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Design and application of a multicoefficient correlation method
for dispersion interactions

Timothy J. Giese and Darrin M. Yorka)

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55415

~Received 19 May 2003; accepted 14 October 2003!

A new multicoefficient correlation method~MCCM! is presented for the determination of accurate
van der Waals interactions. The method utilizes a novel parametrization strategy that simultaneously
fits to very high-level binding, Hartree–Fock and correlation energies of homo- and heteronuclear
rare gas dimers of He, Ne, and Ar. The decomposition of the energy into Hartree–Fock and
correlation components leads to a more transferable model. The method is applied to the krypton
dimer system, rare gas–water interactions, and three-body interactions of rare gas trimers He3 , Ne3 ,
and Ar3 . For the latter, a very high-level method that corrects the rare-gas two-body interactions to
the total binding energy is introduced. A comparison with high-level CCSD~T! calculations using
large basis sets demonstrates the MCCM method is transferable to a variety of systems not
considered in the parametrization. The method allows dispersion interactions of larger systems to be
studied reliably at a fraction of the computational cost, and offers a new tool for applications to
rare-gas clusters, and the development of dispersion parameters for molecular simulation force fields
and new semiempirical quantum models. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630955#

I. INTRODUCTION

The study of weak dispersion forces, or van der Waals
~vdW! forces, has been and continues to be of great interest
in theoretical chemical physics.1–3 Rare gases have served as
the benchmark system to study these weak interactions with
both experimental4,5 and theoretical methods.1–3 To calculate
accurate potential energy surfaces for rare-gas interactions
presents special challenges. The binding energy of these sys-
tems arises almost entirely from electron correlation~beyond
Hartree–Fock!, and hence requires high-levelab initio meth-
ods for an accurate treatment.6–14 Density-functional meth-
ods have traditionally been unsatisfactory in describing dis-
persion interactions,15 although some progress has been
made,16–20 and this remains an important area of research.

The very weak binding energies of vdW systems neces-
sitates special consideration with respect to basis set size and
superposition error. Extensive theoretical investigations have
found that sufficiently high levels of theory,21–28 combined
with large basis sets21,27–37with bond functions,21,27,38–43and
counterpoise correction21,27,28 are sufficient to accurately
characterize the dimer interactions. At this time, such rigor is
prohibitively time consuming~and less straightforward! to
apply to larger vdW clusters in a practical way. Nonetheless,
the study of rare-gas clusters with theoretical methods is of
great interest not only for chemical physics, but also to ob-
tain a detailed understanding of the many-body nature of
dispersive interactions and serve as a benchmark for the de-
velopment of transferable many-body force fields or semi-
empirical quantum models. Consequently, the development
of a more tractable electronic structure method is a necessary

first step toward the study of vdW clusters using supermo-
lecular approaches.

The goal of the present work is to develop a method that
is able to reproduce highly accurate dimer potential~binding
energy! curves44–46in a tractable manner~preferablywithout
counterpoise corrections! that can be extended to larger clus-
ters. Specifically, the potential energy curves for He–He,
Ne–Ne, Ar–Ar, He–Ne, He–Ar, and Ne–Ar are considered.
Potential energy surfaces of He–He, Ne–Ne, Ar–Ar, Kr–Kr,
Xe–Xe,45 and all possible sets of heteronuclear dimers46

have been fit to spectroscopic data. The resulting potential
surfaces are valid near the potential energy minimum but not
valid at large and small internuclear distances. Cybulski and
co-workers21 calculated the counterpoise corrected potential
energy of He–He, Ne–Ne, Ar–Ar, He–Ne, He–Ar, and
Ne–Ar with CCSD~T!/aug-cc-pV5Z supplemented with a set
of (3s3p2d2 f 1g) bond functions at 13 different internu-
clear separations in the range ofroughly 2–7 Å for each
dimer. Recently, the protocol of Cybulski and co-workers21

has been applied to these systems and extended to include
100 points for each dimer curve over a larger range and
analyzed in greater detail with respect to the correlation en-
ergy and second virial coefficients.44

In this work, a multicoefficient correlation method
~MCCM! for the calculation of the dimer interaction energies
is presented. A MCCM is a linear combination of energies
corresponding to various levels of theory and basis sets pa-
rametrized to reproduce the energy one would obtain at a
very high level of theory and very large basis set. The
MCCM presented here is analogous to those of Fast and
Truhlar47 and inspired by the original work of Pople and
co-workers.48,49 The parametrization of the MCCM method
is based on the recently reported high-level potential energya!Corresponding author. Electronic mail: york@chem.umn.edu
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curves.44 The MCCM method developed here introduces
several novel features~see below! that differentiate it from
other MCCM models, and for the purpose for which it was
designed, offers some considerable advantages.

The outline of the paper is as follows: In Sec. II we
establish the relevant background. In Sec. III we describes
the methods, including a brief summary of the calculation of
the dimer reference potentials, the form of the MCCM, and
the parametrization techniques employed. In Sec. IV we
present the fitted MCCM coefficients and compare the
MCCM interaction potential to the reference potential, to
other theoretical work, and to the experimentally derived po-
tentials of Ogilvie and Wang,45,46 who reparametrized the
piecewise continuous experimental potentials of Aziz and
collaborators.50–58 In Sec. V we conclude the paper with a
summary of results and discussion of future research direc-
tions.

II. BACKGROUND

The goal of this work is to design a computationally
tractable quantum method to accurately calculate the poten-
tial energy surfaces of vdW clusters. These surfaces can be
used as benchmarks to characterize many-body effects for
systems that are largely devoid of electronic polarization,
and hence allow focus to be placed on the exchange and
correlation contributions. The nature of many-body exchange
and correlation are fundamental features that will play an
important role in the development of new-generation mo-
lecular simulation force fields59–61 and semiempirical quan-
tum models.

The weak binding of rare gas dimers arises from van der
Waals dispersion interactions that are inherently an electron
correlation effect. This has the consequence that calculations
require a high-level treatment of electron correlation and are
extremely sensitive to basis sets. It has been shown
previously21,44 that accurate, convergedab initio results for
rare gas dimers can be obtained at the CCSD~T! level with
very large basis sets. These calculations required the use of a
singly augmented basis~aug-cc-pV5Z! with additional bond
functions39,42and counterpoise corrections to avoid problems
associated with basis set superposition error~BSSE!.62,63The
computational requirement of these high-level calculations
preclude their application to even an argon trimer or krypton
dimer system without very extensive resources. These results
inspired work to develop a method that could overcome the
present bottlenecks.

The approach taken here was to adopt a multicoefficient

correlation method for dispersion interactions that does not
requiresimultaneouslythe use of large basis sets and highly
correlated levels of theory. Moreover, the method does not
employ bond functions or counterpoise corrections, both of
which become tedious to apply to clusters. For clusters, both
bond functions and counterpoise corrections have
disadvantages.42,64The use of multilevel methods has gained
much success in the recent literature for the calculation of
thermochemical data47–49,65–81 and molecular
geometry.65,80–82To date, no MCCM has been reported that
has been designed for systems bound primarily by dispersion
interactions. One of the main premises of the multicoefficient
methods is that one can extrapolate to the high theoretical
level/large basis set limit by taking advantage of the additiv-
ity of these effects. Models can be constructed that are linear
combinations of theoretical levels and basis sets that, when
combined, yield highly accurate results, but that never re-
quire a highly correlated theoretical calculation to be per-
formed with a large basis set. The result is that high accuracy
can often be obtained for a fraction of the computational
effort required by a single sufficiently high theoretical level
and basis set.

III. METHODS

A. The MCCM model

The theoretical levels employed to develop the MCCM
model included Hartree–Fock~HF!, Möller–Plesset second-
order perturbation ~MP2!, coupled-cluster singles and
doubles~CCSD! and perturbative triples@CCSD~T!#. These
theoretical levels have a systematic hierarchy in that, for
most electronic structure packages, a calculation at any of
these levels requires calculations at all of the lower levels to
precede, and so these energies are typically available at no
extra computational cost. The basis sets used in the model
were the singly augmented correlation-consistent basis sets
of Dunning29 ~aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ,
aug-cc-pV5Z!. The shorthand notation ‘‘aDZ,’’ ‘‘aTZ,’’
‘‘aQZ,’’ and ‘‘a5Z’’ for these basis sets is introduced and
used in subsequent equations and discussion.

In order to differentiate the model presented here from
existing models, the acronym MCCM–vdW~Multi-
Coefficient Correlation Method–van der Waals! is used.
MCCM–vdW has ten parameters~nine independent degrees
of freedom; see below! and requires calculations at the
CCSD~T!/aDZ, CCSD/aTZ, MP2/aQZ, and HF/a5Z levels.

The expression for the MCCM–vdW energy is given by

E~MCCM–vdW!5a1E~HF/aDZ!1a2E~MP2/aDZ!1a3E~CCSD/aDZ!1a4E„CCSD~T!/aDZ…1a5E~HF/aTZ!

1a6E~MP2/aTZ!1a7E~CCSD/aTZ!1a8E~HF/aQZ!1a9E~MP2/aQZ!1a10E~HF/a5Z!, ~1!

where theai ’s are a set oflinearly dependentparameters, coupled by the constraint that the coefficients sum to unity. This
particular constraint ensures that certain energy scaling relations are obeyed; for example, that one-electron systems are treated
exactly~within the basis set limits!, and that Coulomb interactions have the proper long range behavior. Not all MCCM-type
models obey this constraint condition.

The total energy can be decomposed into a Hartree–Fock self-consistent field~HF-SCF! energy term,EHF, and a
correlation energy term,EC :
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E5EHF1EC . ~2!

The MCCM–vdW model for the correlation energy is given by

EC~MCCM–vdW!5a2„E~MP2/aDZ!2E~HF/aDZ!…1a3„E~CCSD/aDZ!2E~HF/aDZ!…1a4~E„CCSD~T!/aDZ…

2E~HF/aDZ!…1a6„E~MP2/aTZ!2E~HF/aTZ!…1a7„E~CCSD/aTZ!2E~HF/aTZ!…

1a9„E~MP2/aQZ!2E~HF/aQZ!…. ~3!

The MCCM–vdW model for the HF-SCF energy is

EHF~MCCM–vdW!5E~MCCM–vdW!2EC~MCCM–vdW!

5~a11a21a31a4!E~HF/aDZ!1~a51a61a7!E~HF/aTZ!1~a81a9!E~HF/aQZ!

1a10E~HF/a5Z!. ~4!

MCCM–vdW is the first MCCM method to explicitly
decompose the energy into HF-SCF and correlation compo-
nents. As described in great detail within Sec. III C, the pa-
rametrization of the coefficientsa1 – 10 involve the simulta-
neous fitting ofE(MCCM–vdW), EC(MCCM–vdW), and
EHF(MCCM–vdW) to reference potential energy surfaces.
The energy decomposition strategy employed here results in
a MCCM–vdW model that is transferable and provides the
accurate determination of the individual HF-SCF and corre-
lation contributions to the total energy. Note that the
MCCM–vdW model does not require the calculation of
counterpoise corrections or the use of bond functions~al-
though, as discussed below, it is parametrized to reference
potentials that do!.

B. Generating vdW dimer reference potentials

The reference dimer binding energies44 were calculated
at the CCSD~T!/a5Z level with an auxiliary set of
(3s3p2d2 f 1g) bond functions21 located at the center of
mass of the system. The binding energy of the dimer was
calculated using the counterpoise method of Boys and
Bernardi.62 This protocol has been demonstrated to be highly
accurate for rare-gas dimers.21,83 The high-level reference
HF-SCF energy is calculated in an analogous way as the
reference binding energy, but using the the HF energies in-
stead of the CCSD~T! values. The reference correlation en-
ergy is generated by subtraction of the reference HF-SCF
energy from the reference CCSD~T! energy. All calculations
were performed usingMOLPRO 2000.84

The reference binding, HF-SCF, and correlation poten-
tial energy curves were evaluated at 100 radial points, gen-
erated from the empirical equation

r a i5Req~a!•„11sgn~Da1 i 21!•g•~Da1 i 21!2
…,

~5!
i 52Da¯992Da ,

where ‘‘a’’ is an index that indicates the type dimer~see
below!, Req(a) is the radial distance of the minimum on the
high-level reference binding potential energy curve for the
‘‘ a’’ dimer, r a i is thei th radial sample point,Da is an integer
shift function given byDa52INT„60/AReq(a)…, andg is a
unitless parameter (g50.000 36 for all the curves in the
present work!. The radial sample points are thus generated

from a square mesh that originates at the reference binding
potential energy minimum and radiates in both directions so
that there is a higher density of points clustered around the
minimum. Calculated force constants and their related vibra-
tional frequencies were determined from fitting a quadratic
function to the points within 0.05 Å of the minimum using
singular value decompositions. The corresponding reference
values were determined, as in other work,18 from differentia-
tion of the analytic form of Ogilvie and Wang.45,46

C. The MCCM parametrization procedure

The parameters in MCCM–vdW are the coefficientsai

@Eq. ~1!#. These are linear parameters in the model, and can
be fit using a constrained linear least-squares method~see the
Appendix!. Simple scaling arguments require that the coeffi-
cients sum to unity. A singular value decomposition scheme
was used to ensure the elimination of linear dependencies in
the parameters. The main feature of the merit function is the
inclusion of weightsvv , vx , andvc that penalize deviations
in the binding energy, HF-SCF, and correlation components
of the energy differently.

IV. RESULTS AND DISCUSSION

In this section, the results of the fitting procedure are
presented, the stability of the coefficients are discussed, and
tests of the transferability of the coefficients are described.
The outline of this section is as follows: In Sec. IV A ad-
dresses the stability of the coefficients with respect to the
linear combination of potentials within the fitting function
and with respect to the amount of reference data used in the
fitting procedure. In Sec. IV B we compare the rare-gas
dimer properties between experimentally derived potentials
and those calculated by MCCM–vdW and the reference data
to which it was fit. In Sec. IV C we apply MCCM–vdW to a
systemnot contained in the reference data~Kr–Kr! in order
to address the transferability of the coefficients. In Sec. IV D
we further the discussion of transferability by applying
MCCM–vdW to Rḡ H2O (Rg5He, Ne, Ar) systems. Fi-
nally, in Sec. IV E, rare-gas trimers are investigated to dis-
play the usefulness of MCCM–vdW in determining three-
body potential energy surfaces.
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A. Fitting the MCCM–vdW coefficients

In this section, a comparison of results obtained from
different fitting schemes~see the Appendix! is provided, as
well as an analysis of the stability of the fitting coefficients in
the MCCM–vdW model.

A detailed discussion of the fitting errors with respect to
choice of weights (vv ,vx ,vc) and training set~homo-
nuclear, heteronuclear, and all dimers! is presented in the
EPAPS supplementary material to the document.85 Upon in-
spection, the weight scheme~see the Appendix! vv50.8,
vx50.1, vc50.1 was chosen.

The comparison of the MCCM–vdW fitting coefficients
using this weight scheme but obtained with the different
training sets are compared in Table I. The coefficients are not
widely oscillating, but also are not identical. The fit toALL
has the lowest coefficient root mean square deviation, and
was observed to be overall the most stable and transferable.

The overall transferability of the model with respect to
training sets is quite good~see EPAPS supplementary
material85!, despite significant differences in the coefficients
given in Table I. The MCCM–vdW parameters shown in
boldface in Table I correspond to constrained minimization
of x2(a;0.8,0.1,0.1,ALL), and are the parameters that for the
MCCM–vdW model applied and discussed in the remainder
of the paper.

In summary, fitting to the HF-SCF, correlation, and total
interaction potentials stabilize the coefficients relative to fit-
ting the total binding potential energy alone. This is sugges-
tive that consideration of individual HF-SCF and correlation
components may result in more transferable quantum mod-
els. The parameters were observed to be insensitive to non-
zero values ofvx andvc .

B. Validation of the MCCM–vdW model

Figure 1 compares the MCCM–vdW and high-level ref-
erence potential energy curves~SCF, correlation, and overall
interaction!. The MCCM–vdW potentials fit the reference

potentialsrelatively well. The most noticeable deviation in
the fit is He–He, which is caused by the difficulty in fitting
the relatively very weak correlation potential. He–He proves
difficult to fit in relation to the other potential surfaces due to
the very small binding and correlation energies. The He–He
van der Waals potential is notoriously difficult, and has been
the topic of numerous investigations.26,50,86–95 The fitting
procedure weights each potential curve equally with respect
to the dimer; i.e., the He–He potential energy curves are
weighted in the same manner as the Ar–Ar potential energy
curves. In fact, in an absolute sense, the error in the MCCM–
vdW potentials for He–He is fairly small; however, the rela-
tive error is significantly larger. The fitting procedure could
be modified so as to use the relative weights for each curve,
and, in fact, that was one of the many schemes that was
tested. The He–He curves present special challenges, and
increasing the weight in order to fit the curve simultaneously
with the other curves lead to a less overall reliable model.

The equilibrium distance (Re), well depth (De), fre-
quency (ve), and force constant (ke) are listed for the ho-
modimer potential energy curves and heterodimer curves
~Table II!. In general, the fitted MCCM–vdW model repro-

FIG. 1. A comparison of the fitted MCCM–vdW potentials with the refer-
ence potentials. For clarity, the MCCM–vdW potential is defined by thex2

merit function vv50.8, vx50.1, vc50.1 upon fitting to the hetero- and
homodimers of He, Ne, and Ar.

TABLE I. Stability of parameters for the MCCM–vdW model fit to differ-
ent training sets.a

Param Level/basis

Training set

HOMO HETERO ALL

a1 HF/aDZ 0.004 011 60 0.042 029 74 0.041 335 78
a2 MP2/aDz 20.097 933 96 20.754 550 17 20.403 657 30
a3 CCSD/aDZ 1.606 533 55 1.510 648 52 1.181 703 88
a4 CCSD~T!/aDZ 21.724 383 23 20.997 348 97 21.019 065 35
a5 HF/aTZ 20.059 898 60 0.094 613 3920.044 527 48
a6 MP2/aTZ 20.809 315 30 20.396 277 35 20.699 054 45
a7 CCSD/aTZ 1.292 396 18 0.499 299 53 0.911 509 29
a8 HF/aQZ 20.195 276 49 20.649 356 31 20.368 662 21
a9 MP2/aQZ 0.970 589 91 1.276 184 45 1.179 344 05
a10 HF/a5Z 0.013 276 34 0.374 757 16 0.221 073 78
RMSD 0.936 658 0.797 115 0.734 623

aA comparison of the stability of the unitless parametersak k51,...,10 re-
sulting from the constrained fitting procedure described in the text using
different training sets: homodimers~HOMO!, heterodimers~HETERO! or
both ~ALL !. In all cases, the weights in Eq.~24! were set tovv50.8, and
vx5vc50.1. The parameters fit to ALL correspond to the MCCM–vdW
model presented here and are shown in boldface type.
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duces the reference and experimentally derived potentials
quite well.

For the homodimers~Table II!, the agreement of the
equilibrium distances and well depths is outstanding. The
largest error ofRe and De occurs for He–He~0.015 Bohr
and 4.38mEh , respectively!. The vibrational frequencies, all
of which are very small for these weakly bound systems,
show errors in the range of 4.9–15.9ma.u. For the het-
erodimers, the magnitude of the errors is similar. The largest
error in Re is 0.029 Bohr for He–Ar; however, this is in
nearly perfect agreement with the experimentally derived po-
tential. The largest error inDe is only 1.75mEh for He–Ne.

To assess the MCCM–vdW results with regard to BSSE,
an expanded version of Table II that contains values from the
a5Z with and without counterpoise corrections has been in-
cluded in the E-PAPS supplementary material.85 The
MCCM–vdW model provides accurate results even when the
component calculations on which it is based has significant
BSSE errors.

C. Application to Kr–Kr

The MCCM–vdW has been applied to the krypton dimer
(Kr2) to assess the transferability of the model to a system
not present in the parameter training set. The increased num-
ber of electrons in the Kr2 dimer prohibited use of the high-
level protocol applied to the He, Ne, and Ar dimers. The
highest theoretical level/basis that could be applied with
available resources was CCSD~T!/a5Z without bond func-
tions or counterpoise corrections at 20 internuclear separa-
tions. The scheme for choosing the radial points was identi-
cal to that of the He, Ne, and Ar dimers@Eq. ~5!#, choosing

every fifth point to generate a total of 20 points~instead of
100!. The experimentally derived Kr–Kr binding energy
curve of Ogilvie45 is shown in Fig. 2 along with the
CCSD~T!/a5Z and MCCM–vdW binding, HF-SCF, and cor-
relation, potential energy curves.

MCCM–vdW reproduces very well the Kr–Kr binding
potential energy as calculated with CCSD~T!/a5Z. The
MCCM–vdW and CCSD~T!/a5Z minimum energy distances
~7.677 and 7.691 Bohr!, dissociation energies~601.29 and
606.08 mEh) and vibrational force constants~797.76 and
819.63 ma.u.! agree closely. Both MCCM–vdW and
CCSD~T!/a5Z agree reasonably well with the potential of
Ogilvie,45 but are slightly underbound at the minimum and
along the exchange wall~see Fig. 2!. The minimum energy
distance of the potential of Ogilvie and Wang45 is slightly
contracted~7.524 Bohr! and the potential well is slightly
deeper~637.16mEh). The slight underbinding MCCM–vdW
and CCSD~T!/a5Z at the minimum and exchange wall result
in smaller vibrational force constants when compared to that
of the Ogilvie and Wang potential, but agree very well with
each other. The agreement between MCCM–vdW and
CCSD~T!/a5Z for Kr2 is very encouraging, not only because
of the close agreement with the binding potential energy, but
also of the individual HF-SCF and correlation components
~Fig. 2!.

For this small system, no appreciable speed-up is real-
ized applying the MCCM–vdW relative to CCSD~T!/a5Z
without bond functions/counterpoise corrections on an SGI
Origin 2000 usingMOLPRO 2000.1.84 It should be noted that
MCCM–vdW is parametrized to account implicitly for the
use of bond functions and counterpoise correction.

TABLE II. A comparison of MCCM–vdW with the high-level reference and experimentally derived potential
energy curves for rare-gas dimers.a

Dimer Source

a.u. mEh ma.u.

Re De D0 ve ke

He–He
MCCM–vdW 5.641 29.30 ¯ 133.30 65.30

Reference 5.626 33.68 ¯ 149.20 81.81
OW 5.612 34.74 ¯ 150.72 83.47

Ne–Ne
MCCM-vdW 5.874 128.13 73.77 127.66 301.91

Reference 5.857 130.44 74.14 132.36 324.58
OW 5.841 133.80 77.22 129.49 310.65

Ar–Ar
MCCM–vdW 7.137 440.74 374.50 148.49 808.69

Reference 7.141 441.83 375.33 137.85 696.97
OW 7.099 453.56 386.11 140.51 724.05

He–Ne
MCCM–vdW 5.724 68.34 13.37 158.08 153.25

Reference 5.725 66.59 11.75 162.68 162.30
OW 5.728 65.54 11.42 158.72 154.50

He–Ar
MCCM–vdW 6.574 94.80 32.47 168.63 189.95

Reference 6.603 94.16 32.03 162.10 175.54
OW 6.577 91.60 30.74 158.06 166.89

Ne–Ar
MCCM–vdW 6.621 204.81 148.24 121.80 365.22

Reference 6.604 205.88 147.97 124.61 382.24
OW 6.593 214.04 154.92 127.94 402.98

MCCM–vdW 7.677 601.29 550.30 101.83 797.76
Kr–Kr a5Z1CP 7.691 606.08 555.18 103.22 819.63

OW 7.524 637.16 584.74 107.04 881.49

a‘‘OW’’ refers to the values from the experimentally derived potential surface of Ogilvie and Wang~Ref. 45!.
The values ofD0 were calculated from the potentials with the use of Le Roy’sLEVEL program~Ref. 105!. The
values ofve andke were obtained using a harmonic approximation~see the text!.
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D. Application to Rg ¯H2O interactions

In this section we describe the application of the
MCCM–vdW model to the interaction of rare gases with a
polar molecule~water!, and comparison with large basis/
highly correlated calculations. The purpose here is to further
validate the model with tests on systems not present in the
training set, and to demonstrate transferability to systems
that involve polar molecules. This is an important problem,
not only from a fundamental chemical physics point of view,
but also from the perspective of the design of transferable
molecular simulation force fields where rare gases are often
used as probes to derive nonbonded van der Waals
parameters.96–98

To better assess the performance of the MCCM–vdW
model, potential energy surfaces for rare gas–water interac-
tions, Rḡ H2O (Rg5He, Ne, Ar), were obtained at the
counterpoise-corrected CCSD~T!/a5Z level of theory with a
supplementary set of (3s3p2d) bond functions.99 The set of
bond functions (3s3p3d) is slightly smaller than the set of
bond functions used in creating the reference rare gas dimer
dataset (3s3p2d2 f 1g). There are three main reasons for
using the smaller set of bond functions in this system:~1! the
number of atoms in the system has doubled, making the cal-
culation much more expensive;~2! the (3s3p2d) set of bond
functions was demonstrated by Tao in application to the
Ar¯H2O potential energy surface to be insensitive to
changes in the exponents and the placement within the bond
region;99 and ~3! the Rḡ H2O data collected was not used
for refinement of the MCCM–vdW parameters; rather, it was
used as a validation test of the MCCM–vdW model against
large basis/highly correlated calculations not present in the
training set.

The details of generating the high-level RḡH2O data
are now described. The O–H bond lengths were held fixed at
0.957 Å and theH–O–H bond angle was held fixed at
104.5°. The coordinate varied was the radial distance be-
tween the center of mass of the water and the rare gas along
the C2v axis of the water in the direction of the oxygen.
Counterpoise-corrected binding energies at CCSD~T!/a5Z
supplemented with a set of (3s3p2d) bond functions99 were

obtained at 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25,
4.50, and 5.00 Å center of mass separations.

In addition to the high-level Rḡ H2O data described
above, a protocol used for molecular simulation force field
design „MP3/6-31111G(3d,3p)…96–98 was employed for
comparison. The MP3 protocol has been used to probe mol-
ecules with rare gases in order to obtain the Lennard-Jones
nonbonded interaction potential parameters used in molecu-
lar mechanics calculations and molecular simulations. Table
III presents the binding energy of HēH2O, Nē H2O, and
Ar¯H2O, as determined from MP3/6-31111G(3d,3p)

(V8), MCCM–vdW (Ṽ), and CCSD~T!/a5Z (3s3p2d) with
counterpoise correction~V!. In addition, the energy of the
MCCM–vdW and reference potentials are decomposed into

HF-SCF (X̃ and X, respectively! and correlation potential

energy components (C̃ andC, respectively!.
The agreement between the high-level and MCCM–

vdW Rḡ H2O binding energies is very good. The MCCM–
vdW model predicts a very slightly overbound potential for
Nē H2O and a slightly underbound potential for HēH2O
relative to the high-level reference values. For the Ar¯H2O
potential, the MCCM–vdW and high-level reference results
are almost indistinguishable. The underbinding of the
Hē H2O appears to be mainly due to the correlation poten-
tial, which is slightly underbound near the minimum and at
larger center of mass separations. The parametrized He–He
potential ~Fig. 1! was also slightly underbound; hence, the
observed underbinding predicted by the MCCM–vdW model
for the Hē H2O system is likely related to the very weak
He interactions that are notoriously difficult to capture quan-
tum mechanically.26,50,86–95

The MP3/6-31111G(3d,3p) protocol, which is a com-
putationally cheaper method, does not agree as well with the
high-level calculations and appears to give inconsistent re-
sults. For Hē H2O, and Ar̄ H2O, MP3/6-311
11G(3d,3p) agrees with the high-level results beyond 4 Å,
but is severely underbound near the binding potential energy
minimum and along the exchange wall. On the other hand,
MP3/6-31111G(3d,3p) severely overbinds Nē H2O out
to R55.0 Å. At R53.5 Å, MP3/6-31111G(3d,3p)
overbinds Nē H2O by a factor of 1.6 relative to the high-
level data.

The close agreement between MCCM–vdW, and the ref-
erence data is encouraging, not only for the reason that nei-
ther hydrogen nor oxygen were included in the parametriza-
tion of the model, but also because electronic induction
resulting from interaction with the polar water molecule
plays a more prominent role. Water, which has a permanent
dipole moment of around 1.85 D in the gas phase, induces a
dipole on the rare gas; whereas the~practically negligible!
polarization in the heteronuclear rare-gas dimer systems is
caused mainly by electronegativity differences. This test is
encouraging that the parametrization method adopted here
may lead to more transferable quantum models.

The inclusion of attractive dispersive forces in force
fields and semiempirical methods is of great importance.100

Recently there has been an effort made to include modified
pairwise core–core interactions based onab initio potential

FIG. 2. A comparison of MCCM–vdW, CCSD~T!/a5Z, and experimentally
derived potential energy surfaces. The experimentally derived surface
‘‘OW’’ is that of Ogilvie and Wang~Ref. 45!.
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energy surfaces in order to improve the description of hydro-
gen bonded systems.101,102The creation of pairwise correla-
tion potentials is of significant interest for the development
of new semiempirical methods. One must, however, have a
method for obtaining accurate correlation potentials in order
to fully explore the idea. The development of the MCCM–
vdW model that can reliably reproduce binding, HF-SCF and
correlation energies involving rare gases is therefore of con-
siderable interest.

The MCCM–vdW is observed to require only a fraction
of the time necessary for the high-level reference data. Spe-
cifically, a MCCM–vdW single-point calculation of
Ar¯H2O requiresapproximately20% of the time necessary
for the high-level reference theory as calculated on an SGI
Origin 2000.

E. Application to rare-gas trimers

In this section, MCCM–vdW is applied to rare-gas tri-
mers to demonstrate the model’s ability to reproduce accu-
rate three-body energies. Use of the MCCM–vdW model
may provide a means of much more efficiently generating

databases from which many-body force fields can be param-
etrized and/or tested. The validity of the MCCM–vdW
model for the determination of three-body energies is now
investigated by examining the three-body energies of Rg3

(Rg5He, Ne, Ar).
The potential energy surface of the homonuclear trimer

systems He3 , Ne3 , and Ar3 have been studied along the
radial dimension of an equilateral triangle configuration.
Each angle was held fixed at 60° and the interatomic trimer
distances were scaled such that they corresponded, for com-
parison, to the corresponding interatomic dimer distances re-
ported by Cybulski and co-workers.21

The highest level calculations that could be performed
on the trimer systems were at the CCSD~T!/a5Z level with-
out bond functions or counterpoise corrections. In order to
obtain the best possible binding, HF-SCF, and correlation
reference potential energy curves for rare-gas clusters, the
following two-body corrected model is introduced below.
The analytic forms of the two-body binding, HF-SCF, and
correlation reference potential energy curves at counterpoise-
corrected CCSD~T!/a5Z1(3s3p2d2 f 1g) levels for rare-gas

TABLE III. A comparison of MCCM–vdW, CCSD(T)/a5Z1BF1CP, and MP3/6-31111G(3d,3p)
Rḡ H2O interaction energies.a

Rg
r

~Å!

X̃ X C̃ C Ṽ V V 8

mEh

2.50 26657.05 26679.56 26709.62 26722.48 19947.42 19957.08 21888.60
2.75 10793.45 10806.87 24095.57 24135.41 6697.88 6671.46 7657.29
3.00 4252.87 4259.25 22560.18 22581.62 1692.69 1677.63 2190.16
3.25 1614.51 1615.33 21629.90 21632.73 215.38 217.40 247.54

Ar
3.50 574.72 573.44 21049.52 21045.73 2474.80 2472.30 2344.23
3.75 176.87 176.36 2680.69 2679.04 2503.82 2502.68 2449.95
4.00 32.27 33.08 2446.14 2447.53 2413.87 2414.45 2390.90
4.25 214.90 213.24 2297.20 2300.44 2312.11 2313.68 2314.93
4.50 226.21 224.24 2201.80 2205.36 2228.01 2229.60 2235.81
5.00 221.04 219.58 299.80 2101.47 2120.84 2121.05 2127.29

Ne

2.50 6760.96 6738.57 22140.52 22023.49 4620.44 4715.08 4723.95
2.75 2426.12 2407.77 21308.06 21220.23 1118.06 1187.54 1154.80
3.00 850.11 840.38 2800.39 2750.16 49.72 90.22 27.70
3.25 283.37 280.15 2494.15 2468.54 2210.79 2188.39 2319.50
3.50 83.56 84.17 2308.77 2297.05 2225.21 2212.88 2341.96
3.75 16.70 18.33 2197.77 2191.78 2181.07 2173.45 2290.00
4.00 22.83 21.96 2131.10 2126.59 2133.93 2128.55 2225.07
4.25 26.95 26.87 289.37 284.92 296.32 291.79 2162.93
4.50 26.72 26.96 262.74 258.27 269.46 265.23 2111.52
5.00 24.50 24.55 233.84 229.04 238.34 233.59 247.87

He

2.50 2954.39 2958.23 2971.11 2974.83 1983.28 1983.40 2248.56
2.75 1081.51 1082.50 2577.76 2576.77 503.75 505.73 648.68
3.00 384.14 384.36 2348.97 2348.88 35.18 35.47 118.26
3.25 128.71 129.38 2211.74 2215.65 283.03 286.28 241.30
3.50 37.65 38.75 2129.62 2136.30 291.97 297.55 278.23
3.75 6.76 8.02 280.59 288.07 273.83 280.05 275.31
4.00 22.59 21.46 251.31 258.37 253.89 259.82 261.69
4.25 24.57 23.68 233.95 239.21 238.52 242.89 247.38
4.50 24.30 23.63 223.69 227.03 227.99 230.66 235.10
5.00 22.63 22.36 213.38 213.58 216.01 215.94 217.96

aInteraction energies of MCCM–vdW, counterpoise corrected CCSD~T!/a5Z supplemented with a set of

(3s3p2d) bond functions, and MP3/6-31111G(3d,3p) denoted asṼ, V, andV8, respectively. Also shown

are the MCCM–vdW and CCSD(T)/a5Z1BF1CP HF-SCF and correlation components, denoted as (X̃ and

X! and (C̃, C!, respectively.
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homo- and heterodimers involving He, Ne, and Ar have been
presented and discussed in detail elsewhere.21,83 These
curves can be used to correct the two-body energy contribu-
tions for rare-gas clusters calculated with a cheaper level of
theory ~including the MCCM–vdW model—although the
purpose here is to test theuncorrectedMCCM–vdW model!.
The form of thevery high levelcluster energy model with
two-body corrections, using the uncorrected theory level of
CCSD~T!/a5Z, is given by

EVHL5ECCSD~T!/a5Z1(
i , j

D i j , ~6!

EVHL ~X!5EHF/a5Z1(
i , j

D i j
~X! , ~7!

EVHL ~C!5EVHL2EVHL ~X!

5ECCSD~T!/a5Z2EHF/a5Z1(
i , j

D i j
~C! , ~8!

whereECCSD~T!/a5Z and EHF/a5Z are the energies of the rare-
gas cluster at the uncorrected level of theory, andEVHL,
EVHL( X), and EVHL( C) are the corrected total, HF-SCF, and
correlation energies of the clusters, respectively. The two-
body correction terms are given by

D i j 5ECCSD~T!/ref~Rgi :Rgj !2ECCSD~T!/a5Z~Rgi :Rgj !, ~9!

D i j
~X!5EHF/ref~Rgi :Rgj !2EHF/a5Z~Rgi :Rgj !, ~10!

D i j
~C!5D i j 2D i j

~X! , ~11!

where the notation (Rgi :Rgj ) denotes the two-body interac-
tion between rare-gasi and j in the cluster, obtained from a
separate calculation, or in the present case, from analytic
forms fitted very accurately to the two-body potential energy
curves at each level of theory. These potential energy curves
are available as supplementary material~E-PAPS!.85

The reference three-body binding, HF-SCF, and correla-
tion energies@denoted as three-body, three-body~X!, and
three-body~C!, respectively# were calculated at the
CCSD~T!/a5Z level as

E3-body
a5Z 5ECCSD~T!/a5Z2(

i , j
ECCSD~T!a5Z~Rgi :Rgj !, ~12!

E3-body~X!
a5Z 5EHF/a5Z2(

i , j
EHF/a5Z~Rgi :Rgj !, ~13!

E3-body~C!
a5Z 5E3-body

a5Z 2E3-body~X!
a5z . ~14!

Similarly, the MCCM–vdW three-body, three-body HF-SCF,
and three-body correlation potential are defined as

E3-body
MCCM–vdW5EMCCM–vdW2(

i , j
EMCCM–vdW~Rgi :Rgj !, ~15!

E3-body~X!
MCCM–vdW5EMCCM–vdW~X!2(

i , j
EMCCM–vdW~X!~Rgi :Rgj !,

~16!

E3-body~C!
MCCM–vdW5EMCCM–vdW~C!2(

i , j
EMCCM–vdW~C!~Rgi :Rgj !,

~17!

Table IV compares the VHL reference and MCCM–vdW
binding, HF-SCF, and correlation potential energy curves for
the He3 , Ne3 , and Ar3 trimer systems having C3v symmetry,
and Table V displays the corresponding three-body potential
energy components. Overall, the MCCM–vdW model is in
impressive agreement with the VHL reference curves. The
MCCM–vdW HF-SCF potential, denoted MCCM–vdW(X),
is slightly less repulsive than the VHL(X) potential and the
correlation potential is slightly underbound for Ne3 ; how-
ever, a cancellation of these small errors leads to a very
accurate binding potential energy. The He3

MCCM–vdW(C) potential energy curve is slightly under-
bound around the minimum of this potential energy surface
relative to VHL(C) and results in a slightly underbound
binding energy potential. The three-body potential energy
curves from the MCCM–vdW model compare reasonably
well with the CCSD~T!/a5Z data.

In general, the three-body energies~Table V! are small
relative to the corresponding two-body energies. At small
interatomic distances~in the repulsive region of the binding
energy!, the three-body energies become larger. The three-
body contribution to the binding energy is generally attrac-
tive except in the region of the minimum, where it is ob-
served to be very slightly repulsive. The three-body HF-SCF
and correlation energies are attractive and repulsive, respec-
tively. The MCCM–vdW three-body energies for Ne3 do not
agree as closely with the CCSD~T!/a5Z data as do the He3

and Ar3 three-body energies. The repulsive three-body cor-
relation potential of MCCM–vdW is noticeably not repulsive
enough, leading to an overall three-body potential that is
nearly the same as the three-body HF-SCF potential. This is
not too concerning; within the region of phase space being
considered, the three-body HF-SCF energy dominates the
three-body correlation energy at small distances and both
become negligible at intermediate to larger distances.
MCCM–vdW reproduces the CCSD~T!/a5Z three-body po-
tentials extremely well for Ar3 and He3 , even in the highly
repulsive region of the binding potential energy.

The MCCM–vdW model is observed to be considerably
accurate for rare-gas trimer systems relative to CCSD~T!/a5Z
calculations. A further validation of the model is, of course,
necessary, and requires the generation of highly accurate ref-
erence potential surfaces for clusters. The results reported
here are nonetheless encouraging.

Although MCCM–vdW is parametrized to account for
counterpoise correction with the use of bond functions, it is
found to provide immense time savings for the rare-gas tri-
mers relative to CCSD~T!/a5Zwithout the use of bond func-
tions and without counterpoise corrections. As a specific ex-
ample, a MCCM–vdW single-point calculation of Ar3

requiresapproximately20% of the time necessary for the
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high-level reference theory, as calculated on an SGI Origin
2000.

V. CONCLUSIONS

The determination of accurateab initio potential energy
curves for rare gases has traditionally been a challenge for
quantum chemical methods. In this paper we present the de-
velopment of a MCCM–vdW method for the determination
of accurate potential surfaces of rare gas dimers of He, Ne,
and Ar based on high-level CCSD~T! reference curves over a
large range of radial points. The methods allow an accurate
calculation of rare-gas dimer curves for significantly reduced
computational effort and doesnot require the use of bond
functions or counterpoise corrections. Consequently, this
method may be used for multilevel geometry
optimizations47,82 in applications to van der Waals clusters.

Initial work in the construction of a MCCM–vdW
method followed work similar to that of Fast and Truhlar.47

However, it was found that for the design of a reliable model
for dispersion interactions, several modifications were neces-
sary. The main features of the model developed here that
distinguish it from some other models include the following:
~i! the inclusion of a constraint that the coefficients sum to
unity in accord with scaling arguments; ~ii ! fitting to both
stationary and nonstationary points over a broad range of
the two-body potential energy surface; and~iii ! fitting simul-
taneously to the total binding energy and the individual
Hartree–Fock and correlation energy components to pro-
duce a more transferable model.

It has been found that the stability of the MCCM–vdW
parameters increases when the model is parametrized to si-
multaneously reproduce binding, HF-SCF, and correlation
potential energies. MCCM–vdW has been shown to be trans-

TABLE IV. A comparison of MCCM–vdW, and ‘‘Very High Level’’ Rg3 trimer interaction energies.a

Rg
r

~Å!

X̃ X C̃ C Ṽ V8

mEh

Ar3

3.000 19 003.49 18 939.28 210 257.51 210 025.39 8745.99 8913.88
3.250 7903.62 7871.42 26431.00 26354.40 1472.62 1517.03
3.500 3236.38 3227.17 24076.11 24061.27 2839.73 2834.10
3.750 1310.55 1307.79 22621.34 22622.79 21310.79 21315.00
3.775 1196.72 1194.15 22510.59 22512.35 21313.88 21318.20
3.800 1092.68 1090.28 22404.73 22406.87 21312.05 21316.58
3.850 910.72 908.61 22208.07 22209.94 21297.35 21301.33
4.000 526.01 524.75 21714.31 21717.05 21188.30 21192.30
4.250 207.92 208.82 21142.21 21143.08 2934.29 2934.26
4.500 79.62 82.52 2776.38 2775.76 2696.76 2693.24
5.000 8.54 12.69 2381.01 2379.95 2372.47 2367.26
6.000 23.53 0.34 2113.49 2112.97 2117.02 2112.63
7.000 21.16 0.04 241.70 241.80 242.86 241.75

Ne3

2.250 13 336.42 13 462.18 23329.25 23320.54 10007.17 10 141.64
2.500 4189.20 4290.66 22014.41 22081.77 2174.79 2208.89
2.750 1277.05 1359.48 21214.96 21292.53 62.09 66.95
3.000 369.70 428.55 2740.63 2799.38 2370.93 2370.84
3.075 249.93 302.85 2641.70 2692.63 2391.77 2389.78
3.100 218.53 269.73 2611.52 2660.21 2392.99 2390.48
3.125 190.61 240.23 2583.05 2629.62 2392.44 2389.38
3.250 90.97 134.56 2458.43 2497.72 2367.46 2363.17
3.500 5.34 42.14 2286.31 2314.25 2280.97 2272.11
3.750 216.00 13.18 2178.57 2202.24 2194.57 2189.06
4.000 215.70 4.15 2110.95 2132.99 2126.65 2128.84
4.500 26.10 0.53 256.14 261.84 262.24 261.31
5.000 21.44 0.13 230.29 231.06 231.73 230.93

He3

1.750 18 519.23 18 498.88 23243.76 23004.15 15 275.47 15 494.73
2.000 6434.39 6418.84 21733.98 21645.31 4700.40 4773.53
2.250 2168.39 2165.53 2940.78 2914.59 1227.61 1250.95
2.500 712.88 713.39 2516.21 2516.21 196.66 197.18
2.750 231.87 230.40 2287.77 2296.86 255.90 266.46
2.950 94.92 92.19 2184.14 2193.86 289.23 2101.67
2.975 84.94 82.17 2174.46 2184.01 289.51 2101.85
3.000 76.02 73.22 2165.34 2174.72 289.32 2101.50
3.025 68.05 65.25 2156.78 2165.94 288.73 2100.69
3.250 24.83 23.00 299.05 2105.67 274.22 282.67
3.500 7.17 7.16 261.87 265.82 254.70 258.66
4.000 20.54 0.68 226.83 227.90 227.37 227.23
5.000 20.17 0.02 27.08 26.76 27.25 26.74

aThe tables X, C, and V correspond to HF-SCF, correlation, and interaction (X1C) energies, respectively. The
MCCM–vdW values are identified with an overtilde. The ‘‘Very High Level’’ values are described in the text.
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ferable to systems not contained in the training set, e.g., Kr–
Kr, Rḡ H2O and He3 , Ne3 and Ar3 systems. The ability of
MCCM–vdW to reproduce correlation energies may play an
important role in the design and parameterization of new
semiempirical methods that incorporate a treatment for long-
range correlation effects. It has been shown that MCCM–
vdW adequately reproduces CCSD~T!/a5Z three-body ener-
gies of rare-gas trimers, which makes the method valuable to
the parametrization and testing of new many-body polariz-
able force fields. It is the hope that MCCM–vdW can be
applied to determine potential energy surfaces of rare-gas
clusters for which conventional methods of comparable ac-
curacy are not feasible. Further testing and application to
three-body and many-body potential surfaces are required
before one can make solid conclusions about transferability.

Future work will involve the generation and testing of
the models to more complicated potential energy surfaces.

Nonetheless, this work represents an important step toward
the development of more efficient quantum models to com-
pute dispersion interactions and to obtain a systematic under-
standing of the transferability and many-body nature of these
systems. These issues are of significant interest, not only for
chemical physics, but also for the development of improved
many-body molecular mechanical force fields.
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TABLE V. A comparison of MCCM–vdW and CCSD(T)/a5Z Rg3 three-body energies.a

Rg
r

~Å!

X̃ X C̃ C Ṽ V

mEh

Ar3

3.000 2533.23 2531.00 264.23 279.68 2269.00 2251.32
3.250 2157.87 2156.60 112.10 118.93 245.77 237.66
3.500 244.92 244.64 47.86 47.44 2.94 2.80
3.750 212.37 212.32 21.54 19.49 9.17 7.17
3.775 210.91 210.82 20.26 17.91 9.36 7.09
3.800 29.59 29.49 18.78 16.55 9.20 7.06
3.850 27.47 27.30 15.86 14.38 8.39 7.09
4.000 23.76 23.28 12.99 9.75 9.23 6.46
4.250 21.72 20.81 4.31 5.83 2.59 5.02
4.500 21.11 20.11 2.32 3.67 1.21 3.56
5.000 20.42 0.07 20.29 1.49 20.71 1.57
6.000 0.16 0.07 21.64 0.56 21.48 0.62
7.000 0.03 0.06 0.37 0.23 0.40 0.29

Ne3

2.250 2261.12 2260.60 24.30 69.05 2236.83 2191.56
2.500 251.84 251.86 9.45 20.33 242.39 231.53
2.750 211.51 29.91 20.24 5.39 211.75 24.52
3.000 23.29 21.80 28.65 2.06 211.94 0.26
3.075 22.31 21.06 25.81 1.68 28.12 0.62
3.100 22.06 20.89 27.50 1.69 29.55 0.79
3.125 21.81 20.74 27.36 1.35 29.17 0.62
3.250 20.89 20.28 27.20 1.11 28.09 0.83
3.500 0.35 0.01 29.40 0.74 29.04 0.75
3.750 0.91 0.05 26.65 0.47 25.74 0.51
4.000 0.84 0.07 20.33 0.42 0.51 0.48
4.500 0.31 0.12 24.02 0.15 23.71 0.27
5.000 0.06 0.07 0.77 0.26 0.83 0.33

He3

1.750 21729.49 21736.73 57.62 66.28 21671.87 21670.45
2.000 2397.37 2398.43 12.80 23.17 2384.57 2375.26
2.250 286.52 286.23 1.21 7.45 285.31 278.78
2.500 218.30 217.80 20.72 1.98 219.02 215.82
2.750 23.98 23.60 20.71 0.36 24.69 23.23
2.950 21.32 21.02 20.60 0.07 21.92 20.95
2.975 21.17 20.88 20.61 0.07 21.77 20.81
3.000 21.03 20.74 20.62 0.05 21.65 20.69
3.025 20.93 20.62 20.56 0.03 21.49 20.59
3.250 20.44 20.13 20.47 0.04 20.91 20.10
3.500 20.25 20.01 20.32 0.04 20.56 0.03
4.000 20.02 20.00 20.01 0.03 20.02 0.03
5.000 20.00 0.03 0.13 0.00 0.13 0.03

aThe labels X, C, and V correspond to HF-SCF, correlation, and interation (X1C) energies, respectively. The
MCCM–vdW and CCSD~T!/a5Z values are identified with and without an overtilde, respectively.

599J. Chem. Phys., Vol. 120, No. 2, 8 January 2004 Dispersion interactions



tional Institutes of Health Molecular Biophysics Training
Grant. Computational resources were provided by the Min-
nesota Supercomputing Institute.

APPENDIX: THE MCCM-vdW PARAMETRIZATION
PROCEDURE

The parameters in MCCM–vdW are the coefficientsai

@Eq. ~1!#. These are linear parameters in the model, and can
be fit using a constrained linear least-squares method. Simple
scaling arguments require that the coefficients sum to unity.
A singular value decomposition scheme was used to ensure
the elimination of linear dependencies in the parameters.

The first step is to construct a quadraticx2 merit func-
tion that includes all of the homo- and heterodimer curves
and is a weighted sum of squares between the high-level
potential curves and the MCCM–vdW potential.

The dimer potential energy surface is denoted by a
Greek index ‘‘a’’, a51,...,Na , for examplea51, 2, 3, 4, 5,
6 corresponds to the dimers He2 , HeNe, HeAr, Ne2 , NeAr,
and Ar2 , respectively~henceNa56 in this work!. For each
dimer a, the set of radial pointsr a i was defined fori
51,...,Np , where the number of radial pointsNp5100 here.
Similarly, the level of theory/basis set is denoted by the in-
dex ‘‘j’’, j 51,...,NT , whereNT is the number of theory/basis
set combinations.103

Let va(r a i) denote the elements of an (Na•Np)31 col-
umn vectorv containing the values of the high-level refer-
ence binding energy for the dimera at the radial pointr a i .
Similarly, let xa(r a i) and ca(r a i) denote the elements of
(Na•Np)31 column vectorsx andc containing the values of
the high-level reference HF-SCF and correlation energies,
respectively. In the literature, the repulsive part of the rare-
gas interaction is sometimes referred to as an ‘‘exchange’’
term~motivating the ‘‘x’’ label!; however, this terminology is
avoided so as not to be confused with Hartree–Fock ex-
change energy that has a different meaning in quantum
chemistry.

Here a supermatrix notation has been introduced where
the indexesa andi are treated together as a single combined
index ‘‘a i . ’’ The model potentialsṽa(r a i), x̃a(r a i), and
c̃a(r a i) are constructed as a linear combination ofNT theory/
basis set levels:

ṽa~r a i !5(
j 51

NT

Va~r a i ! j•aj , ~A1!

x̃a~r a i !5(
j 51

NT

Xa~r a i ! j•aj , ~A2!

c̃a~r a i !5(
j 51

NT

Ca~r a i ! j•aj , ~A3!

whereVa(r a i) j is the binding energy of theath dimer at the
i th radial point (r a i) and j th theory/basis set level, andaj is
the coefficient in the MCCM–vdW for that level. Similarly,
Xa(r a i) j and Ca(r a i) j are the corresponding HF-SCF and
correlation potential energies, respectively, at the same radial
point (r a i) and theory/basis set level. Note: there is onlyone
set of parameters$aj% used for all three MCCM–vdW model

potential energy components, and that the correlation energy
is defined to be zero for all HF theory levels. Using a super-
matrix formulation, these equations can be written concisely
as

ṽ5V"a, ~A4!

x̃5X"a, ~A5!

c̃5C"a, ~A6!

where ṽa i[ ṽa(r a i), x̃a i[ x̃a(r a i), c̃a i[ c̃a(r a i), Va i , j

[Va(r a i) j , Xa i , j[Xa(r a i) j , andCa i , j[Ca(r a i) j .
Consider the merit functionx2,

x2~a;vv ,vx ,vc ,S!5vvxv
2~a;S!1vxxx

2~a;S!

1vcxc
2~a;S!, ~A7!

whereS indicates the training set of molecules used to con-
struct the merit function, andvv , vx , andvc are empirical
parameters that scale the individualx2 functions for the
binding, HF-SCF, and correlation potential energies, defined
by

xv
2~a;S!5

1

2 (
a

S

(
i

wa i~ ṽa i2va i !
2

5
1

2
~ ṽ2v!T"W"~ ṽ2v!, ~A8!

xx
2~a;S!5

1

2 (
a

S

(
i

wa i~ x̃a i2xa i !
2

5
1

2
~ x̃2x!T"W"~ x̃2x!, ~A9!

xc
2~a;S!5

1

2 (
a

S

(
i

wa i~ c̃a i2ca i !
2

5
1

2
~ c̃2c!T"W"~ c̃2c!. ~A10!

Here the summation overa runs over the molecules included
in the training setS, wa i is the weight for thea dimer curve
at the radial point r a i , and W is the corresponding
(Na•Np)3(Na•Np) diagonal weight matrix defined by
Wa i ,a8 i 85wa i•da i ,a8 i 8 . Equation~A7! can be rewritten as

x2~a;vv ,vx ,vc ,S!5 1
2 aT"B"a2aT"g1const, ~A11!

where

B5vvVT"W"V1vxX
T"W"X1vcC

T"W"C, ~A12!

g5vvVT"W"v1vxX
T"W"x1vcC

T"W"c, ~A13!

const5vvvT"W"v1vxx
T"W"x1vcc

T"W"c. ~A14!

The vector of fit parametersa are obtained from the
constrained variational condition

d$x2~a;vv ,vx ,vc ,S!2l~aT"121!%50, ~A15!

where1 is anNT31 column vector with each element equal
to 1. The solution of Eq.~A15! leads to

a5B21"~g1l1!, ~A16!
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where the Lagrange multiplierl is chosen to satisfy the con-
straint conditionaT

•151,

l5~121T"g!/~1T"B21"1!. ~A17!

The matrix inverse in Eqs.~A16! and~A17! were performed
using singular value decompositions104 using a threshold of
1028 for the singular values.

The choice of the radial weightswa i ~and hence the
diagonal weight matrixW! was key to obtaining accurate
results in the physically most relevant regions of the poten-
tial energy curves. Many forms of the weight function were
explored, and the one that was found to provide the best
balance of simplicity and overall reliability was of the form

wa i5
ga i

(a8 i 8ga8 i 8
, ~A18!

where

ga i5exp@2b•va
0~r a i !/De~a!#Dr a i , ~A19!

where the parameterb50.5, De(a) is the energy minimum
of the reference potential binding curve, andDr a i is the fi-
nite difference radial distance between adjacent radial points;
i.e., Dr a i5r a( i 11)2r a( i 21) . The purpose of theDr a i is to
take into account the nonuniform distribution of radial
sample points given in Eq.~5!.

The weightsvv , vx , andvc were also instrumental in
deriving a transferable model, as discussed in greater detail
in the following section. As a specific example, if in Eq.~A7!
the parameters were set tovv51 andvx5vc50, then the
chi-squared functionx2(a;1,0,0,S) would consider only the
total binding potential energy of the datasetS in the fitting
procedure. After considerable testing, values ofvv50.8,
vx50.1, andvc50.1 were chosen for the present work.
A further discussion of these parameters is presented in
Sec. IV A.
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