
The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

DeePMD-kit v2: A software package for deep
potential models

Cite as: J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600
Submitted: 21 April 2023 • Accepted: 3 July 2023 •
Published Online: 1 August 2023

Jinzhe Zeng,1 Duo Zhang,2 ,3 ,4 Denghui Lu,5 Pinghui Mo,6 Zeyu Li,7 Yixiao Chen,8

Marián Rynik,9 Li’ang Huang,10 Ziyao Li,3 ,11 Shaochen Shi,12 Yingze Wang,3 ,13 Haotian Ye,7

Ping Tuo,2 Jiabin Yang,14 Ye Ding,15 ,16 Yifan Li,17 Davide Tisi,18 ,19 Qiyu Zeng,20 Han Bao,21 ,22

Yu Xia,12 Jiameng Huang,3 ,23 Koki Muraoka,24 Yibo Wang,3 Junhan Chang,3 ,13

Fengbo Yuan,3 Sigbjørn Løland Bore,25 Chun Cai,2 ,3 Yinnian Lin,26 Bo Wang,27 Jiayan Xu,28

Jia-Xin Zhu,29 Chenxing Luo,30 Yuzhi Zhang,3 Rhys E. A. Goodall,31 Wenshuo Liang,3

Anurag Kumar Singh,32 Sikai Yao,3 Jingchao Zhang,33 Renata Wentzcovitch,30 ,34 Jiequn Han,35

Jie Liu,6 Weile Jia,21 ,22 Darrin M. York,1 Weinan E,2 ,36 Roberto Car,17 Linfeng Zhang,2 ,3,a)

and Han Wang5 ,37,b)

AFFILIATIONS
1Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry
and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA

2AI for Science Institute, Beijing 100080, People’s Republic of China
3DP Technology, Beijing 100080, People’s Republic of China
4Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China
5HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
6College of Electrical and Information Engineering, Hunan University, Changsha, People’s Republic of China
7Yuanpei College, Peking University, Beijing 100871, People’s Republic of China
8Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08540, USA
9Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava, Slovakia

10Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084,
People’s Republic of China

11Center for Data Science, Peking University, Beijing 100871, People’s Republic of China
12ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People’s Republic of China
13College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
14Baidu, Inc., Beijing, People’s Republic of China
15Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang,

People’s Republic of China
16Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang,

People’s Republic of China
17Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
18SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
19Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne,

1015 Lausanne, Switzerland
20Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
21State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing,

People’s Republic of China
22University of Chinese Academy of Sciences, Beijing, People’s Republic of China
23School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, People’s Republic of China

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-1

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0155600
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0155600
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0155600&domain=pdf&date_stamp=2023-August-1
https://doi.org/10.1063/5.0155600
https://orcid.org/0000-0002-1515-8172
https://orcid.org/0000-0001-9591-2659
https://orcid.org/0000-0003-0977-3635
https://orcid.org/0009-0009-4591-8644
https://orcid.org/0009-0008-4381-0544
https://orcid.org/0000-0001-8201-5887
https://orcid.org/0009-0006-5745-1525
https://orcid.org/0009-0001-4185-9677
https://orcid.org/0000-0002-9071-2516
https://orcid.org/0000-0003-3457-403X
https://orcid.org/0009-0005-8486-0626
https://orcid.org/0000-0002-6477-5900
https://orcid.org/0009-0005-1986-2879
https://orcid.org/0000-0003-3217-0592
https://orcid.org/0000-0001-7229-6101
https://orcid.org/0009-0004-2304-0213
https://orcid.org/0000-0003-3490-0974
https://orcid.org/0009-0004-9087-9414
https://orcid.org/0009-0002-9701-8145
https://orcid.org/0000-0003-1830-7978
https://orcid.org/0009-0001-3921-4415
https://orcid.org/0000-0003-3195-0773
https://orcid.org/0009-0002-3949-8785
https://orcid.org/0000-0002-8620-4885
https://orcid.org/0000-0001-6242-0439
https://orcid.org/0009-0008-1709-7239
https://orcid.org/0000-0002-2733-9253
https://orcid.org/0000-0001-9897-5778
https://orcid.org/0000-0002-3471-4728
https://orcid.org/0000-0003-4116-6851
https://orcid.org/0000-0002-5841-1107
https://orcid.org/0000-0002-6589-1700
https://orcid.org/0000-0003-0646-8803
https://orcid.org/0009-0001-6255-5867
https://orcid.org/0009-0009-3429-0476
https://orcid.org/0000-0001-5289-6062
https://orcid.org/0000-0001-5663-9426
https://orcid.org/0000-0002-3553-7313
https://orcid.org/0000-0001-8663-3551
https://orcid.org/0000-0001-8539-8326
https://orcid.org/0000-0002-9193-7055
https://orcid.org/0000-0003-0272-9500
https://orcid.org/0000-0001-5243-2647
https://orcid.org/0000-0002-8470-5846
https://orcid.org/0000-0001-5623-1148

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

24Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
25Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern,

0315 Oslo, Norway
26Wangxuan Institute of Computer Technology, Peking University, Beijing 100871, People’s Republic of China
27Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of

Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University,
Shanghai 200062, People’s Republic of China

28School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
29State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen

University, Xiamen 361005, People’s Republic of China
30Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
31Independent Researcher, London, United Kingdom
32Department of Data Science, Indian Institute of Technology, Palakkad, Kerala, India
33NVIDIA AI Technology Center (NVAITC), Santa Clara, California 95051, USA
34Department of Earth and Environmental Sciences, Columbia University, New York, New York 10027, USA
35Center for Computational Mathematics, Flatiron Institute, New York, New York 10010, USA
36Center for Machine Learning Research and School of Mathematical Sciences, Peking University, Beijing 100871,

People’s Republic of China
37Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2,

Beijing 100094, People’s Republic of China

Note: This paper is part of the JCP Special Topic on Software for Atomistic Machine Learning.
a)Electronic mail: linfeng.zhang.zlf@gmail.com
b)Author to whom correspondence should be addressed: wang_han@iapcm.ac.cn

ABSTRACT
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials
known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry,
biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as
DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correc-
tion, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics,
and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming inter-
faces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details.
Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks
the accuracy and efficiency of different models, and discusses ongoing developments.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155600

I. INTRODUCTION

In recent years, the increasing popularity of machine learn-
ing potentials (MLPs) has revolutionized molecular dynamics (MD)
simulations across various fields, including neural network poten-
tials (NNPs),1–19 message passing models,7,20–24 and other machine
learning models.25–28 Numerous software packages have been devel-
oped to support the use of MLPs.13,29–40 One of the main reasons
for the widespread adoption of MLPs is their exceptional speed
and accuracy, which outperform traditional molecular mechanics
(MM) and ab initio quantum mechanics (QM) methods.41,42 As
a result, MLP-powered MD simulations have become ubiquitous
in the field and are increasingly recognized as a valuable tool for
studying atomistic systems.43–49

The DeePMD-kit is an open-source software package that
facilitates molecular dynamics (MD) simulations using neural net-
work potentials. The package was first released in 201729 and has
since undergone rapid development with contributions from many
developers. The DeePMD-kit implements a series of MLP models
known as Deep Potential (DP) models,9,10,50–54 which have been
widely adopted in the fields of physics, chemistry, biology, and
material science for studying a broad range of atomistic systems.
These systems include metallic materials,55 non-metallic inorganic
materials,56–60 water,61–71 organic systems,10,72 solutions,52,73–76 gas-
phase systems,77–80 macromolecular systems,81,82 and interfaces.83–87

Furthermore, the DeePMD-kit is capable of simulating systems con-
taining almost all Periodic Table elements,51 operating under a
wide range of temperature and pressure,88 and can handle drug-like

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-2

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
mailto:linfeng.zhang.zlf@gmail.com
mailto:wang_han@iapcm.ac.cn
https://doi.org/10.1063/5.0155600

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

molecules,72,89 ions,73,76 transition states,75,77 and excited states.90

As a result, the DeePMD-kit is a powerful and versatile tool that
can be used to simulate a wide range of atomistic systems. Here,
we present three exemplary instances that highlight its diverse
applications.

Theoretical investigation of the water phase diagram poses a
significant challenge due to the requirement for a highly accurate
model of water interatomic interactions.91,92 Consequently, it serves
as an exceptionally stringent test for the model’s accuracy and pro-
vides a means to validate the software implementation necessary
for molecular dynamics simulations used in phase diagram calcu-
lations.92 Zhang et al.88 utilized DeePMD-kit to construct a deep
potential model for the water system, covering a range of thermody-
namic states from 0 to 2400 K and 0–50 GPa. The model was trained
on density functional theory (DFT) data generated using the SCAN
approximation of the exchange–correlation functional and exhib-
ited consistent accuracy [with an Root mean square error (RMSE)
of less than 1 meV/H2O] within the relevant thermodynamic range.
Moreover, it accurately predicted fluid, molecular, and ionic phases
and all stable ice polymorphs within the range, except for phases
III and XV. The study extensively investigated the two first-order
phase transitions from ice VII to VII” and VII” to ionic fluid
and the atomistic mechanism of proton diffusion, leveraging the
model’s capability and high accuracy in predicting water molecule
ionization.

Another challenging area is condensed-phase MD simulations,
as long-range interactions are critical for modeling heterogeneous
systems in the condensed phase. Electrostatic interactions are not
only the longest but also are well-understood, and linear-scaling
methods exist for their efficient computation at the point charge,93

multipole,94,95 and quantum mechanical96,97 levels. Fast semiempir-
ical quantum mechanical methods can be developed98,99 that can
accurately and efficiently model charge densities and many-body
effects in the long-range but may still lack quantitative accuracy
in the mid-range (typically less than 8 Å). This limits the predic-
tive capability of the methods in condensed-phase simulations. Zeng
et al.52 created a new Δ-MLP method called Deep Potential-Range
correction (DPRc) to integrate with combined quantum mechani-
cal/molecular mechanical (QM/MM) potentials, which corrects the
potential energy from a fast, linear-scaling low-level semiempirical
QM/MM theory to a high-level ab initio QM/MM theory. Unlike
many of the emerging Δ-MLPs that correct internal QM energy and
forces, the DPRc model corrects both the QM–QM and QM–MM
interactions of a QM/MM calculation in a manner that conserves
energy as MM atoms enter (or leave) the vicinity of the QM region.
This enables the model to be easily integrated as a mid-ranged cor-
rection to the potential energy within molecular simulation software
that uses non-bonded lists, i.e., for each atom, a list of other atoms
within a fixed cut-off distance (typically 8–12 Å). The trained DPRc
model with a 6 Å range-correction was applied to simulate RNA 2′-
O-transphosphorylation reactions in solution in long timescales75

and obtain better free energy estimates with the help of the gen-
eralization of the weighted thermodynamic perturbation (gwTP)
method.100 Very recently, Zeng et al.72 have trained a Δ-MLP cor-
rection model called Quantum Deep Potential Interaction (QDπ)
for drug-like molecules, including tautomeric forms and protona-
tion states, which was found to be superior to other semiempirical
methods and pure MLP models.89

The third important application is large-scale reactive MD
simulations over a nanosecond time scale, which enable the con-
struction of interwoven reaction networks for complex reactive
systems101 instead of focusing on studying a single reaction. These
simulations require the potential energy model to be accurate and
computationally efficient, covering the chemical space of possi-
ble reactions. Zeng et al.77 introduced a deep potential model for
simulating 1 ns methane combustion reactions and identified 798
different chemical reactions in both space and time using the Reac-
NetGenerator package.102 The concurrent learning procedure103 was
adopted and proved crucial in exploring known and unknown
chemical space during the complex reaction process. Subsequent
work conducted by the research team extended these simulations
to more complex reactive systems, including linear alkane pyroly-
sis,78 decomposition of explosive,79,104 and the growth of polycyclic
aromatic hydrocarbon.80

Compared to its initial release,29 DeePMD-kit has evolved
significantly, with the current version (v2.2.1) offering an exten-
sive range of features. These include DeepPot-SE, attention-
based, and hybrid descriptors,10,50,51,53 the ability to fit tenso-
rial properties,105,106 type embedding, model deviation,103,107 Deep
Potential-Range Correction (DPRc),52,75 Deep Potential Long Range
(DPLR),53 graphics processing unit (GPU) support for customized
operators,108 model compression,109 non-von Neumann molecu-
lar dynamics (NVNMD),110 and various usability improvements,
such as documentation, compiled binary packages, graphical user
interfaces (GUIs), and application programming interfaces (APIs).
This article provides an overview of the current major version
of the DeePMD-kit, highlighting its features and technical details,
presenting a comprehensive procedure for conducting molecular
dynamics as a representative application, benchmarking the accu-
racy and efficiency of different models, and discussing ongoing
developments.

II. FEATURES
In this section, we introduce features from the perspective of

components (shown in Fig. 1). A component represents units of
computation. It is organized as a Python class inside the package,
and a corresponding TensorFlow static graph will be created at
runtime.

A. Models
A Deep Potential (DP) model, denoted by M, can be generally

represented as

yi =M(xi,{xj} j∈n(i); θ) = F(D(xi,{xj} j∈n(i); θd); θf), (1)

where yi is the fitting properties, F is the fitting network (introduced
in Sec. II A 3), and D is the descriptor (introduced in Sec. II A 2).
x = (ri, αi), with ri being the Cartesian coordinates and αi being the
chemical species, denotes the degrees of freedom of the atom i. The
indices of the neighboring atoms (i.e., atoms within a certain cut-
off radius) of atom i are given by the notation n(i). Note that the
Cartesian coordinates can be either under the periodic boundary
condition (PBC) or in vacuum (under the open boundary condi-
tion). The network parameters are denoted by θ = {θd, θ f}, where
θd and θ f yield the network parameters of the descriptor (if any)

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-3

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 1. The components of the DeePMD-kit package. The direction of the arrow indicates the dependency between the components. The blue box represents an optional
component.

and those of the fitting network, respectively. From Eq. (1), one may
compute the global property of the system by

y =
N

∑
i=1

yi, (2)

where N is the number of atoms in a frame. For example, if yi rep-
resents the potential energy contribution of atom i, then y gives
the total potential energy of the frame. In the following text, Nc is
the expected maximum number of neighboring atoms, which is the
same constant for all atoms over all frames. A matrix with a dimen-
sion of Nc will be padded if the number of neighboring atoms is less
than Nc.

1. Neural networks
A neural network (NN) function N is the composition of

multiple layers L (i),

N = L (n) ○L (n−1)
○ ⋅ ⋅ ⋅ ○L (1). (3)

In the DeePMD-kit package, a layer L may be one of the following
forms depending on whether a ResNet111 is used and the number of
nodes:

y = L(x;w, b) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ŵ ⊙ ϕ(xTw + b) + x, ResNet and N2 = N1,

ŵ ⊙ ϕ(xTw + b) + {x, x}, ResNet and N2 = 2N1,

ŵ ⊙ ϕ(xTw + b), otherwise,
(4)

where x ∈ RN1 is the input vector and y ∈ RN2 is the output vector.
w ∈ RN1×N2 and b ∈ RN2 are weights and biases, respectively, both of
which are trainable. ŵ ∈ RN2 can be either a trainable vector, which
represents the “timestep” in the skip connection, or a vector of all
ones 1 = {1, 1, . . . , 1}, which disables the time step. ϕ is the activa-
tion function. In theory, the activation function can be any form, and

the following functions are provided in the DeePMD-kit package:
hyperbolic tangent (tanh), rectified linear unit (ReLU),112 ReLU6,
softplus,113 sigmoid, Gaussian error linear unit (GELU),114 and iden-
tity. Among these activation functions, ReLU and ReLU6 are not
continuous in the first-order derivative, and others are continuous
up to the second-order derivative.

2. Descriptors
DeePMD-kit supports multiple atomic descriptors, including

the local frame descriptor, the two-body and three-body embed-
ding DeepPot-SE descriptor, the attention-based descriptor, and
the hybrid descriptor that is defined as a combination of multiple
descriptors. In the following text, we use D i

= D(xi,{xj} j∈n(i); θd)

to represent the atomic descriptor of the atom i.

a. Local frame. The local frame descriptor D i
∈ RNc×{1,4}

(sometimes simply called the DPMD model), which is the first
version of the DP descriptor,9 is constructed by using either full
information or radial-only information,

(D i
) j =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

{
1
rij

xij

rij

yij

rij

zij

rij
}, full,

{
1
rij
}, radial − only,

(5)

where (xij, yij, zij) are three Cartesian coordinates of the relative
position between atoms i and j, i.e., rij = ri − rj = (xij, yij, zij) in the
local frame, and rij = ∣rij∣ is its norm. In Eq. (5), the order of the
neighbors j is sorted in ascending order according to their distance
to the atom i. rij is transformed from the global relative coordinate
r0

ij through

rij = r0
ij ⋅ Ri, (6)

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-4

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where

Ri = {ei1, ei2, ei3} (7)

is the rotation matrix constructed by

ei1 = e(ri,a(i)), (8)

ei2 = e(ri,b(i) − (ri,b(i) ⋅ ei1)ei1), (9)

ei3 = ei1 × ei2, (10)

where e(rij) = rij/rij denotes the operation of normalizing a vector.
a(i) ∈ n(i) and b(i) ∈ n(i) are the two axis atoms used to define the
axes of the local frame of atom i, which, in general, are the two clos-
est atoms, independently of their species, together with the center
atom i.

The limitation of the local frame descriptor is that it is not
smooth at the cutoff radius and the exchanging of the order of two
nearest neighbors [i.e., the swapping of a(i) and b(i)], so its usage
is limited. We note that the local frame descriptor is the only non-
smooth descriptor among all DP descriptors, and we recommend
using other descriptors for the usual system.

b. Two-body embedding DeepPot-SE. The two-body embed-
ding smooth edition of the DP descriptor D i

∈ RM×M< is usually
named DeepPot-SE descriptor.10 It is noted that the descriptor is a
multi-body representation of the local environment of the atom i.
We call it “two-body embedding” because the embedding network
takes only the distance between atoms i and j (see below), but it
is not implied that the descriptor takes only the pairwise informa-
tion between i and its neighbors. The descriptor, using either full
information or radial-only information, is given by

D i
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
N2

c
(G i
)

TRi
(Ri
)

TG i
<, full,

1
Nc
∑ j (G

i
) jk, radial − only,

(11)

where Ri
∈ RNc×{1,4} is the coordinate matrix, and each row of Ri

can be constructed as

(Ri
) j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{s(rij)
s(rij)xij

rij

s(rij)yij

rij

s(rij)zij

rij
}, full,

{s(rij)}, radial − only,
(12)

where rij = rj − ri = (xij, yij, zij) is the relative coordinate and
rij = ∥rij∥ is its norm. The switching function s(r) is defined as

s(r) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
r

, r < rs,
1
r
[x3
(−6x2

+ 15x − 10) + 1], rs ≤ r < rc,

0, r ≥ rc,

(13)

where x = r−rs
rc−rs

switches from 0 at rs to 1 at the cutoff radius rc

and [x3
(−6x2

+ 15x − 10) + 1] switches from 1 at rs to 0 at rc. The
switching function s(r) is smooth in the sense that the second-order
derivative is continuous. The derivation process of the fifth-order
polynomial [x3

(−6x2
+ 15x − 10) + 1] can be found in Appendix A.

Each row of the embedding matrix G i
∈ RNc×M consists of M

nodes from the output layer of an NN function Ne,2 of s(rij),

(G i
) j = Ne,2(s(rij)), (14)

where the NN function N was given in Eq. (4) and the subscript
“e, 2” is used to distinguish the NN from other NNs used in the
DP model. In Eq. (14), the network parameters are not explic-
itly written. G i

< ∈ RNc×M< only takes first M< columns of G i to
reduce the size of D i. rs, rc, M, and M< are hyperparameters pro-
vided by the user. Compared to the local frame descriptor, the
DeepPot-SE is continuous up to the second-order derivative in its
domain.

c. Three-body embedding DeepPot-SE. The three-body embed-
ding DeepPot-SE descriptor incorporates bond-angle information,
making the model more accurate.50 The descriptor D i can be
represented as

D i
=

1
N2

c
(Ri
(Ri
)

T
) : G i, (15)

where Ri is defined by Eq. (12). Currently, only the full informa-
tion case of Ri is supported by the three-body embedding. Similar to
Eq. (14), each element of G i

∈ RNc×Nc×M comes from M nodes from
the output layer of an NN Ne,3 function,

(G i
) jk = Ne,3((θi) jk), (16)

where (θi) jk = (Ri
) j ⋅ (Ri

)k considers the angle form of two neigh-
bors (j and k). The notation “:” in Eq. (15) indicates the con-
traction between matrix Ri

(Ri
)

T and the first two dimensions of
tensor G i. The network parameters are also not explicitly written
in Eq. (16).

d. Handling the systems composed of multiple chemical species.
For a system with multiple chemical species (∣{αi}∣ > 1), parameters
of the embedding network Ne,{2,3} are as follows chemical-species-
wise in Eqs. (14) and (16):

(G i
) j = N αi ,α j

e,2 (s(rij)) or (G i
) j = N α j

e,2 (s(rij)), (17)

(G i
) jk = N α j ,αk

e,3 ((θi) jk). (18)

Thus, there will be N2
t or Nt embedding networks, where Nt is the

number of chemical species. To improve the performance of matrix
operations, n(i) is divided into blocks of different chemical species.
Each matrix with a dimension of Nc is divided into corresponding
blocks, and each block is padded to Nα j

c separately. The limitation
of this approach is that when there are large numbers of chemical
species, such as 57 elements in the OC2M dataset,115,116 the num-
ber of embedding networks will become 3249 or 57, requiring large
memory and decreasing computing efficiency.

e. Type embedding. To reduce the number of NN parameters
and improve computing efficiency when there are large numbers of
chemical species, the type embedding A is introduced, represented
as a NN function N t of the atomic type α,

A i
= N t(one_hot(αi)), (19)

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-5

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where αi is converted to a one-hot vector representing the chemical
species before feeding to the NN. The NN function N was given in
Eq. (4). Based on Eqs. (14) and (16), the type embeddings of central
and neighboring atoms A i and A j are added as an extra input of the
embedding network Ne,{2,3},

(G i
) j = Ne,2({s(rij),A i,A j

}) or (G i
) j = Ne,2({s(rij),A j

}),
(20)

(G i
) jk = Ne,3({(θi) jk,A j ,Ak

}). (21)

In this way, all chemical species share the same network parameters
through the type embedding.

f. Attention-based descriptor. An attention-based descriptor
D i
∈ RM×M< , which is proposed in the pretrainable DPA-151 model,

is given by

D i
=

1
N2

c
(Ĝ i
)

TRi
(Ri
)

T Ĝ i
<, (22)

where Ĝ i represents the embedding matrix G i after additional self-
attention mechanism119 and Ri is defined by the full case in Eq. (12).
Note that we obtain G i from Eq. (20) using the type embedding
method by default in this descriptor.

To perform the self-attention mechanism, the queries Qi,l

∈ RNc×dk , keys Ki,l
∈ RNc×dk , and values V i,l

∈ RNc×dv are first
obtained,

(Qi,l
)

j
= Ql((G i,l−1

)
j
), (23)

(Ki,l
)

j
= Kl((G i,l−1

)
j
), (24)

(V i,l
)

j
= Vl((G i,l−1

)
j
), (25)

where Ql, K l, V l represent three trainable linear transformations that
output the queries and keys of dimension dk and values of dimension
dv and l is the index of the attention layer. The input embedding
matrix to the attention layers, denoted by G i,0, is chosen as the two-
body embedding matrix (14).

Then, the scaled dot-product attention method119,118 is
adopted,

A(Qi,l,Ki,l,V i,l,Ri,l
) = φ(Qi,l,Ki,l,Ri,l

)V i,l, (26)

where φ(Qi,l,Ki,l,Ri,l
) ∈ RNc×Nc is attention weights. In the

original attention method, one typically has φ(Qi,l,Ki,l
)

= softmax(Q i,l
(K i,l
)

T
√

dk
), with

√
dk being the normalization tem-

perature. This is slightly modified to incorporate the angular
information,

φ(Qi,l,Ki,l,Ri,l
) = softmax(

Qi,l
(Ki,l
)

T
√

dk
)⊙ R̂ i

(R̂ i
)

T , (27)

where R̂ i
∈ RNc×3 denotes normalized relative coordinates, R̂ i

j

=
rij
∥rij∥

, and ⊙means element-wise multiplication.

Then, layer normalization is added in a residual way to finally
obtain the self-attention local embedding matrix Ĝ i

= G i,La after La
attention layers,

G i,l
= G i,l−1

+ LayerNorm(A(Qi,l,Ki,l,V i,l,Ri,l
)). (28)

g. Hybrid descriptor. A hybrid descriptor D i
hyb concatenates

multiple kinds of descriptors into one descriptor,53

D i
hyb = {D i

1 D i
2 ⋅ ⋅ ⋅ D i

n}. (29)

The list of descriptors can be different types or the same descriptors
with different parameters. This way, one can set the different cutoff
radii for different descriptors.

h. Compression. The compression of the DP model uses
three techniques, tabulated inference, operator merging, and pre-
cise neighbor indexing, to improve the performance of model
training and inference when the model parameters are properly
trained.109

For better performance, the NN inference can be replaced by
tabulated function evaluations if the input of the NN is of dimension
one. The embedding networks Ne,2 defined by (14) and Ne,3 defined
by (16) are of this type. The idea is to approximate the output of the
NN by a piece-wise polynomial fitting. The input domain (a compact
domain in R) is divided into Lc equally spaced intervals, in which
we apply a fifth-order polynomial g l

m(x) approximation of the mth
output component of the NN function,

g l
m(x) = al

mx5
+ bl

mx4
+ cl

mx3
+ dl

mx2
+ el

mx + f l
m, x ∈ [xl, xl+1),

(30)
where l = 1, 2, . . . , Lc is the index of the intervals, x1, . . . , xLc , xLc+1 are
the endpoints of the intervals, and al

m, bl
m, cl

m, dl
m, el

m, and f l
m are the

fitting parameters. The fitting parameters can be computed by using
the following equations:

al
m =

1
2Δx5

l
[12hm,l − 6(y′m,l+1 + y′m,l)Δxl

+ (y′′m,l+1 − y′′m,l)Δx2
l], (31)

bl
m =

1
2Δx4

l
[−30hm,l + (14y′m,l+1 + 16y′m,l)Δxl

+ (−2y′′m,l+1 + 3y′′m,l)Δx2
l], (32)

cl
m =

1
2Δx3

l
[20hm,l − (8y′m,l+1 + 12y′m,l)Δxl

+ (y′′m,l+1 − 3y′′m,l)Δx2
l], (33)

dl
m =

1
2

y′′m,l, (34)

el
m = y′m,l, (35)

f l
m = ym,l, (36)

where Δxl = xl+1 − xl denotes the size of the interval. hm,l = ym,l+1
− ym,l. ym,l = ym(xl), y′m,l = y′m(xl), and y′′m,l = y′′m(xl) are the value,
the first-order derivative, and the second-order derivative of the mth

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-6

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

component of the target NN function at the interval point xl, respec-
tively. The first- and second-order derivatives are easily calculated by
the back-propagation of the NN functions.

In the standard DP model inference, taking the two-body
embedding descriptor as an example, the matrix product (G i

)
TR

requires the transfer of the tensor G i between the register and the
host/device memories, which usually becomes the bottle-neck of the
computation due to the relatively small memory bandwidth of the
GPUs. The compressed DP model merges the matrix multiplica-
tion (G i

)
TR with the tabulated inference step. More specifically,

once one column of (G i
)

T is evaluated, it is immediately multi-
plied with one row of the environment matrix in the register, and
the outer product is deposited to the result of (G i

)
TR. By the

operator merging technique, the allocation of G i and the memory
movement between register and host/device memories is avoided.
The operator merging of the three-body embedding can be derived
analogously.

The first dimension, Nc, of the environment (Ri
) and embed-

ding (G i
) matrices is the expected maximum number of neighbors.

If the number of neighbors of an atom is smaller than Nc, the
corresponding positions of the matrices are pad with zeros. In prac-
tice, if the real number of neighbors is significantly smaller than
Nc, a notable operation is spent on the multiplication of padding
zeros. In the compressed DP model, the number of neighbors is
precisely indexed at the tabulated inference stage, further saving
computational costs.

3. Fitting networks
The fitting network can fit the potential energy of a system,

along with the force and the virial, and tensorial properties, such as
the dipole and the polarizability.

a. Fitting potential energies. In the DP model (1), we let the
fitting network F0 map the descriptor D i to a scalar, where the sub-
script “0” means that the output is a zero-order tensor (i.e., scalar).
The model can then be used to predict the total potential energy of
the system by

E =∑
i

Ei =∑
i
F0(D i

), (37)

where the output of the fitting network is treated as the atomic
potential energy contribution, i.e., Ei. The output scalar can also be
treated as other scalar properties defined on an atom, for example,
the partial charge of atom i.

In some cases, atomic-specific or frame-specific parameters,
such as electron temperature,119 may be treated as extra input to
the fitting network. We denote the atomic and frame-specific para-
meters by Pi

∈ RNp (with Np being the dimension) and Q ∈ RNq (with
Nq being the dimension), respectively,

Ei = F0({D i, Pi, Q}). (38)

The atomic force Fi and the virial tensor Ξ = (Ξαβ) (if PBC is
applied) can be derived from the potential energy E,

Fi,α = −
∂E
∂ri,α

, (39)

Ξαβ = −∑
γ

∂E
∂hγα

hγβ, (40)

where ri,α and Fi,α denote the αth component of the coordinate and
force of atom i. hαβ is the βth component of the αth basis vector of
the simulation region.

b. Fitting tensorial properties. To represent the first-order ten-
sorial properties (i.e., vector properties), we let the fitting network,
denoted by F1, output an M-dimensional vector; then, we have the
representation

(T(1)i)α =
1

Nc

Nc

∑
j=1

M

∑
m=1
(G i
) jm(Ri

) j,α+1(F1(D i
))m, α = 1, 2, 3.

(41)
We let the fitting network F2 output an M-dimensional vector,
and the second-order tensorial properties (matrix properties) are
formulated as

(T(2)i)αβ =
1

N2
c

Nc

∑
j=1

Nc

∑
k=1

M

∑
m=1
(G i
) jm(Ri

) j,α+1(Ri
)k,β+1

× (G i
)km(F2(D i

))m,
α, β = 1, 2, 3,

(42)

where G i and Ri can be found at Eqs. (12) and (14) (full case),
respectively. Thus, the tensor fitting network requires the descrip-
tor to have the same or similar form as the DeepPot-SE descriptor.
The NN functions F1 and F2 were given in Eq. (4). The total ten-
sor T (total dipole T(1) or total polarizability T(2)) is the sum of the
atomic tensor,

T =∑
i

Ti. (43)

The tensorial models can be used to calculate the IR spectrum105 and
Raman spectrum.106

c. Handling the systems composed of multiple chemical species.
Similar to the embedding networks, if the type embedding approach
is not used, the fitting network parameters are chemical-species-
wise, and there are Nt sets of fitting network parameters. For per-
formance, atoms are sorted by their chemical species αi in advance.
Taking an example, the atomic energy Ei is represented as follows
based on Eq. (38):

Ei = F αi
0 (D

i
). (44)

When the type embedding is used, all chemical species share the
same network parameters, and the type embedding is inserted into
the input of the fitting networks in Eq. (38),

Ei = F0({D i,A i
}). (45)

4. Deep potential range correction (DPRc)
Deep Potential-Range Correction (DPRc)52,75 was initially

designed to correct the potential energy from a fast, linear-scaling
low-level semiempirical QM/MM theory to a high-level ab initio

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-7

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

QM/MM theory in a range-correction way to quantitatively cor-
rect short and mid-range non-bonded interactions leveraging the
non-bonded lists routinely used in molecular dynamics simula-
tions using molecular mechanical force fields, such as AMBER.120

In this way, long-ranged electrostatic interactions can be modeled
efficiently using the particle mesh Ewald method120 or its extensions
for multipolar94,95 and QM/MM96,97 potentials. In a DPRc model,
the switch function in Eq. (13) is modified to disable MM–MM
interaction,

sDPRc(rij) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if i ∈ MM ∧ j ∈ MM,

s(rij) otherwise,
(46)

where sDPRc(rij) is the new switch function and s(rij) is the old one
in Eq. (13). This ensures that the forces between MM atoms are zero,
i.e.,

Fij = −
∂E
∂rij
= 0, i ∈ MM ∧ j ∈ MM. (47)

The fitting network in Eq. (38) is revised to remove energy bias from
MM atoms,

Ei =

⎧⎪⎪
⎨
⎪⎪⎩

F0(D i
) if i ∈ QM,

F0(D i
) − F0(0) if i ∈ MM,

(48)

where 0 is a zero matrix. It is worth mentioning that the usage of
DPRc is not limited to its initial design for QM/MM correction and
can be expanded to any similar interaction.121

5. Deep potential long range (DPLR)
The Deep Potential Long Range (DPLR) model adds the

electrostatic energy to the total energy,53

E = EDP + Eele, (49)

where EDP is the short-range contribution constructed as the stan-
dard energy model in Eq. (37) that is fitted against (E∗ − Eele). Eele
is the electrostatic energy introduced by a group of Gaussian distri-
butions that is an approximation of the electronic structure of the
system and is calculated in Fourier space by

Eele =
1

2πV ∑
m≠0,∥m∥≤L

exp (−π2m2
/β2
)

m2 S2
(m), (50)

where β is a freely tunable parameter that controls the spread of the
Gaussians. L is the cutoff in Fourier space, and S(m), the structure
factor, is given by

S(m) =∑
i

qie−2πımri +∑
n

qne−2πımWn, (51)

where ı =
√
−1 denotes the imaginary unit, ri indicates ion coor-

dinates, qi is the charge of the ion i, and Wn is the nth Wannier
centroid (WC), which can be obtained from a separated dipole
model in Eq. (42). It can be proved that the error in the elec-
trostatic energy introduced by the Gaussian approximations is
dominated by a summation of dipole-quadrupole interactions that
decay as r−4, where r is the distance between the dipole and
quadrupole.53

6. Interpolation with a pairwise potential
In applications such as the radiation damage simulation, the

interatomic distance may become too close so that the DFT calcula-
tions fail. In such cases, the DP model that is an approximation of
the DFT potential energy surface is usually replaced by an empirical
potential, such as the Ziegler–Biersack–Littmark (ZBL)122 screened
nuclear repulsion potential in radiation damage simulations.123 The
DeePMD-kit package supports the interpolation between DP and an
empirical pairwise potential,

Ei = (1 −wi)EDP
i +wiEpair

i , (52)

where wi is the interpolation weight and Epair
i is the atomic

contribution due to the pairwise potential upair
(r), i.e.,

Epair
i = ∑

j∈n(i)
upair
(rij). (53)

The interpolation weight wi is defined by

wi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, σi < ra,

u3
i (−6u2

i + 15ui − 10) + 1, ra ≤ σi < rb,

0, σi ≥ rb,

(54)

where ui = (σi − ra)/(rb − ra). The derivation process of Eq. (54)
can be found in Appendix A. In the range [ra, rb], the DP model
smoothly switched off and the pairwise potential smoothly switched
on from rb to ra. σi is the softmin of the distance between atom i and
its neighbors,

σi =

∑
j∈n(i)

rije−rij/αs

∑
j∈n(i)

e−rij/αs
, (55)

where the scale αs is a tunable scale of the interatomic distance rij.
The pairwise potential upair

(r) is defined by a user-defined table that
provides the value of upair on an evenly discretized grid from 0 to the
cutoff distance.

B. Trainer
Based on DP models M defined in Eq. (1), a trainer should also

be defined to train parameters in the model, including weights and
biases in Eq. (4). The learning rate γ, the loss function L, and the
training process should be given in a trainer.

1. Learning rate
The learning rate γ decays exponentially,

γ(τ) = γ0r⌊τ/s⌋, (56)

where τ ∈ N is the index of the training step, γ0
∈ R is the learning

rate at the first step, and the decay rate r is given by

r = (
γstop

γ0)

s
τstop

, (57)

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-8

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where τstop
∈ N, γstop

∈ R, and s ∈ N are the stopping step, the stop-
ping learning rate, and the decay steps, respectively, all of which are
hyperparameters provided in advance.

2. Loss function
The loss function L is given by a weighted sum of different

fitting property loss Lp,

L(x; θ, τ) =
1
B∑k∈B

∑
η

pη(τ)Lη(xk; θ), (58)

where B is the mini-batch of data. x = {xk
} is the dataset.

xk
= (xk

1, . . . , xk
N) is a single data frame from the set and is composed

of all the degrees of freedom of the atoms. η denotes the property to
be fit. For each property, pη is a prefactor given by

pη(τ) = plimit
η (1 −

γ(τ)
γ0) + pstart

η
γ(τ)

γ0 , (59)

where pstart
η and plimit

η are hyperparameters that give the prefactor
at the first training step and the infinite training steps, respectively.
γ(τ) is the learning rate defined by Eq. (56).

The loss function of a specific fitting property Lη is defined by
the mean squared error (MSE) of a data frame and is normalized
by the number of atoms N if η is a frame property that is a linear
combination of atomic properties. Taking an example, if an energy
model is fitted as given in Eq. (37), the properties η could be energy
E, force F, virial Ξ, relative energy ΔE,72 or any combination among
them, and the loss functions of them are

LE(x; θ) =
1
N
(E(x; θ) − E∗)2, (60)

LF(x; θ) =
1

3N

N

∑
k=1

3

∑
α=1
(Fk,α(x; θ) − F∗k,α)

2, (61)

LΞ(x; θ) =
1

9N

3

∑
α,β=1
(Ξαβ(x; θ) − Ξ∗αβ)

2, (62)

LΔE(x; θ) =
1
N
(ΔE(x; θ) − ΔE∗)2, (63)

where Fk,α is the αth component of the force on atom k and the
superscript “∗” indicates the label of the property that should be pro-
vided in advance. Using N ensures that each loss of fitting property
is averaged over atomic contributions before they contribute to the
total loss by weight.

If part of atoms is more important than others, for example,
certain atoms play an essential role when calculating free energy
profiles or kinetic isotope effects,52,75 the MSE of atomic forces with
prefactors qk can also be used as the loss function,

Lp
F(x; θ) =

1
3N

N

∑
k=1
∑

α
qk(Fk,α(x; θ) − F∗k,α)

2. (64)

The atomic forces with larger prefactors will be fitted more
accurately than those in other atoms.

If some forces are quite large, for example, forces can be greater
than 60 eV/Å in high-temperature reactive simulations,77,78 one may
also prefer that the force loss is relative to the magnitude instead of
Eq. (61),

Lr
F(x; θ) =

1
3N

N

∑
k=1
∑

α
(

Fk,α(x; θ) − F∗k,α

∣F∗k ∣ + ν
)

2

, (65)

where ν is a small constant used to protect an atom where the mag-
nitude of F∗k is small from having a large Lr

F . Benefiting from the
relative force loss, small forces can be fitted more accurately.

3. Training process
During the training process, the loss function is minimized

by the stochastic gradient descent algorithm Adam.124 Ideally, the
resulting parameter is the minimizer of the loss function,

θ∗ = arg min
θ

lim
τ→+∞

L(x; θ, τ). (66)

In practice, the Adam optimizer stops at the step τstop, and the learn-
ing rate varies according to scheme (56). τstop is a hyperparameter
usually set to several million.

4. Multiple task training
The multi-task training process can simultaneously handle

different datasets with properties that cannot be fitted in one
network (e.g., properties from DFT calculations under different
exchange–correlation functionals or different basis sets). These
datasets are denoted by x(1), . . . , x(nt). For each dataset, a training
task is defined as

min
θ

L(t)(x(t); θ(t), τ), t = 1, . . . , nt. (67)

During the multi-task training process, all tasks share one descriptor
with trainable parameters θd, while each of them has its own fitting
network with trainable parameters θ(t)f ; thus, θ(t) = {θd, θ(t)f }. At
each training step, a task is randomly picked from 1, . . . , nt , and the
Adam optimizer is executed to minimize L(t) for one step to update
the parameter θ(t). If different fitting networks have the same archi-
tecture, they can share the parameters of some layers to improve
training efficiency.

C. Model deviation
Model deviation ϵy is the standard deviation of properties y

inferred by an ensemble of models M1, . . . ,Mnm that are trained
by the same dataset(s) with the model parameters initialized inde-
pendently. The DeePMD-kit supports y to be the atomic force Fi
and the virial tensor Ξ. The model deviation is used to estimate the
error of a model at a certain data frame, denoted by x, containing the
coordinates and chemical species of all atoms. We present the model
deviation of the atomic force and the virial tensor,

ϵF,i(x) =
√

⟨∥Fi(x; θk) − ⟨Fi(x; θk)⟩∥
2
⟩, (68)

ϵΞ,αβ(x) =
1
N

√

⟨(Ξαβ(x; θk) − ⟨Ξαβ(x; θk)⟩)
2
⟩, (69)

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-9

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

where θk is the parameter of the model Mk and the ensemble
average ⟨⋅⟩ is estimated by

⟨y(x; θk)⟩ =
1

nm

nm

∑
k=1

y(x; θk). (70)

Small ϵF,i means the model has learned the given data; otherwise,
it is not covered, and the training data needs to be expanded. If
the magnitude of Fi or Ξ is quite large, a relative model devia-
tion ϵF,i,rel or ϵΞ,αβ,rel can be used instead of the absolute model
deviation,78

ϵF,i,rel(x) =
∣ϵF,i(x)∣

∣⟨Fi(x; θk)⟩∣ + ν
, (71)

ϵΞ,αβ,rel(x) =
ϵΞ,αβ(x)

∣⟨Ξ(x; θk)⟩∣ + ν
, (72)

where ν is a small constant used to protect an atom where the
magnitude of Fi or Ξ is small from having a large model deviation.

Statistics of ϵF,i and ϵΞ,αβ can be provided, including the
maximum, average, and minimal model deviation over the atom
index i and over the component index α, β, respectively. The max-
imum model deviation of forces ϵF,max in a frame was found to
be the best error indicator in a concurrent or active learning
algorithm.103,107

III. TECHNICAL IMPLEMENTATION
In addition to incorporating new powerful features, DeePMD-

kit has been designed with the following goals in mind: high
performance, high usability, high extensibility, and community
engagement. These goals are crucial for DeePMD-kit to become a
widely-used platform across various computational fields. In this
section, we will introduce several technical implementations that
have been put in place to achieve these goals.

A. Code architecture
The DeePMD-kit utilizes TensorFlow’s computational graph

architecture to construct its DP models,125 which are composed
of various operators implemented with C++, including customized
ones, such as the environment matrix, Ewald summation, com-
pressed operator, and their backward propagations. The auto-
grad mechanism provided by TensorFlow is used to compute the
derivatives of the DP model with respect to the input atomic coordi-
nates and simulation cell tensors. To optimize performance, some
of the critical customized operators are implemented for GPU
execution using CUDA or ROCm toolkit libraries. The DeePMD-
kit provides Python, C++, and C APIs for inference, facilitating
easy integration with third-party software packages. As indicated
in Fig. 2, the code of the DeePMD-kit consists of the following
modules:

● The core C++ library provides the implementation of
customized operators, such as the atomic environmental
matrix, neighbor lists, and compressed neural networks. It is
important to note that the core C++ library is independently
built and tested without TensorFlow’s C++ interface.

● The GPU library (CUDA126 or ROCm127), an optional part
of the core C++ library, is used to compute customized oper-
ators on GPU devices other than central processing units
(CPUs). This library depends on the GPU toolkit library
(NVIDIA CUDA Toolkit or AMD ROCm Toolkit) and is
also independently built and tested.

● The DP operators library contains several customized oper-
ators not supported by TensorFlow.125 TensorFlow pro-
vides both Python and C++ interfaces to implement some
customized operators, with the TensorFlow C++ library
packaged inside its Python package.

● The “model definition” module, written in Python, is used
to generate computing graphs composed of TensorFlow
operators, DP customized operators, and model parameters
organized as “variables.” The graph can be saved into a file
that can be restored for inference. It depends on the Ten-
sorFlow Python API (version 1, tf.compat.v1) and other
Python dependencies, such as the NumPy128 and H5Py129

packages.
● The Python application programming interface (API) is

used for inference and can read computing graphs from a file
and use the TensorFlow Python API to execute the graph.

● The C++ API, built on the TensorFlow C++ interface, does
the same thing as the Python API for inference.

● The C API is a wrapper of the C++ API and provides the
same features as the C++ API. Compared to the C++ API,
the C API has a more stable application binary interface
(ABI) and ensures backward compatibility.

● The header-only C++ API is a wrapper of the C API and
provides the same interface as the C++ API. It has the same
stable ABI as the C API but still takes advantage of the
flexibility of C++.

● The command line interface (CLI) is provided to both gen-
eral users and developers and is used for both training and
inference. It depends on the model definition module and
the Python API.

The CMake build system130 manages all modules, and the pip
and scikit-build131 packages are used to distribute DeePMD-kit as a
Python package. The standard Python unit testing framework132 is
used for unit tests on all Python codes, while GoogleTest software133

is used for tests on all C++ codes. GitHub Actions automates build,
test, and deployment pipelines.

B. Performance
1. Hardware acceleration

In the TensorFlow framework, a static graph combines mul-
tiple operators with inputs and outputs. Two kinds of operators
are time-consuming during training or inference. The first one is
TensorFlow’s native operators for neural networks (see Sec. II A 1)
and matrix operations, which have been fully optimized by the
TensorFlow framework itself125 for both CPU and GPU archi-
tectures. Second, the DeePMD-kit’s customized operators are for
computing the atomic environment [Eqs. (6) and (12)], for inter-
polation with a pairwise potential, and for the tabulated inference
of the embedding matrix [Eq. (30)]. These operators are not sup-
ported by the TensorFlow framework but can be accelerated using

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-10

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 2. The architecture of the DeePMD-kit code. The red boxes are modules within the DeePMD-kit package (the green box), the orange box represents computing graphs,
the blue boxes are dependencies of the DeePMD-kit, and the yellow box represents third-party packages integrated with DeePMD-kit, including LAMMPS, i-PI, GROMACS,
AMBER, OpenMM, ABACUS, ASE, MAGUS, DP-Data, DP-GEN, and MLatom. Customized operators are operators that are not offered by TensorFlow, including atomic
environmental matrix, interpolation with a pairwise potential, and tabulated inference of the embedding matrix. The direction of the black arrow A→ B indicates that module
A is dependent on module B. The red and purple arrows represent “define” and “use,” respectively.

OpenMP,134 CUDA,126 and ROCm127 for parallelization under both
CPUs and GPUs, except the features without GPU supports listed in
Appendix B.

The operator of the environment matrix includes two steps:108

formatting the neighbor list and computing the matrix elements of
R. In the formatting step, the neighbors of the atom i are sorted
according to their type αj, their distance rij to atom i, and finally
their index j. To improve sorting performance on GPUs, the atomic
type, distance, and index are compressed into a 64-bit integer S ∈ N
used for sorting,

S = α j × 1015
+ ⌊rij × 108

⌋ × 105
+ j. (73)

The sorted neighbor index is decompressed from the sorted S and
then used to format the neighbor list.

2. MPI implementation for multi-device
training and MD simulations

Users may prefer to utilize multiple CPU cores, GPUs, or hard-
ware across multiple nodes to achieve faster performance and larger
memory during training or molecular dynamics (MD) simulations.
To facilitate this, DeePMD-kit has added message-passing inter-
face (MPI) implementation135,136 for multi-device training and MD
simulations in two ways, which are described below.

Multi-device training is conducted with the help of Horovod,
a distributed training framework.137 Horovod works in the data-
parallel mode by equally distributing a batch of data among workers
along the axis of the batch size B.138 During training, each worker
consumes sliced input records at different offsets, and only the train-
able parameter gradients are averaged with peers. This design avoids
batch size and tensor shape conflicts and reduces the number of
bytes that need to be communicated among processes. The mpi4py
package139 is used to remove redundant logs.

Multi-device MD simulations are implemented by utilizing
the existing parallelism features of third-party MD packages. For
example, a Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) enables parallelism across CPUs by optimiz-
ing partitioning, communication, and neighbor lists.140 AMBER
builds a similar neighbor list in the interface to DeePMD-kit.52,54,141

DeePMD-kit supports local atomic environment calculation and
accepts the neighbor list n(i) from other software to replace the
native neighbor list calculation.108 In a device, the neighbors from
other devices are considered “ghost” atoms that do not contribute
atomic energy Ei to this device’s total potential energy E.

3. Non-von Neumann molecular dynamics (NVNMD)
When performing molecular dynamics (MD) simulations on

CPUs and GPUs, a large majority of time and energy (e.g., more than
95%) is consumed by the DP model inference. This inference pro-
cess is limited by the “memory wall” and “power wall” bottlenecks
of von Neumann (vN) architecture, which means that a significant
amount of time and energy (e.g., over 90%) is wasted on data trans-
fer between the processor and memory. As a result, it is difficult to
improve computational efficiency.

To address these challenges, non-von Neumann molecular
dynamics (NVNMD) uses a non-von Neumann (NvN) architecture
chip to accelerate inference. The NvN chip contains processing and
memory units that can be used to implement the DP algorithm.
In the NvN chip, the hardware algorithm runs fully pipelined. The
model parameters are stored in on-chip memory after being loaded
from off-chip memory during the initialization process. Therefore,
two components of data shuttling are avoided: (1) reading/writing
the intermediate results from/to off-chip memory and (2) loading
model parameters from off-chip memory during the calculation pro-
cess. As a result, the DP model ensures high accuracy with NVNMD,

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-11

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

while the NvN chip ensures high computational efficiency. For more
details, see Ref. 110.

C. Usability
1. Documentation

DeePMD-kit’s features and arguments have grown rapidly
with more and more development. To address this issue, we
have introduced Sphinx142 and Doxygen143 to manage and gen-
erate documentation for developers from docstrings in the
code. We use the DArgs package (see Sec. III E) to auto-
matically generate Sphinx documentation for user input argu-
ments. The documentation is currently hosted on Read the
Docs (https://docs.deepmodeling.org/projects/deepmd/). Further-
more, we strive to make the error messages raised by DeePMD-kit
clear to users. In addition, the GitHub Discussion forum allows
users to ask questions and receive answers. Recently, several tuto-
rials have been published49,54 to help new users quickly learn
DeePMD-kit.

2. Easy installation
As shown in Fig. 2, DeePMD-kit has dependencies on both

Python and C++ libraries of TensorFlow, which can make it dif-
ficult and time-consuming for new users to build TensorFlow and
DeePMD-kit from the source code. Therefore, we provide compiled
binary packages that are distributed via pip, Conda (DeepModel-
ing and conda-forge144 channels), Docker, and offline packages for
Linux, macOS, and Windows platforms. With the help of these pre-
compiled binary packages, users can install DeePMD-kit in just a few
minutes. These binary packages include DeePMD-kit’s LAMMPS
plugin, i-PI driver, and GROMACS patch. As LAMMPS provides
a plugin mode in its latest version, DeePMD-kit’s LAMMPS plu-
gin can be compiled without having to re-compile LAMMPS.140

We offer a compiled binary package that includes the C API and
the header-only C++ API, making it simpler to integrate with
sophisticated software, such as AMBER.52,54,141

3. User interface
DeePMD-kit offers a command line interface (CLI) for train-

ing, freezing, and testing models. In addition to CLI arguments,
users must provide a JSON145 or YAML146 file with completed argu-
ments for components listed in Sec. II. The DArgs package (see
Sec. III E) parses these arguments to check if user input is cor-
rect. An example of how to use the user interface is provided in
Ref. 54. Users can also use DP-GUI (see Sec. III E) to fill in argu-
ments in an interactive web page and save them to a JSON145

file.
DeePMD-kit provides an automatic algorithm that assists new

users in deciding on several arguments. For example, the automatic
batch size B determines the maximum batch size during training
or inferring to fully utilize memory on a GPU card. The automatic
neighbor size Nc determines the maximum number of neighbors
by stating the training data to reduce model memory usage. The
automatic probability determines the probability of using a system
during training. These automatic arguments reduce the difficulty of
learning and using the DeePMD-kit.

4. Input data
To train and test models, users are required to provide fitting

data in a specified format. DeePMD-kit supports two file formats
for data input: NumPy binary files128 and HDF5 files.147 These for-
mats are designed to offer superior performance when read by the
program with parallel algorithms compared to text files. HDF5 files
have the advantage of being able to store multiple arrays in a single
file, making them easier to transfer between machines. The Python
package “DP-Data” (see Sec. III E) can generate these files from the
output of an electronic calculation package.

5. Model visualization
DeePMD-kit supports most of the visualization features offered

by TensorBoard,125 such as tracking and visualizing metrics, view-
ing the model graph, histograms of tensors, summaries of trainable
variables, and debugging profiles.

D. Extensibility
1. Application programming interface and third-party
software

DeePMD-kit offers various APIs, including the Python, C++,
C, and header-only C++ API, as well as a command-line interface
(CLI), as shown in Fig. 2. These APIs are primarily used for inference
by developers and high-level users in different situations. Sphinx142

generates the API details in the documentation.
These APIs can be easily accessed by various third-party soft-

ware. The Python API, for instance, is utilized by third-party
Python packages, such as Atomic Simulation Environment (ASE),148

MAGUS,149 and DP-Data (see Sec. III E). The C++, C, or header-
only C++ API has also been integrated into several third-party
MD packages, such as LAMMPS,140,150 i-PI,151 GROMACS,152

AMBER,52,54,141 OpenMM,153,154 and ABACUS.155 Moreover, the
CLI is called by various third-party workflow packages, such as DP-
GEN107 and MLatom.34 While the ASE calculator, the LAMMPS
plugin, the i-PI driver, and the GROMACS patch are developed
within the DeePMD-kit code, others are distributed separately. By
integrating these APIs into their programs, researchers can per-
form simulations and minimization, without being restricted by
DeePMD-kit’s software features.72,75,83,156 Additionally, they can
combine DP models with other potentials outside the DeePMD-kit
package if necessary.52,72,157

Molecular dynamics, a primary application for DP models, is
facilitated by several third-party packages that interface with the
DeePMD-kit package, offering a wide range of supported features:

● LAMMPS140 is seamlessly integrated with the DeePMD-kit
through a dedicated plugin developed within the DeePMD-
kit project. This plugin supports MPI, as discussed in
Sec. III B 2, and provides essential functionalities, such as
force calculations. Additionally, it enables on-the-fly com-
putation of model deviation, as shown in Eqs. (68)–(72),
during concurrent learning. The plugin can obtain atomic
and frame-specific parameters in Eq. (38) from various
sources, including constants, electronic temperatures calcu-
lated by LAMMPS, or any compute style from LAMMPS.
LAMMPS also supports calculating classical point charges’

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-12

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://docs.deepmodeling.org/projects/deepmd/

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

long-range (Coulomb) interaction using the Ewald summa-
tion and the fast algorithm particle–particle particle–mesh
Ewald (PPPM). The k-space part of these methods, involving
the Fourier space transformation of Gaussian charge distri-
butions to compute the Coulomb interaction158 [as shown
in Eq. (50)], is utilized by the DPLR method to handle the
long-range interaction.

● i-PI151 is integrated with the DeePMD-kit through a dedi-
cated driver provided within the DeePMD-kit project. The
driver enables the path integral molecular dynamics (PIMD)
driven by the i-PI engine and is compatible with the MolSSI
Driver Interface (MDI) package159 and a similar interface in
the ASE package.148 However, the communication between
the i-PI driver and the engine relies on UNIX-domain sock-
ets or the network interface, which can limit performance.
To overcome this limitation, developers have incorporated
PIMD features into the LAMMPS package, allowing for
seamless integration with the DeePMD-kit.

● AMBER141 is integrated with the DeePMD-kit pack-
age through the customized source code.54 The
AMBER/DeePMD-kit interface allows for effective
QM/MM + DPRc simulations using the DPRc model.52 The
interface extends beyond QM/QM interactions and includes
a range correction for QM/MM interactions. The DeePMD-
kit package only infers the selected QM region (assigned
by an AMBER mask) and its MM buffer within the cutoff
radius of the QM region. Like the LAMMPS integration,
this interface supports MPI, as discussed in Sec. III B 2,
and allows for on-the-fly computation of model deviation
during concurrent learning. The AMBER/DeePMD-kit
interface also enables alchemical free energy simulations
to be performed, leveraging AMBER’s GPU-accelerated
free energy engine120 and new features160–162 for MM
transformations and using indirect MM → QM/Δ-MLP
methods163 to correct the end states to the higher level.

● OpenMM,153 a widely adopted molecular dynamics engine,
integrates with the DeePMD-kit through an OpenMM plu-
gin. This plugin enables standard molecular dynamics sim-
ulations with DP models and supports hybrid DP/MM-type
simulations. In hybrid simulations, the system can be simu-
lated with a fixed DP region or adaptively changing regions
during the simulation.154

● GROMACS152 is integrated with the DeePMD-kit through
a patch to GROMACS. The patch enables DP/MM simula-
tions by assigning the atom types inferred by DeePMD-kit.

● ABACUS155 supports the C and C++ interfaces provided
by DeePMD-kit. In addition, ABACUS supports various
molecular dynamics based on different methods, such as
classical molecular dynamics using LJ pair potential and
first-principles molecular dynamics based on methods such
as Kohn-Sham density functional theory (KSDFT), stochas-
tic density functional theory (SDFT), and orbital-free den-
sity functional theory (OFDFT). The possibility of combin-
ing the DeePMD-kit with these methods requires further
exploration.

These integrations and interfaces with existing packages offer
researchers the flexibility to utilize the DeePMD-kit in conjunction

with other powerful tools, enhancing the capabilities of molecular
dynamics simulations.

2. Customized plugins
DeePMD-kit is built with an object-oriented design, and each

component discussed in Sec. II corresponds to a Python class. One
of the advantages of this design is the availability of a plugin sys-
tem for these components. With this plugin system, developers can
create and incorporate their customized components, without hav-
ing to modify the DeePMD-kit package. This approach expedites
the realization of their ideas. Moreover, the plugin system facilitates
the addition of new components within the DeePMD-kit package
itself.

E. DeepModeling community
DeePMD-kit is a free and open-source software licensed under

the LGPL-3.0 license, enabling developers to modify and incor-
porate DeePMD-kit into their own packages. Serving as the core,
DeePMD-kit led to the formation of an open-source community
named DeepModeling in 2021, which manages open-source pack-
ages for scientific computing. Since then, numerous open-source
packages for scientific computing have either been created or joined
the DeepModeling community, such as DP-GEN,107 DeePKS-kit,164

DMFF,165 ABACUS,155 DeePH,166 and DeepFlame,167 among oth-
ers, whether directly or indirectly related to DeePMD-kit. The
DeepModeling packages that are related to DeePMD-kit are listed
as follows.

1. Deep Potential GENerator (DP-GEN)107 is a package that
implements the concurrent learning procedure103 and is capa-
ble of generating uniformly accurate DP models with minimal
human intervention and computational cost. DP-GEN2 is
the next generation of this package, built on the workflow
platform Dflow.

2. Deep Potential Thermodynamic Integration (DP-Ti) is
a Python package that enables users to calculate free
energy, perform thermodynamic integration, and determine
pressure-temperature phase diagrams for materials with DP
models.

3. DP-Data is a Python package that helps users convert atom-
istic data between different formats and calculate atomistic
data through electronic calculation and MLP packages. It
can be used to generate training data files for DeePMD-kit
and visualize structures via 3Dmol.js.168 The package sup-
ports a plugin system and is compatible with ASE,148 allowing
it to support any data format without being limited by the
package’s code.

4. DP-Dispatcher is a Python package used to generate input
scripts for high-performance computing (HPC) schedulers,
submit them to HPC systems, and monitor their progress until
completion. It was originally developed as part of the DP-GEN
package,107 but has since become an independent package that
serves other packages.

5. DArgs is a Python package that manages and filters user
input arguments. It provides a Sphinx142 extension to generate
documentation for arguments.

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-13

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

6. DP-GUI is a web-based graphical user interface (GUI) built
with the Vue.js framework.169 It allows users to fill in argu-
ments interactively on a web page and save them to a JSON145

file. DArgs is used to provide details and documentation of
arguments in the GUI.

IV. EXAMPLE APPLICATION: MOLECULAR DYNAMICS
This section introduces a general workflow for performing deep

potential molecular dynamics using concurrent learning170 from
scratch, as depicted in Fig. 3. The target simulation can encom-
pass various conditions, such as temperature, pressure, and classical
or path-integral dynamics, with or without enhanced sampling
methods, in equilibrium or non-equilibrium states, and at differ-
ent scales and time scales. It is important to note that this section
does not serve as a user manual or tutorial or delve into specific
systems.

The initial step involves preparing the initial dataset. This
dataset is typically generated by sampling from small-scale, short-
time MD simulations conducted under the same conditions as target
simulations. The simulation level can vary, ranging from ab initio170

to semi-empirical52 or force fields,77 depending on the computa-
tional cost. Subsequently, these configurations are relabeled using
high-accuracy ab initio methods.

Once the initial data are ready, the next step involves perform-
ing concurrent learning cycles, which are crucial for improving the
accuracy of the target simulation. Each cycle comprises three steps:
training, exploration, and labeling. In the training step, DeePMD-
kit trains multiple models (typically four models) using the existing
target data collection with short training steps. These models can
be initialized from different random seeds or from the models
trained in the previous iteration. In the exploration step, one of
the models is employed to perform the target simulation and sam-
ple the configurational space. If the target simulation involves a
non-equilibrium process, the simulation time can gradually increase
with concurrent learning cycles. Configurations (or a subset of
atoms within the configurations to reduce computational cost77)

FIG. 3. The general workflow of performing deep potential molecular dynamics in
the manner of concurrent learning.

are randomly selected from configurations that satisfy the following
condition:

{Rn∣n ∈ Icand, Icand = {n∣θlow ≤ ϵF,max < θhigh}}, (74)

where ϵF,max was given in Sec. II C, θlow should be set to a value
higher than most of ϵF,max in the existing target data collection, and
θhigh is typically set to a value ∼0.15 eV/Å higher than θlow. These
threshold values ensure that only configurations not yet added to
the target data collection will be selected. The selected configura-
tions are labeled using consistent ab initio methods and added to
the target data collection in the labeling step, proceeding to the next
iteration.

If the ratio of accurate configurations (ϵF,max < θlow) in a sim-
ulation converges (remains unchanged in subsequent concurrent
learning cycles), it can be considered as the target simulation, and the
iteration can be stopped. Such a simulation trajectory can be further
analyzed.

The above workflow can be executed manually or using the DP-
GEN package107 automatically.

V. BENCHMARKING
We performed benchmarking on various potential energy

models with different descriptors on multiple datasets to show
the precision and performance of descriptors developed within
the DeePMD-kit package. The datasets, the models, the hardware,
and the results will be described and discussed in the following
Secs. V A–V C.

A. Datasets
The datasets we used included water,9,61 copper (Cu),107 high

entropy alloys (HEAs),51,171 OC2M subset in Open Catalyst 2020
(OC20),115,116 Small-Molecule/Protein Interaction Chemical Ener-
gies (SPICEs),104 and dipeptide subset in SPICE,104 as shown in
Table I and listed as follows:

● The water dataset contains of 140 000 configurations
collected from path-integral ab initio MD simula-
tions and classical ab initio MD simulations for liquid
water and ice. Configurations were labeled using the
hybrid version of Perdew–Burke–Ernzerhof (PBE0)172+

Tkatchenko–Scheffler (TS) functional and projector
augmented-wave (PAW) method.173 The energy cutoff was
set to 115 Ry (1565 eV).

● The copper dataset consists of 15 366 configurations in Face
Centered Cubic (FCC), Hexagonal Close Packed (HCP),
and Body Centered Cubic (BCC) crystal. MD simulations
sampled the configurations across a temperature range of
50–2579 K and a pressure range of 1–5 × 104 Bar. The
concurrent learning scheme170 was employed to select the
critical configurations that improved the accuracy of an
ensemble of models used to estimate the model prediction
error. The Perdew–Burke–Ernzerhof (PBE) functional174

and PAW method were used with an energy cutoff of 650
eV.

● The High Entropy Alloy (HEA) dataset comprises six ele-
ments: Ta, Nb, W, Mo, V, and Al.51,171 These elements

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-14

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE I. Datasets used to benchmark.

Dataset No. of frames Elements DFT level References

Water 140 000 H, O PBE0+TS/PAW (Ecutoff = 1565 eV) 9 and 61
Copper 15 366 Cu PBE/PAW (Ecutoff = 650 eV) 107
HEA 8 160 Ta, Nb, W, Mo, V, Al PBE/PAW(Ecutoff = 1200 eV) 51 and 171
OC2M 2 000 000 Ag, Al, As, Au, B, Bi, C, Ca, Cd, Cl, Co, Cr, Cs, Cu, RPBE/PAW (Ecutoff = 350 eV) 115 and 116

Fe, Ga, Ge, H, Hf, Hg, In, Ir, K, Mg, Mn, Mo, N, Na, Nb,
Ni, O, Os, P, Pb, Pd, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se,

Si, Sn, Sr, Ta, Tc, Te, Ti, Tl, V, W, Y, Zn, Zr
SPICE 1 132 808 H, Li, C, N, O, F, Na, Mg, P, S, Cl, K, Ca, Br, I ωB97M-D3BJ/def2-TZVPPD 104
Dipeptides 33 850 H, C, N, O, S ωB97M-D3BJ/def2-TZVPPD 104

occupy a 2 × 2 × 2 BCC lattice consisting of 16 atoms in
a random arrangement. The concentrations of Ta, Nb, W,
Mo, and V encompass the entire composition space, while
Al is considered an additive, with its maximum quantity
being less than six. MD simulations sampled the config-
urations across a temperature range of 50–388.1 K and a
pressure range of 1–5 × 104 bars. The concurrent learning
scheme170 was employed to select the critical configurations
that improved the accuracy of an ensemble of models used to
estimate the model prediction error. The dataset comprises
8160 configurations labeled by the density functional theory
with PBE approximation174 of the exchange and correlation.
The PAW method was used with an energy cutoff of 1200 eV
and a k-space sampling grid size of 0.12 Å−1.

● The OC2M subset116 in the Open Catalyst 2020 (OC20)
dataset takes 2 × 106 configurations from the OC20
dataset115 and includes 57 elements. OC20 consists of 1 281
040 configurations across a wide swath of materials, sur-
faces, and adsorbates and is labeled by the revised PBE
functional174 under the periodic boundary condition. The
PAW method was employed with an energy cutoff of
350 eV.

● The Small-Molecule/Protein Interaction Chemical Ener-
gies (SPICE)104 dataset is a drug-like dataset that includes
various subsets: dipeptides, solvated amino acids, Pub-
Chem molecules, DES370K dimers, DES370K monomers,
and ion pairs. The dataset is composed of 1 132 808 non-
period configurations labeled at the ωB97M-D3BJ/def2-
TZVPPD level.175,176 It consists of 15 elements and con-
tains charged configurations. We adopted the same method
as described in Ref. 104 to consider each unique combi-
nation of element and formal charge as a different atom
type.

● The dipeptide subset in SPICE104 comprises all possible
dipeptides formed by the 20 natural amino acids and their
common protonation variants. This subset contains 33 850
configurations with elements, including H, C, N, O, and S,
corresponding to the amino acids.

The above datasets are representative as they contain liquids,
solids, and gases, configurations in both periodic and non-periodic
boundary conditions, configurations spanning a wide range of

temperatures and pressures, and ions and drug-like molecules in
different protonation states. The study of all these systems is
essential in the field of chemical physics.

We split all the datasets into a training set containing 95% of
the data and a validation set containing the remaining 5% of the
data.

B. Models and hardware
We compared various descriptors, including the local frame

(loc_frame), two-body embedding full-information DeepPot-
SE (se_e2_a), a hybrid descriptor with two-body embedding full-
and radial-information DeepPot-SE (se_e2_a+se_e2_r), a hybrid
descriptor with two-body embedding full-information and three-
body embedding DeepPot-SE (se_e2_a+se_e3), and an attention-
based descriptor (se_atten). In all models, we set rs to 0.5 Å,
M< to 16, and La to 2, if applicable. We used (25, 50, 100) neu-
rons for two-body embedding networks Ne,2, (2, 4, 8) neurons for
three-body embedding networks Ne,3, and (240, 240, 240, 1) neu-
rons for fitting networks F0. In the full-information part (se_e2_a)
of the hybrid descriptor with two-body embedding full-information
and radius-information DeepPot-SE (se_e2_a+se_e2_r) and the
two-body embedding part (se_e2_a) of the hybrid descrip-
tor with two-body full-information and three-body DeepPot-
SE (se_e2_a+se_e3), we set rc to 4 Å. For the OC2M sys-
tem, we set rc to 9 Å, while under other situations, we set
rc to 6 Å.

We trained each model for a fixed number of steps (1 000 000
for water, Cu, and dipeptides, 16 000 000 for HEA, and 10 000 000
for OC2M and SPICE) using neural networks in double floating
precision (FP64) and single floating precision (FP32) separately.
We used the LAMMPS package140 to perform MD simulations for
water, Cu, and HEA with as many atoms as possible. We compared
the performance of compressed models with that of the original
model where applicable.108 The platforms used to benchmark per-
formance included 128-core AMD EPYC 7742, NVIDIA GeForce
RTX 3080 Ti (12 GB), NVIDIA Tesla V100 (40 GB), NVIDIA Tesla
A100 (80 GB), AMD Instinct MI250, and Xilinx Virtex Ultrascale
+ VU9P FPGA for NVNMD only.110 We note that currently, the
model compression feature only supports se_e2_a, se_e2_r, and
se_e3 descriptors, and NVNMD only supports regular se_e2_a
for systems with no more than four chemical species in FP64

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-15

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE II. Root mean square errors (RMSEs) in the energy per atom (E, meV/atom) and forces (F, meV/Å) for water, Cu, HEA, OC2M, dipeptides, and SPICE validation sets.
The boldfaced values denote the best model in an indicator.

loc_frame se_e2_a se_e2_a+se_e2_r se_e2_a+se_e3 se_atten

System Indicator FP64 FP32 FP64 FP32 FP64 FP32 FP64 FP32 FP64 FP32

Water E RMSE 0.7 0.7 1.0 1.0 0.9 1.0 1.0 1.0 1.5 1.2
F RMSE 40.0 39.2 49.0 48.4 48.6 50.0 46.5 45.9 44.4 42.3

Cu E RMSE 12.7 19.2 3.0 2.8 4.8 4.9 2.5 2.6 3.2 3.6
F RMSE 84.7 105 17.7 17.9 21.4 22.0 16.8 16.6 16.9 16.9

HEA E RMSE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 15.4 15.3 13.5 14.5 12.1 17.2 5.5 6.4
F RMSE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 134 137 163 158 136 180 90.7 98.3

OC2M E RMSE ⋅ 15.1 14.3
F RMSE ⋅ 155 148

Dipeptides E RMSE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 9.5 9.6 12.5 11.7 14.9 16.8 12.8 12.7
F RMSE ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 97.9 97.7 98.6 101 160 222 99.7 96.7

SPICE E RMSE ⋅ 80.9 78.3
F RMSE ⋅ 233 234

precision. The model compression feature for se_atten is under
development.

It is important to note that these models are designed for
the purpose of comparing different descriptors and floating-point
number precisions supported by the package under the same con-
ditions, with the aim of recommending the best model to use.
However, it should be emphasized that the number of training
steps is limited, and hyperparameters, such as the number of neu-
rons in neural networks, are not tuned for any specific system.
Therefore, it is not advisable to utilize these models for production
purposes, and it would be meaningless to compare them with the
well-established models reported in other references, Refs. 9, 51, 107,
and 104.

Furthermore, it is not recommended to compare these models
with models produced by other packages, as it can be challenging
to establish a fair comparison. For instance, ensuring that hyperpa-
rameters in different models are precisely the same or making all
models consume the same computational resources across different
packages is not straightforward.

C. Results and discussion
We present the validation errors of different models in Table II,

the training and MD performance on various platforms in Tables III
and IV, as well as the maximum number of atoms that a plat-
form can simulate in Table V. None of the models outperforms
the others in terms of accuracy for all datasets. The non-smooth
local frame descriptor achieves the best accuracy for the water sys-
tem, with an energy RMSE of 0.689 meV/atom and a force RMSE
of 39.2 meV/Å. Moreover, this model exhibits the fastest com-
puting performance among all models on CPUs, although it has

not yet been implemented on GPUs, as shown in Appendix B.
The local frame descriptor, despite having higher accuracy in
some cases, has limitations that hinder its widespread applicabil-
ity. One such limitation is that it is not smooth. Additionally, this
descriptor does not perform well for the copper system, which
was collected over a wide range of temperatures and pressures.107

Another limitation is that it requires all systems to have similar
chemical species to build the local frame, which makes it chal-
lenging to apply in datasets, such as HEA, OC2M, dipeptides,
and SPICE.

On the other hand, the DeepPot-SE descriptor offers greater
generalization in terms of both accuracy and performance. The
compressed models are 1–10× faster than the original for training
and inference, and the NVNMD is 50–100× faster than the regular
MD, both of which demonstrate impressive computational perfor-
mance. It is expected that the MD performance of the uncompressed
water se_e2_a FP64 model (8.25 μs/step/atom on a single V100
card) is close to the MD performance reported in Ref. 41 (8.19
μs/step/atom per V100 card), and the MD performance of the com-
pressed model (1.94 μs/step/atom) is about 3× faster in this case. In
addition, the compressed model can simulate 6× atoms in a single
card compared to the uncompressed model. The three-body embed-
ding descriptor theoretically contains more information than the
two-body embedding descriptor and is expected to be more accu-
rate but slower. While this is true for the water and copper systems,
the expected order of accuracy is not clearly observed for the HEA
and dipeptides datasets. Further research is required to determine
the reason for this discrepancy, but it is likely due to the loss not
converging within the same training steps when more chemical
species result in more trainable parameters. Furthermore, the per-
formance on these two datasets slows down as there are more neural
networks.

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-16

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE III. Training performance (ms/step) for water, Cu, HEA, OC2M, dipeptides, and SPICE systems. “FP64” means double floating precision, “FP32” means single floating
precision, and “FP64c” and “FP32c” mean the compressed training109 for double and single floating precision, respectively. “EPYC” performed on 128 AMD EPYC 7742 cores,
“3080 Ti” performed on an NVIDIA GeForce RTX 3080 Ti card, “V100” performed on an NVIDIA Tesla V100 card, “A100” performed on an NVIDIA Tesla A100 card, and “MI250”
performed on an AMD Instinct MI250 Graphics Compute Die (GCD).

loc_frame se_e2_a se_e2_a+se_e2_r se_e2_a+se_e3 se_atten

System Hardware FP64 FP32 FP64 FP32 FP64c FP32c FP64 FP32 FP64c FP32c FP64 FP32 FP64c FP32c FP64 FP32

Water

EPYC 14.7 9.20 97.3 45.0 28.4 16.2 63.7 32.5 29.9 15.4 141 85.2 34.0 20.6 1210 383
3080 Ti 7.00 4.80 24.6 10.3 9.70 6.40 26.3 11.6 12.0 8.20 52.8 17.2 16.3 6.80 199 26.9
V100 7.90 8.50 11.1 8.20 5.90 4.80 13.6 10.9 6.90 6.40 23.5 14.0 8.60 7.30 69.6 31.7
A100 10.7 10.0 8.20 9.30 4.90 5.70 14.5 10.8 7.80 6.30 24.5 12.0 7.50 7.20 30.8 21.2

MI250 11.7 10.9 20.3 13.1 7.70 7.00 27.3 19.7 11.5 10.9 278 27.7 12.8 11.2 125 31.7

Cu

EPYC 4.90 3.30 33.7 12.8 8.00 5.40 19.9 10.0 10.5 5.30 45.5 24.2 9.10 6.50 226 89.1
3080 Ti 3.20 2.20 6.50 5.10 4.60 3.90 8.70 6.30 5.90 3.40 11.8 4.80 7.20 5.70 36.8 8.80
V100 3.20 3.80 4.20 4.80 3.20 3.70 6.50 5.30 5.50 4.10 7.90 5.60 6.00 5.80 15.6 11.9
A100 4.00 3.90 3.80 3.70 3.10 3.00 5.40 5.30 4.10 4.10 8.00 5.60 4.80 4.60 11.6 11.2

MI250 4.80 4.90 6.90 6.40 5.10 5.00 9.10 9.40 7.40 7.00 49.9 10.1 8.00 7.30 23.6 18.6

HEA

EPYC ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 53.4 30.5 19.4 12.2 52.3 29.3 27.7 16.7 83.7 51.1 26.6 15.7 159 60.1
3080 Ti ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 38.4 25.2 11.2 9.10 71.4 41.8 16.3 12.7 93.6 41.0 19.7 15.0 35.9 9.10
V100 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 33.2 29.8 11.8 11.1 63.2 47.4 17.5 16.5 65.5 49.6 27.4 18.7 15.6 11.9
A100 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 30.5 28.6 10.9 10.4 51.6 67.4 16.9 21.2 61.7 52.9 18.6 18.8 11.7 11.5

MI250 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 48.8 42.7 18.5 18.0 72.3 69.3 28.7 27.3 134 88.4 32.7 32.3 21.6 19.5

OC2M

EPYC ⋅ 2070 625
3080 Ti ⋅ 352 46.0
V100 ⋅ 120 52.8
A100 ⋅ 51.4 30.9

MI250 ⋅ 171 55.7

Dipeptides

EPYC ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 49.7 30.5 21.2 19.4 52.0 35.3 30.1 21.2 89.5 61.1 35.0 21.2 214 91.5
3080 Ti ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 54.8 39.5 17.3 11.3 90.0 64.3 19.0 15.3 131 67.7 25.4 19.2 26.1 12.0
V100 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 54.1 52.6 14.8 14.8 88.0 84.3 20.5 21.7 96.2 103 30.1 30.8 14.3 10.6
A100 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 50.2 50.8 14.3 14.3 89.0 75.9 20.7 19.9 91.1 82.7 26.6 26.7 13.2 11.1

MI250 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 66.2 67.8 23.1 22.9 117 112 35.0 32.4 155 129 45.9 44.9 19.6 16.8

SPICE

EPYC ⋅ 244 98.0
3080 Ti ⋅ 35.4 15.3
V100 ⋅ 17.3 15.9
A100 ⋅ 11.9 12.2

MI250 ⋅ 29.0 24.1

The attention-based models with the type embedding exhibit
better accuracy for the HEA system and equivalent accuracy for
the dipeptide system. These models also have the advantage of
faster training on GPUs, with equivalent accuracy for these two
systems, by reducing the number of neural networks. However,
this advantage is not observed on CPUs or MD simulations, as
attention layers are computationally expensive, which calls for
future improvements. Furthermore, when there are many chem-
ical species, the attention-based descriptor requires less CPU or
GPU memory than other models since it has fewer neural net-
works. This feature makes it possible to apply to the OC2M

dataset with over 60 species and the SPICE dataset with about 20
species.

It is noteworthy that in nearly all systems, FP32 is 0.5 to 2×
faster than FP64 and demonstrates similar validation errors. In this
case, since we only apply FP32 into neural networks but keep preci-
sion in other components, the model precision is also well-known
as “mixed precision.” This result is consistent with the fact that
mixed precision has been widely adopted in other packages.38,140

Therefore, FP32 should be widely adopted in most applications.
Moreover, FP32 enables high performance on hardware with poor
FP64 performance, such as consumer GPUs or CPUs.

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-17

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE IV. MD performance (μs/step/atom) for water, Cu, and HEA systems. “FP64” means double floating precision, “FP32” means single floating precision, and “FP64c” and
“FP32c” mean the compressed model109 for double and single floating precision, respectively. “EPYC” performed on 128 AMD EPYC 7742 cores, “3080 Ti” performed on an
NVIDIA GeForce RTX 3080 Ti card, “V100” performed on an NVIDIA Tesla V100 card, “A100” performed on an NVIDIA Tesla A100 card, “MI250” performed on an AMD Instinct
MI250 Graphics Compute Die (GCD), and “VU9P” performed NVNMD110 on a Xilinx Virtex Ultrascale+ VU9P FPGA board.

loc_frame se_e2_a se_e2_a+se_e2_r se_e2_a+se_e3 se_atten

System Hardware FP64 FP32 FP64 FP32 FP64c FP32c FP64 FP32 FP64c FP32c FP64 FP32 FP64c FP32c FP64 FP32

Water

EPYC 1.25 0.699 19.3 8.73 3.89 2.61 8.33 3.43 3.78 1.86 37.2 15.1 5.04 3.63 221 83.8
3080 Ti 12.9 8.63 29.0 4.21 9.71 1.73 20.8 3.43 9.06 1.99 69.5 10.5 18.5 2.89 294 32.3
V100 16.1 16.8 8.25 4.59 1.94 1.51 6.21 3.53 2.22 1.62 22.2 11.3 3.31 2.41 91.2 37.2
A100 35.7 33.9 4.37 3.01 1.56 1.42 4.11 2.44 2.07 1.53 12.5 7.17 2.64 2.25 35.6 22.4

MI250 40.2 39.6 7.74 3.96 1.74 1.41 6.03 3.20 2.00 1.54 30.5 18.8 3.51 2.64 55.0 30.2
VU9P ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.306 ⋅

Cu

EPYC 1.14 0.702 22.2 9.38 3.43 2.04 11.9 5.28 3.09 1.56 47.9 19.5 4.20 2.73 200 62.1
3080 Ti 14.9 8.98 30.5 4.18 8.52 1.51 18.8 3.15 7.98 1.81 74.6 11.2 14.7 2.32 294 33.0
V100 15.7 15.7 8.73 4.81 1.56 1.27 5.71 3.18 1.84 1.38 24.3 12.2 2.60 1.83 91.1 37.3
A100 36.9 36.9 4.41 2.65 1.36 1.15 3.35 2.15 1.63 1.42 13.5 7.49 2.15 1.78 36.2 21.0

MI250 39.0 39.1 8.27 4.13 1.37 1.21 5.62 2.98 1.59 1.35 26.9 12.6 2.56 2.00 55.4 29.5
VU9P ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.310 ⋅

HEA

EPYC ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 32.8 13.0 7.04 4.58 15.3 7.64 6.83 3.80 81.0 33.4 8.56 5.68 156 45.9
3080 Ti ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 65.3 9.72 10.5 2.51 36.1 6.83 11.9 3.24 171 24.9 29.6 5.37 290 32.8
V100 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 20.1 10.9 2.88 2.39 12.3 6.86 12.3 2.85 55.2 28.4 9.42 5.47 91.2 37.4
A100 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 10.4 6.09 2.13 1.83 7.25 5.48 2.98 2.83 30.1 17.1 4.21 4.22 35.0 20.0

MI250 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 20.1 11.6 4.57 4.22 16.2 12.0 7.01 6.44 76.0 44.9 9.09 7.61 55.7 30.5

TABLE V. The maximum number of atoms (103) that a GPU card can simulate for water, Cu, and HEA systems. “FP64” means double floating precision, “FP32” means single
floating precision, and “FP64c” and “FP32c” mean the compressed model109 for double and single floating precision, respectively. “3080 Ti” performed on an NVIDIA GeForce
RTX 3080 Ti card (12 GB), “V100” performed on an NVIDIA Tesla V100 card (40 GB), and “A100” performed on an NVIDIA Tesla A100 card (80 GB).a

se_e2_a se_e2_a+se_e2_r se_e2_a+se_e3 se_atten

System Hardware FP64 FP32 FP64c FP32c FP64 FP32 FP64c FP32c FP64 FP32 FP64c FP32c FP64 FP32

Water
3080 Ti 27 51 127 141 44 74 94 128 10 21 86 95 3 7
V100 73 135 415 493 114 196 274 430 28 55 250 265 9 19
A100 189 332 987 1128 288 488 651 900 76 147 618 736 22 49

Cu
3080 Ti 18 35 214 202 40 77 125 151 7 14 83 144 3 7
V100 54 106 606 635 122 183 337 461 19 39 271 330 9 19
A100b 141 244 1534 1615 286 453 706 1074 50 99 697 867 22 49

HEA
3080 Ti 11 19 60 69 21 33 47 59 5 9 42 52 3 7
V100 30 53 175 184 57 87 131 166 13 25 117 142 9 19
A100 76 132 447 468 140 218 323 408 35 66 292 365 22 48

aThe results on the MI250 card are not reported since the ROCm Toolkit reported a segmentation fault when the number of atoms increased.
bTwo MPI ranks were used since integer overflow occurred in TensorFlow when the number of elements in an operator exceeded 231 .

VI. SUMMARY
DeePMD-kit is a powerful and versatile community-developed

open-source software package for molecular dynamics (MD) sim-
ulations using machine learning potentials (MLPs). Its excellent
performance, usability, and extensibility have made it a popular
choice for researchers in various fields. DeePMD-kit is licensed

under the LGPL-3.0 license, which allows anyone to use, mod-
ify, and extend the software freely. Thanks to its well-designed
code architecture, DeePMD-kit is highly customizable and can be
easily extended in various aspects. The models are organized as
Python modules in an object-oriented design and saved into the
computing graphs, making it easier to add new models. The com-

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-18

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

puting graph is composed of TensorFlow and customized operators,
making it easier to optimize the package for a particular hard-
ware architecture and certain operators. The package also has rich
and flexible APIs, making it easier to integrate with other molec-
ular simulation packages. DeePMD-kit is open to contributions
from researchers in computational science, and we hope that the
community will continue to develop and enhance its features in
the future.

ACKNOWLEDGMENTS
The authors thank Yihao Liu, Xinzijian Liu, Haidi Wang, Hailin

Yang, and the GitHub user ZhengdQin for their code contribu-
tion to DeePMD-kit; Zhi X. Chen, Jincai Yang, and Tong Zhu for
suggestions to the manuscript; and Ming Li for designing the high-
light image. D.T. is grateful to Stefano Baroni, Riccardo Bertossa,
Federico Grasselli, and Paolo Pegolo for enlightening discussions
throughout the completion of this work. ChatGPT was used to edit
the language with the prompt “polish in English,” and its outputs
were manually reviewed. The work of J.Z. and D.M.Y. was sup-
ported by the National Institutes of Health (Grant No. GM107485 to
D.M.Y.) and the National Science Foundation (Grant No. 2209718
to D.M.Y.). J.Z. is grateful for the Van Dyke Award from the
Department of Chemistry and Chemical Biology, Rutgers, The State
University of New Jersey. The work of Y.C., Yifan Li, and R.C. was
supported by the “Chemistry in Solution and at Interfaces” (CSI)
Center funded by the United States Department of Energy under
Award No. DE-SC0019394. The work of M.R. was supported by
the VEGA under Project No. 1/0640/20 and by the Slovak Research
and Development Agency under Contract No. APVV-19-0371. The
work of Q.Z. was supported by the Science and Technology Inno-
vation Program of Hunan Province under Grant No. 2021RC4026.
The work of S.L.B. was supported by the Research Council of
Norway through the Centre of Excellence Hylleraas Centre for
Quantum Molecular Sciences (Grant No. 262695). The work of
C.L. and R.W. was supported by the United States Department of
Energy (DOE) under Award No. DE-SC0019759. The work of H.W.
was supported by the National Key R & D Program of China
under Grant No. 2022YFA1004300 and the National Natural Sci-
ence Foundation of China under Grant No. 12122103. Compu-
tational resources were provided by the Bohrium Cloud Plat-
form at DP technology; the Office of Advanced Research Com-
puting (OARC) at Rutgers, The State University of New Jersey;
the Advanced Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support (ACCESS) program, which was supported by
National Science Foundation under Grant Nos. 2138259, 2138286,
2138307, 2137603, and 2138296 (supercomputer Expanse at SDSC
through allocation Grant No. CHE190067); the Texas Advanced
Computing Center (TACC) at the University of Texas at Austin,
URL: http://www.tacc.utexas.edu (supercomputer Frontera through
allocation Grant No. CHE20002); the AMD Cloud Platform at
AMD, Inc; and the Princeton Research Computing resources at
Princeton University, which is a consortium of groups led by the
Princeton Institute for Computational Science and Engineering
(PICSciE) and the Office of Information Technology’s Research
Computing.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jinzhe Zeng: Conceptualization (equal); Data curation (equal); For-
mal analysis (equal); Investigation (equal); Methodology (equal);
Project administration (equal); Visualization (equal); Writing –
original draft (equal); Writing – review & editing (equal). Duo
Zhang: Data curation (equal); Investigation (equal); Methodol-
ogy (equal); Software (equal); Writing – original draft (equal);
Writing – review & editing (equal). Denghui Lu: Methodology
(equal); Software (equal); Writing – review & editing (equal).
Pinghui Mo: Investigation (equal); Methodology (equal); Software
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). Zeyu Li: Software (equal); Writing – review & editing
(equal). Yixiao Chen: Software (equal); Writing – review & edit-
ing (equal). Marián Rynik: Software (equal); Writing – review &
editing (equal). Li’ang Huang: Software (equal); Writing – review
& editing (equal). Ziyao Li: Software (equal); Writing – review &
editing (equal). Shaochen Shi: Software (equal); Writing – origi-
nal draft (equal); Writing – review & editing (equal). Yingze Wang:
Software (equal); Writing – review & editing (equal). Haotian Ye:
Software (equal); Writing – review & editing (equal). Ping Tuo: Soft-
ware (equal); Writing – review & editing (equal). Jiabin Yang: Soft-
ware (equal); Writing – review & editing (equal). Ye Ding: Software
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Yifan Li: Investigation (equal); Software (equal); Writing –
review & editing (equal). Davide Tisi: Software (equal); Writing –
review & editing (equal). Qiyu Zeng: Funding acquisition (equal);
Software (equal); Writing – review & editing (equal). Han Bao:
Software (equal); Writing – review & editing (equal). Yu Xia: Soft-
ware (equal); Writing – review & editing (equal). Jiameng Huang:
Software (equal); Writing – review & editing (equal). Koki
Muraoka: Software (equal); Writing – review & editing (equal).
Yibo Wang: Software (equal); Writing – review & editing (equal).
Junhan Chang: Software (equal); Writing – review & editing
(equal). Fengbo Yuan: Software (equal); Writing – review & editing
(equal). Sigbjorn Loland Bore: Funding acquisition (equal); Soft-
ware (equal); Writing – review & editing (equal). Chun Cai: Soft-
ware (equal); Writing – original draft (supporting); Writing – review
& editing (equal). Yinnian Lin: Software (equal); Writing – review
& editing (equal). Bo Wang: Software (equal); Writing – review &
editing (equal). Jiayan Xu: Software (equal); Writing – review &
editing (equal). Jia-Xin Zhu: Software (equal); Writing – review &
editing (equal). Chenxing Luo: Software (equal); Writing – review
& editing (equal). Yuzhi Zhang: Software (equal); Writing – review
& editing (equal). Rhys E. A. Goodall: Software (equal); Writing –
review & editing (equal). Wenshuo Liang: Software (equal);
Writing – review & editing (equal). Anurag Kumar Singh: Soft-
ware (equal); Writing – review & editing (equal). Sikai Yao: Soft-
ware (equal); Writing – review & editing (equal). Jingchao Zhang:
Software (equal); Writing – review & editing (equal). Renata Wentz-
covitch: Funding acquisition (equal); Supervision (equal); Writing –
review & editing (equal). Jiequn Han: Methodology (equal);

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-19

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
http://www.tacc.utexas.edu

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Software (equal); Writing – review & editing (equal). Jie Liu:
Conceptualization (equal); Methodology (equal); Resources (equal);
Supervision (equal); Writing – review & editing (equal). Weile
Jia: Conceptualization (equal); Methodology (equal); Supervision
(equal); Writing – review & editing (equal). Darrin M. York: Con-
ceptualization (equal); Funding acquisition (equal); Methodology
(equal); Resources (equal); Supervision (equal); Writing – review
& editing (equal). Weinan E: Conceptualization (equal); Method-
ology (equal); Supervision (equal); Writing – review & editing
(equal). Roberto Car: Conceptualization (equal); Funding acqui-
sition (equal); Methodology (equal); Resources (equal); Supervi-
sion (equal); Writing – review & editing (equal). Linfeng Zhang:
Conceptualization (equal); Methodology (equal); Project adminis-
tration (equal); Resources (equal); Software (equal); Supervision
(equal); Writing – review & editing (equal). Han Wang: Con-
ceptualization (equal); Funding acquisition (equal); Methodology
(equal); Project administration (equal); Software (equal); Supervi-
sion (equal); Writing – original draft (equal); Writing – review &
editing (equal).

DATA AVAILABILITY
DeePMD-kit is openly hosted at the GitHub repository:

https://github.com/deepmodeling/deepmd-kit. The datasets, the
models, the simulation systems, and the benchmarking scripts
used in this study can be downloaded from the GitHub
repository: https://github.com/deepmodeling-activity/deepmd-kit-
v2-paper. Other data that support the findings of this study are
available from the corresponding author upon reasonable request.

APPENDIX A: FIFTH-ORDER POLYNOMIAL
INTERPOLATION

Define a piecewise-defined function f (x), where f (x) is a fifth-
order polynomial in the range [0, 1) and is a constant in other
intervals,

f (x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, x < 0,

ax5
+ bx4

+ cx3
+ dx2

+ ex + f , 0 ≤ x < 1,

0, x ≥ 1.

(A1)

Let f (x), its first-order derivative f ′(x), and its second-order
derivative f

′′

(x) be continuous at x = 0 and x = 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

limx→0− f (x) = limx→0+ f (x),
limx→0− f ′(x) = limx→0+ f ′(x),
limx→0− f ′′(x) = limx→0+ f ′′(x),
limx→1− f (x) = limx→1+ f (x),
limx→1− f ′(x) = limx→1+ f ′(x),
limx→1− f ′′(x) = limx→1+ f ′′(x).

(A2)

Solve Eq. (A2), and the solution is

a = −6, b = 15, c = −10, d = 0, e = 0, f = 1. (A3)

The final forum of f (x) is

f (x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, x < 0,

−6x5
+ 15x4

− 10x3
+ 1, 0 ≤ x < 1,

0, x ≥ 1.

(A4)

APPENDIX B: FEATURES WITHOUT GPU SUPPORT

At present, the following features do not have GPU support:

● The local frame descriptor in Eqs. (5)–(10).
● Interpolation with a pairwise potential in Eqs. (52)–(55).
● Calculating the maximum number of neighbors Nc within

the cutoff radius from the given data.
● Model deviation in Eqs. (68)–(72).
● All NVNMD-specific features.
● The KSpace solver for DPLR in the LAMMPS plugin.

REFERENCES
1J. Behler and M. Parrinello, “Generalized neural-network representation of high-
dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).
2A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev.
Lett. 104, 136403 (2010).
3J. Behler, “Atom-centered symmetry functions for constructing high-
dimensional neural network potentials,” J. Chem. Phys. 134, 074106
(2011).
4M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marque-
tand, “wACSF—Weighted atom-centered symmetry functions as descriptors in
machine learning potentials,” J. Chem. Phys. 148, 241709 (2018).
5S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R.
Müller, “Machine learning of accurate energy-conserving molecular force fields,”
Sci. Adv. 3, e1603015 (2017).
6K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko,
“Quantum-chemical insights from deep tensor neural networks,” Nat. Commun.
8, 13890 (2017).
7K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,
“SchNet—A deep learning architecture for molecules and materials,” J. Chem.
Phys. 148, 241722 (2018).
8X. Chen, M. S. Jørgensen, J. Li, and B. Hammer, “Atomic energies from a
convolutional neural network,” J. Chem. Theory Comput. 14, 3933–3942 (2018).
9L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynam-
ics: A scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett.
120, 143001 (2018).
10L. Zhang, J. Han, H. Wang, W. Saidi, R. Car, and W. E, “End-to-end symmetry
preserving inter-atomic potential energy model for finite and extended systems,”
in Advances in Neural Information Processing Systems, edited by S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran
Associates, Inc., 2018), Vol. 31, pp. 4436–4446.
11Y. Zhang, C. Hu, and B. Jiang, “Embedded atom neural network potentials: Effi-
cient and accurate machine learning with a physically inspired representation,” J.
Phys. Chem. Lett. 10, 4962–4967 (2019).
12J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: An extensible neural net-
work potential with DFT accuracy at force field computational cost,” Chem. Sci.
8, 3192–3203 (2017).
13O. T. Unke and M. Meuwly, “PhysNet: A neural network for predicting ener-
gies, forces, dipole moments, and partial charges,” J. Chem. Theory Comput. 15,
3678–3693 (2019).
14Z. L. Glick, D. P. Metcalf, A. Koutsoukas, S. A. Spronk, D. L. Cheney, and C. D.
Sherrill, “AP-Net: An atomic-pairwise neural network for smooth and transferable
interaction potentials,” J. Chem. Phys. 153, 044112 (2020).

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-20

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling-activity/deepmd-kit-v2-paper
https://github.com/deepmodeling-activity/deepmd-kit-v2-paper
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.5019667
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1021/acs.jctc.8b00149
https://doi.org/10.1103/physrevlett.120.143001
https://doi.org/10.1021/acs.jpclett.9b02037
https://doi.org/10.1021/acs.jpclett.9b02037
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1063/5.0011521

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

15T. Zubatiuk and O. Isayev, “Development of multimodal machine learning
potentials: Toward a physics-aware artificial intelligence,” Acc. Chem. Res. 54,
1575–1585 (2021).
16E. R. Khajehpasha, J. A. Finkler, T. D. Kühne, and S. A. Ghasemi, “CENT2:
Improved charge equilibration via neural network technique,” Phys. Rev. B 105,
144106 (2022).
17X. Pan, J. Yang, R. Van, E. Epifanovsky, J. Ho, J. Huang, J. Pu, Y. Mei, K. Nam,
and Y. Shao, “Machine-learning-assisted free energy simulation of solution-phase
and enzyme reactions,” J. Chem. Theory Comput. 17, 5745–5758 (2021).
18S. Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li, I. Kurata, T. Watan-
abe, Y. Yayama, H. Iriguchi, Y. Asano, T. Onodera, T. Ishii, T. Kudo, H. Ono, R.
Sawada, R. Ishitani, M. Ong, T. Yamaguchi, T. Kataoka, A. Hayashi, N. Charoen-
phakdee, and T. Ibuka, “Towards universal neural network potential for material
discovery applicable to arbitrary combination of 45 elements,” Nat. Commun. 13,
2991 (2022).
19A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen, M. Kornbluth, and
B. Kozinsky, “Learning local equivariant representations for large-scale atomistic
dynamics,” Nat. Commun. 14, 579 (2023).
20K. T. Schütt, O. T. Unke, and M. Gastegger, “Equivariant message passing for
the prediction of tensorial properties and molecular spectra,” in International
Conference on Machine Learning (PMLR, 2021), pp. 9377–9388.
21S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N.
Molinari, T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural networks
for data-efficient and accurate interatomic potentials,” Nat. Commun. 13, 2453
(2022).
22M. Haghighatlari, J. Li, X. Guan, O. Zhang, A. Das, C. J. Stein, F. Heidar-Zadeh,
M. Liu, M. Head-Gordon, L. Bertels et al., “NewtonNet: A Newtonian message
passing network for deep learning of interatomic potentials and forces,” Digital
Discovery 1, 333–343 (2022).
23J. Gasteiger, F. Becker, and S. Günnemann, “GemNet: Universal directional
graph neural networks for molecules,” in Advances in Neural Information
Processing Systems (Curran Associates, Inc., 2021), Vol. 34, pp. 6790–6802.
24C. Chen and S. P. Ong, “A universal graph deep learning interatomic potential
for the periodic table,” Nat. Comput. Sci. 2, 718–728 (2022).
25R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic
potentials,” Phys. Rev. B 99, 014104 (2019).
26D. P. Kovács, C. van der Oord, J. Kucera, A. E. A. Allen, D. J. Cole, C. Ortner,
and G. Csányi, “Linear atomic cluster expansion force fields for organic molecules:
Beyond RMSE,” J. Chem. Theory Comput. 17, 7696–7711 (2021).
27R. Snyder, B. Kim, X. Pan, Y. Shao, and J. Pu, “Facilitating ab initio QM/MM free
energy simulations by Gaussian process regression with derivative observations,”
Phys. Chem. Chem. Phys. 24, 25134–25143 (2022).
28A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral
neighbor analysis method for automated generation of quantum-accurate inter-
atomic potentials,” J. Comput. Phys. 285, 316–330 (2015).
29H. Wang, L. Zhang, J. Han, and W. E, “DeePMD-kit: A deep learning pack-
age for many-body potential energy representation and molecular dynamics,”
Comput. Phys. Commun. 228, 178–184 (2018).
30K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K.-R.
Müller, “SchNetPack: A deep learning toolbox for atomistic systems,” J. Chem.
Theory Comput. 15, 448–455 (2019).
31S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Müller, and A. Tkatchenko,
“sGDML: Constructing accurate and data efficient molecular force fields using
machine learning,” Comput. Phys. Commun. 240, 38–45 (2019).
32K. Lee, D. Yoo, W. Jeong, and S. Han, “SIMPLE-NN: An efficient package for
training and executing neural- network interatomic potentials,” Comput. Phys.
Commun. 242, 95–103 (2019).
33X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith, and A. E. Roitberg,
“TorchANI: A free and open source PyTorch-based deep learning implementa-
tion of the ANI neural network potentials,” J. Chem. Inf. Model. 60, 3408–3415
(2020).
34P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro, Jr., J. Huang, and M. Bar-
batti, “MLatom 2: An integrative platform for atomistic machine learning,” Top.
Curr. Chem. 379, 27 (2021).

35A. Singraber, J. Behler, and C. Dellago, “Library-based LAMMPS implementa-
tion of high-dimensional neural network potentials,” J. Chem. Theory Comput.
15, 1827–1840 (2019).
36Y. Zhang, J. Xia, and B. Jiang, “REANN: A PyTorch-based end-to-end multi-
functional deep neural network package for molecular, reactive, and periodic
systems,” J. Chem. Phys. 156, 114801 (2022).
37K. T. Schütt, S. S. P. Hessmann, N. W. A. Gebauer, J. Lederer, and M. Gastegger,
“SchNetPack 2.0: A neural network toolbox for atomistic machine learning,” J.
Chem. Phys. 158, 144801 (2023).
38Z. Fan, Y. Wang, P. Ying, K. Song, J. Wang, Y. Wang, Z. Zeng, K. Xu, E. Lind-
gren, J. M. Rahm, A. J. Gabourie, J. Liu, H. Dong, J. Wu, Y. Chen, Z. Zhong,
J. Sun, P. Erhart, Y. Su, and T. Ala-Nissila, “GPUMD: A package for construct-
ing accurate machine-learned potentials and performing highly efficient atomistic
simulations,” J. Chem. Phys. 157, 114801 (2022).
39I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, “The MLIP
package: Moment tensor potentials with MPI and active learning,” Mach. Learn.:
Sci. Technol. 2, 025002 (2021).
40H. Yanxon, D. Zagaceta, B. Tang, D. S. Matteson, and Q. Zhu, “PyXtal_FF: A
python library for automated force field generation,” Mach. Learn.: Sci. Technol.
2, 027001 (2021).
41W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, and L. Zhang, “Pushing
the limit of molecular dynamics with ab initio accuracy to 100 million atoms
with machine learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’20 (IEEE Press,
2020).
42Z. Guo, D. Lu, Y. Yan, S. Hu, R. Liu, G. Tan, N. Sun, W. Jiang, L. Liu, Y. Chen, L.
Zhang, M. Chen, H. Wang, and W. Jia, “Extending the limit of molecular dynamics
with ab initio accuracy to 10 billion atoms,” in PPoPP’22: Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(Association for Computing Machinery, New York, 2022), pp. 205–218.
43J. Behler, “Perspective: Machine learning potentials for atomistic simulations,”
J. Chem. Phys. 145, 170901 (2016).
44K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine
learning for molecular and materials science,” Nature 559, 547–555 (2018).
45F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine learning for
molecular simulation,” Annu. Rev. Phys. Chem. 71, 361–390 (2020).
46O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt,
A. Tkatchenko, and K.-R. Müller, “Machine learning force fields,” Chem. Rev. 121,
10142–10186 (2021).
47M. Pinheiro, Jr., F. Ge, N. Ferré, P. O. Dral, and M. Barbatti, “Choosing the right
molecular machine learning potential,” Chem. Sci. 12, 14396–14413 (2021).
48S. Manzhos and T. Carrington, Jr., “Neural network potential energy surfaces
for small molecules and reactions,” Chem. Rev. 121, 10187–10217 (2021).
49J. Zeng, L. Cao, and T. Zhu, “Neural network potentials,” in Quantum Chemistry
in the Age of Machine Learning, edited by P. O. Dral (Elsevier, 2022), Chap. 12,
pp. 279–294.
50X. Wang, Y. Wang, L. Zhang, F. Dai, and H. Wang, “A tungsten deep neural-
network potential for simulating mechanical property degradation under fusion
service environment,” Nucl. Fusion 62, 126013 (2022).
51D. Zhang, H. Bi, F.-Z. Dai, W. Jiang, L. Zhang, and H. Wang, “DPA-1:
Pretraining of attention-based deep potential model for molecular simulation,”
arXiv.2208.08236 (preprint) (2022).
52J. Zeng, T. J. Giese, Ş. Ekesan, and D. M. York, “Development of range-corrected
deep learning potentials for fast, accurate quantum mechanical/molecular
mechanical simulations of chemical reactions in solution,” J. Chem. Theory
Comput. 17, 6993–7009 (2021).
53L. Zhang, H. Wang, M. C. Muniz, A. Z. Panagiotopoulos, R. Car, and W. E, “A
deep potential model with long-range electrostatic interactions,” J. Chem. Phys.
156, 124107 (2022).
54W. Liang, J. Zeng, D. M. York, L. Zhang, and H. Wang, “Learning DeePMD-
kit: A guide to building deep potential models,” in A Practical Guide to Recent
Advances in Multiscale Modeling and Simulation of Biomolecules, edited by Y.
Wang and R. Zhou (AIP Publishing, 2023), Chap. 6, pp. 1–20.
55T. Wen, L. Zhang, H. Wang, W. E, and D. J. Srolovitz, “Deep potentials for
materials science,” Mater. Futures 1, 022601 (2022).

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-21

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.1021/acs.accounts.0c00868
https://doi.org/10.1103/physrevb.105.144106
https://doi.org/10.1021/acs.jctc.1c00565
https://doi.org/10.1038/s41467-022-30687-9
https://doi.org/10.1038/s41467-023-36329-y
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1039/d2dd00008c
https://doi.org/10.1039/d2dd00008c
https://doi.org/10.1038/s43588-022-00349-3
https://doi.org/10.1103/physrevb.99.014104
https://doi.org/10.1021/acs.jctc.1c00647
https://doi.org/10.1039/d2cp02820d
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1016/j.cpc.2019.04.014
https://doi.org/10.1016/j.cpc.2019.04.014
https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1007/s41061-021-00339-5
https://doi.org/10.1007/s41061-021-00339-5
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1063/5.0080766
https://doi.org/10.1063/5.0138367
https://doi.org/10.1063/5.0138367
https://doi.org/10.1063/5.0106617
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1088/2632-2153/abc940
https://doi.org/10.1063/1.4966192
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1039/d1sc03564a
https://doi.org/10.1021/acs.chemrev.0c00665
https://doi.org/10.1088/1741-4326/ac888b
http://arxiv.org/abs/2208.08236
https://doi.org/10.1021/acs.jctc.1c00201
https://doi.org/10.1021/acs.jctc.1c00201
https://doi.org/10.1063/5.0083669
https://doi.org/10.1088/2752-5724/ac681d

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

56S. K. Achar, L. Zhang, and J. K. Johnson, “Efficiently trained deep learning
potential for graphane,” J. Phys. Chem. C 125, 14874–14882 (2021).
57L. Bonati and M. Parrinello, “Silicon liquid structure and crystal nucleation from
ab initio deep metadynamics,” Phys. Rev. Lett. 121, 265701 (2018).
58J. Wang, H. Shen, R. Yang, K. Xie, C. Zhang, L. Chen, K.-M. Ho, C.-Z. Wang,
and S. Wang, “A deep learning interatomic potential developed for atomistic
simulation of carbon materials,” Carbon 186, 1–8 (2022).
59R. Li, E. Lee, and T. Luo, “A unified deep neural network potential capable of
predicting thermal conductivity of silicon in different phases,” Mater. Today Phys.
12, 100181 (2020).
60I. A. Balyakin, S. V. Rempel, R. E. Ryltsev, and A. A. Rempel, “Deep machine
learning interatomic potential for liquid silica,” Phys. Rev. E 102, 052125 (2020).
61H.-Y. Ko, L. Zhang, B. Santra, H. Wang, W. E, R. A. DiStasio, Jr., and R. Car,
“Isotope effects in liquid water via deep potential molecular dynamics,” Mol. Phys.
117, 3269–3281 (2019).
62J. Xu, C. Zhang, L. Zhang, M. Chen, B. Santra, and X. Wu, “Isotope effects in
molecular structures and electronic properties of liquid water via deep potential
molecular dynamics based on the SCAN functional,” Phys. Rev. B 102, 214113
(2020).
63C. Andreani, G. Romanelli, A. Parmentier, R. Senesi, A. I. Kolesnikov, H.-Y. Ko,
M. F. Calegari Andrade, and R. Car, “Hydrogen dynamics in supercritical water
probed by neutron scattering and computer simulations,” J. Phys. Chem. Lett. 11,
9461–9467 (2020).
64C. Zhang, L. Zhang, J. Xu, F. Tang, B. Santra, and X. Wu, “Isotope effects in
x-ray absorption spectra of liquid water,” Phys. Rev. B 102, 115155 (2020).
65T. E. Gartner III, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and
P. G. Debenedetti, “Signatures of a liquid–liquid transition in an ab initio deep
neural network model for water,” Proc. Natl. Acad. Sci. U. S. A. 117, 26040–26046
(2020).
66D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, and S. Baroni, “Heat transport
in liquid water from first-principles and deep neural network simulations,” Phys.
Rev. B 104, 224202 (2021).
67C. Malosso, L. Zhang, R. Car, S. Baroni, and D. Tisi, “Viscosity in water from
first-principles and deep-neural-network simulations,” npj Comput. Mater. 8, 139
(2022).
68Y. Shi, C. C. Doyle, and T. L. Beck, “Condensed phase water molecular multipole
moments from deep neural network models trained on ab initio simulation data,”
J. Phys. Chem. Lett. 12, 10310–10317 (2021).
69F. Matusalem, J. Santos Rego, and M. de Koning, “Plastic deformation of
superionic water ices,” Proc. Natl. Acad. Sci. U. S. A. 119, e2203397119 (2022).
70Y. Zhai, A. Caruso, S. L. Bore, Z. Luo, and F. Paesani, “A ‘short blanket’ dilemma
for a state-of-the-art neural network potential for water: Reproducing experimen-
tal properties or the physics of the underlying many-body interactions?,” J. Chem.
Phys. 158, 084111 (2023).
71S. L. Bore and F. Paesani, “Realistic phase diagram of water from “first
principles” data-driven quantum simulations,” Nat Commun 14, 3349 (2023).
72J. Zeng, Y. Tao, T. J. Giese, and D. M. York, “QDπ: A quantum deep potential
interaction model for drug discovery,” J. Chem. Theory Comput. 19, 1261–1275
(2023).
73C. Zhang, S. Yue, A. Z. Panagiotopoulos, M. L. Klein, and X. Wu, “Dissolving
salt is not equivalent to applying a pressure on water,” Nat. Commun. 13, 822
(2022).
74M. Yang, L. Bonati, D. Polino, and M. Parrinello, “Using metadynamics to build
neural network potentials for reactive events: The case of urea decomposition in
water,” Catal. Today 387, 143–149 (2022).
75T. J. Giese, J. Zeng, Ş. Ekesan, and D. M. York, “Combined QM/MM, machine
learning path integral approach to compute free energy profiles and kinetic iso-
tope effects in RNA cleavage reactions,” J. Chem. Theory Comput. 18, 4304–4317
(2022).
76J. Liu, R. Liu, Y. Cao, and M. Chen, “Solvation structures of calcium and mag-
nesium ions in water with the presence of hydroxide: A study by deep potential
molecular dynamics,” Phys. Chem. Chem. Phys. 25, 983–993 (2023).
77J. Zeng, L. Cao, M. Xu, T. Zhu, and J. Z. H. Zhang, “Complex reaction pro-
cesses in combustion unraveled by neural network-based molecular dynamics
simulation,” Nat. Commun. 11, 5713 (2020).

78J. Zeng, L. Zhang, H. Wang, and T. Zhu, “Exploring the chemical space of linear
alkane pyrolysis via deep potential GENerator,” Energy Fuels 35, 762–769 (2021).
79Q. Chu, K. H. Luo, and D. Chen, “Exploring complex reaction networks using
neural network-based molecular dynamics simulation,” J. Phys. Chem. Lett. 13,
4052–4057 (2022).
80B. Wang, J. Zeng, L. Cao, C.-H. Chin, D. York, T. Zhu, and J. Zhang, “Growth
of polycyclic aromatic hydrocarbon and soot inception by in silico simulation,”
chemrxiv-2022-qp8fc (2022).
81Z. Wang, Y. Han, J. Li, and X. He, “Combining the fragmentation approach and
neural network potential energy surfaces of fragments for accurate calculation of
protein energy,” J. Phys. Chem. B 124, 3027–3035 (2020).
82Y. Han, Z. Wang, Z. Wei, J. Liu, and J. Li, “Machine learning builds full-QM
precision protein force fields in seconds,” Briefings Bioinf. 22, bbab158 (2021).
83M. F. Calegari Andrade, H.-Y. Ko, L. Zhang, R. Car, and A. Selloni, “Free
energy of proton transfer at the water-TiO2 interface from ab initio deep potential
molecular dynamics,” Chem. Sci. 11, 2335–2341 (2020).
84M. Galib and D. T. Limmer, “Reactive uptake of N2O5 by atmospheric aerosol
is dominated by interfacial processes,” Science 371, 921–925 (2021).
85Y.-B. Zhuang, R.-H. Bi, and J. Cheng, “Resolving the odd–even oscillation
of water dissociation at rutile TiO2(110)–water interface by machine learning
accelerated molecular dynamics,” J. Chem. Phys. 157, 164701 (2022).
86M. de la Puente, R. David, A. Gomez, and D. Laage, “Acids at the edge: Why
nitric and formic acid dissociations at air–water interfaces depend on depth and
on interface specific area,” J. Am. Chem. Soc. 144, 10524–10529 (2022).
87S. P. Niblett, M. Galib, and D. T. Limmer, “Learning intermolecular forces at
liquid-vapor interfaces,” J. Chem. Phys. 155, 164101 (2021).
88L. Zhang, H. Wang, R. Car, and W. E, “Phase diagram of a deep potential water
model,” Phys. Rev. Lett. 126, 236001 (2021).
89J. Zeng, Y. Tao, T. J. Giese, and D. M. York, “Modern semiempirical elec-
tronic structure methods and machine learning potentials for drug discovery:
Conformers, tautomers, and protonation states,” J. Chem. Phys. 158, 124110
(2023).
90W.-K. Chen, X.-Y. Liu, W.-H. Fang, P. O. Dral, and G. Cui, “Deep learning for
nonadiabatic excited-state dynamics,” J. Phys. Chem. Lett. 9, 6702–6708 (2018).
91C. Vega and J. L. F. Abascal, “Simulating water with rigid non-polarizable
models: A general perspective,” Phys. Chem. Chem. Phys. 13, 19663–19688
(2011).
92E. Sanz, C. Vega, J. L. F. Abascal, and L. G. MacDowell, “Phase diagram of water
from computer simulation,” Phys. Rev. Lett. 92, 255701 (2004).
93T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log(N)
method for Ewald sums in large systems,” J. Chem. Phys. 98, 10089–10092 (1993).
94T. J. Giese, M. T. Panteva, H. Chen, and D. M. York, “Multipolar Ewald
methods, 1: Theory, accuracy, and performance,” J. Chem. Theory Comput. 11,
436–450 (2015).
95T. J. Giese, M. T. Panteva, H. Chen, and D. M. York, “Multipolar Ewald meth-
ods, 2: Applications using a quantum mechanical force field,” J. Chem. Theory
Comput. 11, 451–461 (2015).
96K. Nam, J. Gao, and D. M. York, “An efficient linear-scaling Ewald method for
long-range electrostatic interactions in combined QM/MM calculations,” J. Chem.
Theory Comput. 1, 2–13 (2005).
97T. J. Giese and D. M. York, “Ambient-potential composite Ewald method
for ab initio quantum mechanical/molecular mechanical molecular dynamics
simulation,” J. Chem. Theory Comput. 12, 2611–2632 (2016).
98T. J. Giese, M. Huang, H. Chen, and D. M. York, “Recent advances toward a gen-
eral purpose linear-scaling quantum force field,” Acc. Chem. Res. 47, 2812–2820
(2014).
99T. J. Giese and D. M. York, “Quantum mechanical force fields for condensed
phase molecular simulations,” J. Phys.: Condens. Matter 29, 383002 (2017).
100T. J. Giese, J. Zeng, and D. M. York, “Multireference generalization of
the weighted thermodynamic perturbation method,” J. Phys. Chem. A 126,
8519–8533 (2022).
101T. J. Martínez, “Ab initio reactive computer aided molecular design,” Acc.
Chem. Res. 50, 652–656 (2017).

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-22

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.1021/acs.jpcc.1c01411
https://doi.org/10.1103/physrevlett.121.265701
https://doi.org/10.1016/j.carbon.2021.09.062
https://doi.org/10.1016/j.mtphys.2020.100181
https://doi.org/10.1103/PhysRevE.102.052125
https://doi.org/10.1080/00268976.2019.1652366
https://doi.org/10.1103/physrevb.102.214113
https://doi.org/10.1021/acs.jpclett.0c02547
https://doi.org/10.1103/physrevb.102.115155
https://doi.org/10.1073/pnas.2015440117
https://doi.org/10.1103/physrevb.104.224202
https://doi.org/10.1103/physrevb.104.224202
https://doi.org/10.1038/s41524-022-00830-7
https://doi.org/10.1021/acs.jpclett.1c02328
https://doi.org/10.1073/pnas.2203397119
https://doi.org/10.1063/5.0142843
https://doi.org/10.1063/5.0142843
https://doi.org/10.1021/acs.jctc.2c01172
https://doi.org/10.1038/s41467-022-28538-8
https://doi.org/10.1016/j.cattod.2021.03.018
https://doi.org/10.1021/acs.jctc.2c00151
https://doi.org/10.1039/d2cp04105g
https://doi.org/10.1038/s41467-020-19497-z
https://doi.org/10.1021/acs.energyfuels.0c03211
https://doi.org/10.1021/acs.jpclett.2c00647
https://doi.org/10.1021/acs.jpcb.0c01370
https://doi.org/10.1093/bib/bbab158
https://doi.org/10.1039/c9sc05116c
https://doi.org/10.1126/science.abd7716
https://doi.org/10.1063/5.0126333
https://doi.org/10.1021/jacs.2c03099
https://doi.org/10.1063/5.0067565
https://doi.org/10.1103/physrevlett.126.236001
https://doi.org/10.1063/5.0139281
https://doi.org/10.1021/acs.jpclett.8b03026
https://doi.org/10.1039/c1cp22168j
https://doi.org/10.1103/physrevlett.92.255701
https://doi.org/10.1063/1.464397
https://doi.org/10.1021/ct5007983
https://doi.org/10.1021/ct500799g
https://doi.org/10.1021/ct500799g
https://doi.org/10.1021/ct049941i
https://doi.org/10.1021/ct049941i
https://doi.org/10.1021/acs.jctc.6b00198
https://doi.org/10.1021/ar500103g
https://doi.org/10.1088/1361-648x/aa7c5c
https://doi.org/10.1021/acs.jpca.2c06201
https://doi.org/10.1021/acs.accounts.7b00010
https://doi.org/10.1021/acs.accounts.7b00010

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

102J. Zeng, L. Cao, C.-H. Chin, H. Ren, J. Z. H. Zhang, and T. Zhu,
“ReacNetGenerator: An automatic reaction network generator for reactive
molecular dynamics simulations,” Phys. Chem. Chem. Phys. 22, 683–691 (2020).
103L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly
accurate interatomic potentials for materials simulation,” Phys. Rev. Mater. 3,
023804 (2019).
104L. Cao, J. Zeng, B. Wang, T. Zhu, and J. Z. Zhang, “Ab initio neural network
MD simulation of thermal decomposition of high energy material CL-20/TNT,”
Phys. Chem. Chem. Phys. 24, 11801–11811 (2022).
105L. Zhang, M. Chen, X. Wu, H. Wang, W. E, and R. Car, “Deep neural network
for the dielectric response of insulators,” Phys. Rev. B 102, 041121 (2020).
106G. M. Sommers, M. F. C. Andrade, L. Zhang, H. Wang, and R. Car, “Raman
spectrum and polarizability of liquid water from deep neural networks,” Phys.
Chem. Chem. Phys. 22, 10592–10602 (2020).
107Y. Zhang, H. Wang, W. Chen, J. Zeng, L. Zhang, W. Han, and W. E, “DP-GEN:
A concurrent learning platform for the generation of reliable deep learning based
potential energy models,” Comput. Phys. Commun. 253, 107206 (2020).
108D. Lu, H. Wang, M. Chen, L. Lin, R. Car, W. E, W. Jia, and L. Zhang, “86
PFLOPS deep potential molecular dynamics simulation of 100 million atoms with
ab initio accuracy,” Comput. Phys. Commun. 259, 107624 (2021).
109D. Lu, W. Jiang, Y. Chen, L. Zhang, W. Jia, H. Wang, and M. Chen, “DP
compress: A model compression scheme for generating efficient deep potential
models,” J. Chem. Theory Comput. 18, 5559–5567 (2022).
110P. Mo, C. Li, D. Zhao, Y. Zhang, M. Shi, J. Li, and J. Liu, “Accurate and effi-
cient molecular dynamics based on machine learning and non von Neumann
architecture,” npj Comput. Mater. 8, 107 (2022).
111K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Computer Vision–ECCV 2016 (Springer International Publishing,
2016), pp. 630–645.
112V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning (ICML’10) (Omnipress, Madison, WI, 2010), pp.
807–814.
113X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, edited by G. Gordon, D. Dunson, and M. Dudík (Proceedings of
Machine Learning Research, Fort Lauderdale, FL, 2011), Vol. 15, pp. 315–323.
114D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
arXiv:1606.08415 [cs.LG] (2020).
115L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran,
J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon,
D. Parikh, C. L. Zitnick, and Z. Ulissi, “Open catalyst 2020 (OC20) dataset and
community challenges,” ACS Catal. 11, 6059–6072 (2021).
116J. Gasteiger, M. Shuaibi, A. Sriram, S. Günnemann, Z. Ulissi, C. L.
Zitnick, and A. Das, “GemNet-OC: Developing graph neural networks for
large and diverse molecular simulation datasets,” Transactions on Machine
Learning Research (published online, 2022); available at https://dblp.org/
db/journals/tmlr/tmlr2022.html [cs.LG] (2022).
117A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates, Inc.,
2017), Vol. 30.
118M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing (Association for
Computational Linguistics, Lisbon, Portugal, 2015), pp. 1412–1421
119Y. Zhang, C. Gao, Q. Liu, L. Zhang, H. Wang, and M. Chen, “Warm dense
matter simulation via electron temperature dependent deep potential molecular
dynamics,” Phys. Plasmas 27, 122704 (2020).
120T.-S. Lee, D. S. Cerutti, D. Mermelstein, C. Lin, S. LeGrand, T. J. Giese, A.
Roitberg, D. A. Case, R. C. Walker, and D. M. York, “GPU-accelerated molecular
dynamics and free energy methods in Amber18: Performance enhancements and
new features,” J. Chem. Inf. Model. 58, 2043–2050 (2018).

121J. Yang, Y. Cong, and H. Li, “A new machine learning approach based on range
corrected deep potential model for efficient vibrational frequency computation,”
arXiv:2303.15969 (2023).
122J. F. Ziegler and J. P. Biersack, “The stopping and range of ions in matter,” in
Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed
Matter, edited by D. A. Bromley (Springer, Boston, MA, 1985), pp. 93–129.
123H. Wang, X. Guo, L. Zhang, H. Wang, and J. Xue, “Deep learning inter-atomic
potential model for accurate irradiation damage simulations,” Appl. Phys. Lett.
114, 244101 (2019).
124D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proceedings of the 3rd International Conference for Learning Representations
(ICLR), 2015.
125M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015, software available from tensorflow.org.
126J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA: Is CUDA the parallel programming model that application
developers have been waiting for?,” Queue 6, 40–53 (2008).
127AMD, Inc., ROCm—Open Source Platform for HPC and Ultrascale GPU
Computing, 2023.
128C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P.
Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature 585, 357–362
(2020).
129A. Collette, Python and HDF5: Unlocking Scientific Data (O’Reilly Media, Inc.,
2013).
130K. Martin and B. Hoffman, Mastering CMake: Version 3.1, Kitware Incorpo-
rated, 2015.
131J.-C. Fillion-Robin, M. McCormick, O. Padron, M. Smolens, M. Grauer, and
M. Sarahan, jcfr/scipy_2018_scikit-build_talk: Scipy 2018 talk—Scikit-build: A
build system generator for cpython c/c++/fortran/cython extensions, 2018.
132G. Van Rossum and Python Development Team, The Python Library
Reference, 12th Media Services, Suwanee, GA, 2018.
133Google, Inc., GoogleTest–Google Testing and Mocking Framework, 2023.
134L. Dagum and R. Menon, “OpenMP: An industry standard API for shared-
memory programming,” IEEE Comput. Sci. Eng. 5, 46–55 (1998).
135E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V.
Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L.
Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, edited by D. Kranzlmüller, P. Kacsuk, and J. Dongarra
(Springer, Berlin, Heidelberg, 2004), pp. 97–104.
136W. Gropp, “MPICH2: A new start for MPI implementations,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface (Springer,
Berlin, Heidelberg, 2002), p. 7.
137A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep learning
in TensorFlow,” arXiv:1802.05799 (2018).
138P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A.
Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: Training ImageNet in
1 hour,” arXiv:1706.02677 (2017).
139L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Comput. Sci. Eng. 23, 47–54 (2021).
140A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).
141D. A. Case, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E.
Cheatham III, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, G. Giambasu, M. K.
Gilson, H. Gohlke, A. W. Goetz, R. Harris, S. Izadi, S. A. Izmailov, K. Kasavajhala,

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-23

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.1039/c9cp05091d
https://doi.org/10.1103/physrevmaterials.3.023804
https://doi.org/10.1039/d2cp00710j
https://doi.org/10.1103/physrevb.102.041121
https://doi.org/10.1039/d0cp01893g
https://doi.org/10.1039/d0cp01893g
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107624
https://doi.org/10.1021/acs.jctc.2c00102
https://doi.org/10.1038/s41524-022-00773-z
http://arxiv.org/abs/1606.08415
https://doi.org/10.1021/acscatal.0c04525
https://dblp.org/db/journals/tmlr/tmlr2022.html
https://dblp.org/db/journals/tmlr/tmlr2022.html
https://doi.org/10.1063/5.0023265
https://doi.org/10.1021/acs.jcim.8b00462
http://arxiv.org/abs/2303.15969
https://doi.org/10.1063/1.5098061
http://tensorflow.org
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/99.660313
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1706.02677
https://doi.org/10.1109/mcse.2021.3083216
https://doi.org/10.1016/j.cpc.2021.108171

The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

K. Kovalenko, R. Krasny, T. Kurtzman, T. Lee, S. Le-Grand, P. Li, C. Lin, J. Liu,
T. Luchko, R. Luo, V. Man, K. Merz, Y. Miao, O. Mikhailovskii, G. Monard, , H.
Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D. R. Roe, A. Roitberg, C. Sagui,
S. Schott-Verdugo, J. Shen, C. L. Simmerling, N. Skrynnikov, J. Smith, J. Swails,
R. C. Walker, J. Wang, R. M. Wilson, R. M. Wolf, X. Wu, Y. Xiong, Y. Xue, D. M.
York, and P. A. Kollman, AMBER 20, University of California, San Francisco, CA,
2020.
142T. Komiya, G. Brandl, T. Shimizukawa, J. L. Andersen, A. Turner, S. Finucane,
R. Lehmann, T. Kampik, J. Magin, J. Dufresne, J. Waltman, J. L. C. Rodríguez, A.
Ronacher, M. Geier, D. Shachnev, R. Ruana, P. Virtanen, F. Freitag, L. Maddox,
M. Liška, H. Xu, E. Wieser, J. Maitin-Shepard, N. Kaneko, and cocoatomo, sphinx-
doc/sphinx: v7.0.0, 2023.
143D. van Heesch, Doxygen: Source Code Documentation Generator Tool, 2022.
144Conda-Forge Community, The Conda-Forge Project: Community-Based
Software Distribution Built on the Conda Package Format and Ecosystem, 2015.
145F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foundations of
JSON schema,” in Proceedings of the 25th International Conference on World Wide
Web (International World Wide Web Conferences Steering Committee, 2016),
pp. 263–273.
146O. Ben-Kiki, C. Evans, and I. döt Net, “YAML Ain’t Markup Language
(YAMLTM) version 1.2, 2009.
147Q. Koziol and D. Robinson, HDF5, 2018.
148A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M.
Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings,
P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S.
Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Ros-
tgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen,
M. Walter, Z. Zeng, and K. W. Jacobsen, “The atomic simulation environment—A
python library for working with atoms,” J. Phys.: Condens. Matter 29, 273002
(2017).
149W. Laosi, H. Gao, Y. Han, C. Ding, P. Shuning, Y. Wang, J. Qiuhan, H.-T.
Wang, D. Xing, and J. Sun, “MAGUS: Machine learning and graph theory assisted
universal structure searcher,” Natl. Sci. Rev. 10, nwad128 (2023).
150S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J.
Comput. Phys. 117, 1–19 (1995).
151V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng,
A. Cuzzocrea, R. H. Meißner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P.
Bienvenue, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C.
Corminboeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O. Richard-
son, A. Tkatchenko, G. A. Tribello, V. V. Speybroeck, and M. Ceriotti, “i-PI 2.0:
A universal force engine for advanced molecular simulations,” Comput. Phys.
Commun. 236, 214–223 (2019).
152M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lin-
dahl, “GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers,” SoftwareX 1–2, 19–25 (2015).
153P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A.
Beauchamp, L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern et al.,
“OpenMM 7: Rapid development of high performance algorithms for molecular
dynamics,” PLoS Comput. Biol. 13, e1005659 (2017).
154Y. Ding and J. Huang (2023). “Implementation and validation of an
openmm plugin for the deep potential representation of potential energy,”
https://github.com/JingHuangLab/openmm_deepmd_plugin.
155P. Li, X. Liu, M. Chen, P. Lin, X. Ren, L. Lin, C. Yang, and L. He, “Large-scale
ab initio simulations based on systematically improvable atomic basis,” Comput.
Mater. Sci. 112, 503–517 (2016).
156P. M. Piaggi, J. Weis, A. Z. Panagiotopoulos, P. G. Debenedetti, and R. Car,
“Homogeneous ice nucleation in an ab initio machine-learning model of water,”
Proc. Natl. Acad. Sci. U. S. A. 119, e2207294119 (2022).

157S. K. Achar, J. J. Wardzala, L. Bernasconi, L. Zhang, and J. K. Johnson,
“Combined deep learning and classical potential approach for modeling diffusion
in UiO-66,” J. Chem. Theory Comput. 18, 3593–3606 (2022).
158P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,”
Ann. Phys. 369, 253–287 (1921).
159T. A. Barnes, E. Marin-Rimoldi, S. Ellis, and T. D. Crawford, “The MolSSI
driver interface project: A framework for standardized, on-the-fly interoperabil-
ity between computational molecular sciences codes,” Comput. Phys. Commun.
261, 107688 (2021).
160H.-C. Tsai, T.-S. Lee, A. Ganguly, T. J. Giese, M. C. Ebert, P. Labute, K. M.
Merz, Jr., and D. M. York, “AMBER free energy tools: A new framework for
the design of optimized alchemical transformation pathways,” J. Chem. Theory
Comput. 19, 640–658 (2023).
161T.-S. Lee, H.-C. Tsai, A. Ganguly, and D. M. York, “ACES: Optimized
alchemically enhanced sampling,” J. Chem. Theory Comput. 19, 472–487 (2023).
162A. Ganguly, H.-C. Tsai, M. Fernández-Pendás, T.-S. Lee, T. J. Giese, and D. M.
York, “AMBER drug discovery boost tools: Automated workflow for production
free-energy simulation setup and analysis (ProFESSA),” J. Chem. Inf. Model. 62,
6069–6083 (2022).
163T. J. Giese and D. M. York, “Development of a robust indirect approach
for MM → QM free energy calculations that combines force-matched reference
potential and Bennett’s acceptance ratio methods,” J. Chem. Theory Comput. 15,
5543–5562 (2019).
164Y. Chen, L. Zhang, H. Wang, and W. E, “DeePKS-kit: A package for devel-
oping machine learning-based chemically accurate energy and density functional
models,” Comput. Phys. Commun. 282, 108520 (2023).
165X. Wang, J. Li, L. Yang, F. Chen, Y. Wang, J. Chang, J. Chen, L. Zhang, and
K. Yu, “DMFF: An open-source automatic differentiable platform for molecular
force field development and molecular dynamics simulation,” Physical Chemistry
(published online, 2022).
166H. Li, Z. Wang, N. Zou, M. Ye, R. Xu, X. Gong, W. Duan, and Y. Xu, “Deep-
learning density functional theory Hamiltonian for efficient ab initio electronic-
structure calculation,” Nat. Comput. Sci. 2, 367–377 (2022).
167R. Mao, M. Lin, Y. Zhang, T. Zhang, Z.-Q. J. Xu, and Z. X. Chen, “DeepFlame:
A deep learning empowered open-source platform for reacting flow simulations,”
Computer Physics Communications (to be published).
168N. Rego and D. Koes, “3Dmol.js: Molecular visualization with WebGL,”
Bioinformatics 31, 1322–1324 (2015).
169E. You, Vue.js—The Progressive JavaScript Framework, 2023.
170L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly
accurate interatomic potentials for materials simulation,” Phys. Rev. Mater. 3,
023804 (2019).
171W. Jiang, D. Zhang, S. Yao, L. Zhang, H. Wang, and F. Dai, “Hybrid Monte
Carlo-molecular dynamics simulation of order-disorder transition in refractory
high entropy alloys using deep potential model reliable in the full concentration
space” (unpublished) (2023).
172C. Adamo and V. Barone, “Toward reliable density functional methods with-
out adjustable parameters: The PBE0 model,” J. Chem. Phys. 110, 6158–6170
(1999).
173P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953
(1994).
174J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxima-
tion made simple,” Phys. Rev. Lett. 77, 3865 (1996).
175N. Mardirossian and M. Head-Gordon, “ωB97M-V: A combinatorially opti-
mized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal
correlation,” J. Chem. Phys. 144, 214110 (2016).
176A. Najibi and L. Goerigk, “DFT-D4 counterparts of leading meta-generalized-
gradient approximation and hybrid density functionals for energetics and
geometries,” J. Comput. Chem. 41, 2562–2572 (2020).

J. Chem. Phys. 159, 054801 (2023); doi: 10.1063/5.0155600 159, 054801-24

© Author(s) 2023

 03 August 2023 18:53:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1093/nsr/nwad128
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1371/journal.pcbi.1005659
https://github.com/JingHuangLab/openmm_deepmd_plugin
https://doi.org/10.1016/j.commatsci.2015.07.004
https://doi.org/10.1016/j.commatsci.2015.07.004
https://doi.org/10.1073/pnas.2207294119
https://doi.org/10.1021/acs.jctc.2c00010
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1016/j.cpc.2020.107688
https://doi.org/10.1021/acs.jctc.2c00725
https://doi.org/10.1021/acs.jctc.2c00725
https://doi.org/10.1021/acs.jctc.2c00697
https://doi.org/10.1021/acs.jcim.2c00879
https://doi.org/10.1021/acs.jctc.9b00401
https://doi.org/10.1016/j.cpc.2022.108520
https://doi.org/10.26434/chemrxiv-2022-2c7gv
https://doi.org/10.1038/s43588-022-00265-6
https://doi.org/10.1016/j.cpc.2023.108842
https://doi.org/10.1093/bioinformatics/btu829
https://doi.org/10.1103/physrevmaterials.3.023804
https://doi.org/10.1063/1.478522
https://doi.org/10.1103/physrevb.50.17953
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1063/1.4952647
https://doi.org/10.1002/jcc.26411

