made from the
±0.1, ±0.2, and ±0.3 Å displacements. Figures 2(a) and 2(b) com-
pare the FRC distributions from 100 ps/window of sampling with
different atom selections. We refer to the selections as follows. Set
1 consists of three atoms: P, X2′, and X5′. Set 2 selects all atoms
within one bond of P. Set 3 selects all atoms within two bonds of
P. Set 4 selects all atoms within two bonds of P and any hydrogens
within three bonds of P. Figures 2(e) and 2(f) compare the FRC dis-
tributions using selection Set 4, but different sampling lengths per
simulation.

The results shown in Figs. 2(a) and 2(b) suggest the normal
mode analysis FRC is not well-reproduced by Eq. (6) when the selec-
tion is limited to those atoms directly bonded to P (1.5% MAD);
however, the FRC values agree to within 1 standard deviation of
the normal mode analysis values when Eq. (6) is used with selection

Sets 3 (0.2% MAD) and 4 (0.1% MAD). This observation is consis-
tent with the atom selection tests performed on the 20 nonenzymatic
phosphoryl transfer models provided in the supplementary material.
Figures 2(c) and 2(d) show that the predicted FRC values are sta-
ble with respect to the size of the displacement. Displacements of
0.1, 0.2, and 0.3 Å with Set 4 produce MAD values of 0.2%, 0.2%,
and 0.1%, respectively, when compared to the normal mode anal-
ysis distributions. Finally, Figs. 2(e) and 2(f) demonstrate that the
FRC distributions produced from different amounts of sampling are
similar.

The ηPIMD and ηmBME estimates of the X2′ and X5′ KIE val-
ues are compared to structurally averaged ηBME results in Figs. 3(a)
and 3(b), respectively. The ηmBME values shown in Fig. 3(b) were
evaluated with Eq. (2) using the 100 ps FRC distributions shown
in Figs. 2(e) and 2(f) and the ηPIMD values taken from our previous
study.14 The error bars represent 1 standard deviation. Although we
use the ηBME values as a reference to make comparisons, we describe
any discrepancies as “differences” rather than “errors” because
the BME ignores quantum tunneling and anharmonicity, whereas
ηPIMD and ηmBME include a treatment for these by virtue of PIMD
sampling. In the current application, quantum tunneling is expected
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FIG. 3. Comparison of X2′ and X5′ ηBME,
ηPIMD, and ηmBME KIE values. (a) The
uncorrected PIMD/TD-FEP KIE value,
ηPIMD [Eq. (3)]. (b) The modified BME
KIE value, ηmBME [Eq. (2)], using the
FRC estimated from Eq. (6). MAD is
the mean absolute deviation with respect
to the average ηBME values. “R,” “m,”
and “b” are the Pearson correlation coef-
ficient, slope, and intercept of a lin-
ear regression, respectively. Cyan grid
lines indicate heuristic boundaries dis-
tinguishing large normal (>1.03), normal
(1.01–1.03), near unity (0.99–1.01), and
inverse (0.97–0.99) KIE values.4,32

to be small, so the comparisons are meant to quantify a level of con-
sistency between the methods. Obtaining consistent results between
the methods is of particular interest because they are computed
using very different approaches: the ηBME values are produced solely
from normal mode analysis of geometry optimized structures, and
the ηmBME values are produced solely from classical and path inte-
gral sampling. To place a better perspective on the role of the
FRC, Fig. 3(a) shows an analogous comparison of the uncorrected
ηPIMD values to the distribution of ηBME results. The ηPIMD error
bars are the standard deviation of four independent sets of PIMD
simulations. Without the FRC correction, the ηPIMD values deviate
from ηBME by 0.6% (X2′) and 1.1% (X5′) MAD. These differences
are reduced to 0.1% MAD when ηPIMD is corrected by the FRC
calculated by Eq. (6).

We previously mentioned that the KIE values of phospho-
ryl transfer reactions are conveniently categorized as being “large
normal,” “normal,” “near unity,” “inverse,” or “large inverse.”4,32

The cyan grid lines in Fig. 3 mark the relevant boundaries between
these categorizations. Data points that reside within a diagonal block
indicate agreement between the umbrella sampling and BME cat-
egorizations. The uncorrected ηPIMD values [Fig. 3(a)] categorize
7 out of the 12 values differently than the BME averages. In con-
trast, the categorization of all KIE values agrees with the BME
estimates when the FRC is included [Fig. 3(b)]. This is related
to the observation that linear regression of the ηPIMD values pro-
duces slopes (0.56 and 0.65 for X2′ and X5′, respectively) and
intercepts (0.44 and 0.35 for X2′ and X5′, respectively) that devi-
ate from their ideal values of 1 and 0, respectively, even though
the correlation coefficients are high. The ηmBME values are also
strongly correlated, but the regressions produce slopes near unity
and intercepts close to zero. Taken together, this demonstrates sup-
port for the use of the FRC estimation procedure as a practical
method for calculating KIE values from the classical and PIMD
simulations.

The native nonenzymatic reaction explored in this study
is a truncated model of the uridylyl-3′-guanosine 2′-O-
transphosphorylation reaction catalyzed in basic conditions.
Experimental 16/18O KIE values of uridylyl-3′-guanosine at the

O2′ and O5′ positions have been reported in pH 14 conditions.23

Table I compares the BME and modified BME calculations to
the experimental values. The experimental uncertainties are the
reported standard deviations produced by a numerical fit to high
performance liquid chromatography chromatograms. The BME and
modified BME values are in very good agreement with each other,
and their O5′ KIE values are in good agreement with the experi-
ment. There is a greater discrepancy between the calculated and
experimental O2′ KIE values; the differences between experiment
and computation are about the same as the propagated uncertainty.
All of the values suggest the O2′ KIE is inverse, however. The neural
network parameters were not trained to reproduce KIE values;
they were trained to reproduce PBE0/6-31G∗ QM/MM energies
and forces, so some discrepancy with the experimental values is
not unexpected. It was previously shown that the DFTB2/MIO
QM/MM+DPRc model well-reproduced the KIE values predicted
from the PBE0/6-31G∗ QM/MM simulation.14 Further improve-
ment with respect to experiment may be obtained by training the
machine learning potential to a higher level of theory.

The computational cost of estimating KIE values from either
the BME or modified BME is dominated by the classical sampling
used to determine the minimum free energy path. The method we’ve
described for estimating the FRC does not formally require any
further calculation; it is an analysis of that sampling. The classi-
cal free energy surface of the native model reaction, for example,
was produced from umbrella sampling at 86 windows. To validate
the convergence of the free energy surface, it was necessary to sam-
ple each window for 100 ps using a 1 fs time step and repeat each
simulation three times with different random number seeds.87 This

TABLE I. Comparison of the native model reaction KIE values with the experiment.
Experimental values are uridylyl-3′-guanosine at pH 14 taken from Ref. 23.

Method O2′ O5′

Expt. 0.984± 0.003 1.034± 0.004
ηBME 0.991± 0.005 1.038± 0.008
ηmBME 0.992± 0.005 1.039± 0.009
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protocol was performed with each of the four neural network para-
meter sets, resulting in 103 × 106 aggregate energy evaluations. To
calculate the BME, samples from the reactant and transition states
are extracted to initiate geometry optimizations. To calculate the
modified BME, the reactant and transition state reaction coordinate
values are used to initiate PIMD umbrella sampling.

The PIMD simulations for the calculation of ΔGRS and ΔGTS
were run for 10 ps with a 0.25 fs time step and six ring polymer
beads using the PIGLET thermostat.49 This protocol corresponds to
0.5 × 106 energy evaluations to estimate ηPIMD, which is less than 1%
of the computational effort used to converge the classical free energy
surface. To estimate the native model reaction KIE values from the
BME, we geometry optimized 40 samples from both the reactant and
transition states. The reactant state minimizations readily succeed
without difficulty, requiring 461 evaluations to reach convergence
on average and ∼1500 evaluations to estimate the Hessian from finite
differentiation of the atomic forces. To increase the likelihood of
finding a transition state with the partitioned rational function opti-
mization method,88,89 we precondition the structures by performing
partial minimizations that constrain the reaction coordinate value.
Each transition state required 5026 energy evaluations on average
and ∼600 additional evaluations to calculate the Hessian. If all of
the optimizations succeed, the BME estimate of the native model
reaction could be evaluated with only 0.3 × 106 energy evaluations.

In our opinion, both the BME and modified BME methods are
practical; neither of them requires excessive computational effort.
The discussion earlier does not adequately convey the amount of
human effort one must devote to each method, however. Our prac-
tical experience is that transition state searches often fail to locate a
stationary point when many degrees of freedom are involved. Most
numerical optimization algorithms have an inherent radius of con-
vergence, which the extracted samples are not guaranteed to lie
within.90,91 Even when a transition state search does converge, it
may converge to an unintended saddle point, so one must manually
examine each structure and verify that the imaginary mode vibra-
tion is qualitatively correct. As described earlier, we performed 40
transition state searches for the native model reaction; however, we
were only successful in locating 26 of the structures. One approach
to overcome this difficulty would be to develop new optimization
strategies that improve the reliability of locating transition states.13

In the present study, we have taken a different approach by exploring
a method for calculating KIE values directly from umbrella sam-
pling. In doing so, we extend the BME to include anharmonicity
and tunneling effects within the path integral framework.20–24 The
calculation of isotopic substitution free energies from PIMD has
previously been described;28 however, to apply the approach to the
calculation of KIE values, one must sample a transition state, which
necessarily requires the imposition of a constraint. The contribution
of the unsampled motion to the KIE appears as a ratio of imaginary
mode vibrational frequencies in accordance with the Redlich–Teller
product rule.25–27 The present study describes a method for estimat-
ing this ratio from a harmonic analysis of the umbrella sampling
used to calculate the minimum free energy profile.

V. CONCLUSIONS
We described a practical method for estimating the light-

to-heavy ratio of imaginary mode vibrational frequencies from

umbrella sampling performed along a minimum free energy path in
condensed phase environments. These ratios are used in the modi-
fied BME to calculate KIE values from classical and PIMD/TD-FEP
simulations28 to incorporate anharmonicity and tunneling effects
within the Feynman path integral framework.20–24 By calculating
the FRC from simulation, one obtains an estimate of its ensem-
ble average without needing to geometry optimize many starting
configurations.14,35 We applied the new method to condensed phase
simulations of six nonenzymatic phosphoryl transfer reactions. It
was shown that the distribution of 16/18O and 32/34S FRC values esti-
mated from umbrella sampling is in good agreement (0.2% MAD)
with geometry optimized normal mode analysis results as long as
the average position of those atoms within two bonds of P is consid-
ered. The inclusion of all H’s located within three bonds of P further
improved the comparison to 0.1% MAD. The FRC estimates were
used in the modified BME to compute the 2′ and 5′ primary KIE val-
ues. The modified BME (computed solely from classical and PIMD
umbrella sampling) was shown to be consistent with average BME
values (computed solely from normal mode analysis of geometry
optimized structures) with a MAD of 0.1%.

SUPPLEMENTARY MATERIAL

See the supplementary material for a derivation of Eq. (4), a
comparison of approximate FRC values using Eq. (6) for 20 nonen-
zymatic phosphoryl transfer reactions in the gas phase, a comparison
of condensed phase KIE values computed with and without torsion
restraints, and a comparison of the BME and modified BME in the
harmonic approximation.
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