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ABSTRACT: We describe the generalized weighted thermody-
namic perturbation (gwTP) method for estimating the free energy
surface of an expensive “high-level” potential energy function from
the umbrella sampling performed with multiple inexpensive “low-
level” reference potentials. The gwTP method is a generalization of
the weighted thermodynamic perturbation (wTP) method
developed by Li and co-workers [J. Chem. Theory Comput.
2018, 14, 5583−5596] that uses a single “low-level” reference
potential. The gwTP method offers new possibilities in model
design whereby the sampling generated from several low-level
potentials may be combined (e.g., specific reaction parameter
models that might have variable accuracy at different stages of a
multistep reaction). The gwTP method is especially well suited for use with machine learning potentials (MLPs) that are trained
against computationally expensive ab initio quantum mechanical/molecular mechanical (QM/MM) energies and forces using active
learning procedures that naturally produce multiple distinct neural network potentials. Simulations can be performed with greater
sampling using the fast MLPs and then corrected to the ab initio level using gwTP. The capabilities of the gwTP method are
demonstrated by creating reference potentials based on the MNDO/d and DFTB2/MIO semiempirical models supplemented with
the “range-corrected deep potential” (DPRc). The DPRc parameters are trained to ab initio QM/MM data, and the potentials are
used to calculate the free energy surface of stepwise mechanisms for nonenzymatic RNA 2′-O-transesterification model reactions.
The extended sampling made possible by the reference potentials allows one to identify unequilibrated portions of the simulations
that are not always evident from the short time scale commonly used with ab initio QM/MM potentials. We show that the reference
potential approach can yield more accurate ab initio free energy predictions than the wTP method or what can be reasonably
afforded from explicit ab initio QM/MM sampling.

■ INTRODUCTION
The study of chemical mechanisms of complex systems1 has
broad application in areas of heterogeneous, homogeneous,
and enzyme catalysis,2 synthetic chemistry,3 and chemical
education.4 The chemical mechanism is often explored
through calculation of a free energy surface (FES) in a
reduced set of collective variables referred to as reaction
coordinates.5 The FES is used to characterize the location and
free energy values of competitive reactive pathways connecting
the reactant and product states. Numerous methods have been
developed to calculate FESs from combined quantum
mechanical/molecular mechanical (QM/MM) simulation.
The approaches have been classified into three categories:6

methods based on the work of Jarzynski7 which analyze
nonequilibrium statistics,8−10 methods that analyze equili-
brium statistics generated from biased simulations (umbrella
sampling),11−14 and methods which introduce and integrate
auxiliary degrees of freedom, such as λ-dynamics15−18 and
metadynamics.19,20

Umbrella sampling is a technique that applies an artificial
bias to improve sampling efficiency. That is to say, a bias can

be chosen to enhance the sampling in the high-energy regions
of the FES that would otherwise be difficult to sample on a
reasonable time scale. If the FES was known a priori, then
uniform sampling could be achieved by introducing a bias that
exactly canceled the free energy. In practice, one instead
performs a series of biased simulations that restrain the
sampling to a particular region of reaction coordinates. The
umbrella potentials are often chosen to be uncoupled
harmonic oscillators, and the biased simulations differ by the
choice of biasing force constants and equilibrium positions;
however, the methods presented in the present work are
general and do not assume a specific functional form for the
biasing potential. For relatively simple mechanisms, the
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umbrella potentials can be chosen to span a predetermined
range of reaction coordinates; however, methods have been
developed to adaptively focus the sampling21−30 and locate
minimum free energy pathways.31−38 There are several analysis
techniques that can be used to reconstruct the FES from the
biased simulations, including the weighted histogram analysis
method (WHAM),39,40 unbinned WHAM (UWHAM),41,42

the multistate Bennett acceptance ratio method (MBAR),43

the variational free energy profile (vFEP) method,44−46 and
umbrella integration.47−49

A series of recent studies have introduced the weighted
thermodynamic perturbation (wTP) method.50−55 This
method estimates the FES of an expensive target potential
from the umbrella sampling performed with a cost-effective
reference potential. One can view the wTP method as being
analogous to the reference potential method encountered in
alchemical free energy applications,56−59 and the accuracy of
the wTP method similarly relies on close agreement between
the target and reference potentials.60 By performing simu-
lations with an inexpensive reference potential, much greater
sampling can be achieved through longer and/or more
numerous independent simulations. Therefore, the wTP
method is complimentary to other approaches that extend
the sampling, such as multiple timestep integration.61 Analysis
of the extended simulations is useful for identifying
unequilibrated sampling, and extended simulations become
necessary in situations where multiple structural conformations
are thermally accessible.

In the present work, we describe the generalized weighted
thermodynamic perturbation (gwTP) method. The gwTP
method estimates the FES of an expensive target potential
from the aggregate umbrella sampling performed with multiple
reference potentials. By combining the sampling, one no longer
relies on a single reference potential to obtain good phase
space overlap with the target potential throughout the entire
FES.59,62,63 Instead, only one of the reference potentials must
have good phase space overlap in each region of the FES. If all
of the potentials poorly overlapped with the target, then no
reweighting strategy is likely to succeed from a limited number
of target potential evaluations. Thus, it is important to have a
quantitative measure of agreement between the reference and
target potentials to gauge the reliability of the approach. The
“reweighting entropy (RE)” is an index developed specifically
for this purpose,64 and we shall discuss it in more detail in
subsequent sections. We were motivated to develop the gwTP
method by the growing interest in supplementing semi-
empirical QM/MM Hamiltonians with machine learning
potentials (MLP) that are trained to reproduce ab initio
QM/MM energies and forces.51,65−75 If one had a priori
confidence in the trained MLP, then one obviously can use it
to estimate FESs without additional correction; however, if one
is applying an MLP to a system that was not explicitly included
in the training, then an MLP-corrected model naturally serves
as an excellent reference potential to estimate the ab initio FES
from reweighting. Furthermore, the active learning procedure
used to train MLPs produces several neural network parameter
sets (several potentials),76,77 and the gwTP method provides a
means to estimate the ab initio FES from the aggregate
sampling performed with each potential. As multiple
independent simulation runs are typically performed in order
to produce robust averages and error estimates, the use of
different reference potentials can often be accommodated for
no added computational cost. The gwTP framework further

offers new possibilities in model design. Because the gwTP
method can combine the sampling from several “specific
reaction parameter” (SRP) models,78−80 one can design several
potentials that specialize their training to reproduce different
chemical events embodied within a complex chemical
mechanism, such as the general acid, general base, and
phosphoryl transfer steps in RNA cleavage reactions.81

Alternatively, one could parametrize several potentials that
are trained to model the 2′-O-transesterification reaction in
different RNA environments and then perform sampling with
each potential when exploring the mechanism in an RNA
environment not included in the training. In the above-
mentioned discussion, the trained MLPs are used to perform
the sampling; however, MLPs can also be utilized in another
strategy whereby an uncorrected reference potential is
sampled, and an MLP is trained to a small number of
configurations to estimate the target potential energies
required for thermodynamic perturbation.68,82−84

We apply the gwTP method to two nonenzymatic RNA 2′-
O-transesterification model reactions shown in Figure 1. The

mechanism of closely related nonenzymatic phosphoryl
transfer reactions have been explored with linear free energy
relationships85,86 and through the calculation of FESs.87,88

These previous studies found that the pathway is correlated to
the pKa of the leaving group. Leaving groups with a pKa < 11
(“enhanced” leaving groups) proceed through a concerted
mechanism containing a single, “early” (ξPT < 0) transition
state, whereas leaving groups with a pKa > 12 (“poor” leaving
groups) proceed through two distinct barriers separated by a
minimum. The methoxide and ethoxide leaving groups shown
in Figure 1 are “poor” leaving groups, so the FESs are expected
to contain an early transition state characterized by partial
formation of the O2′−P bond and a second rate-controlling
transition state characterized by partial cleavage of the O5′−P
bond.

The ethylene phosphate reaction (Figure 1a) is used to
demonstrate the gwTP method’s ability to reconstruct a
PBE0/6-31G* target FES from the sampling obtained from
four disparate reference potentials. For the purpose of
providing a stringent test case for demonstration, the four
reference potentials were specifically designed such that none
of them accurately reproduce the target FES throughout the
entire range of ξPT values. The reference potentials use the
MNDO/d semiempirical Hamiltonian supplemented with a
range-corrected deep potential76,88 (DPRc) MLP. We trained

Figure 1. Nonenzymatic RNA 2′-O-transesterification model
reactions explored in this work (atomic numbering of 2′ and 5′
positions in the model systems reflect their analogous positions in
RNA). (a) Ethylene phosphate model reaction with a methoxide
leaving group. (b) Native model reaction used in ref 88 with an
ethoxide leaving group. The reaction coordinate used in this work is
ξPT = RP−O5′ − RP−O2′.
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four ad hoc MNDO/d QM/MM + DPRc potentials using
different target data to yield significantly different reference
potentials. Each MNDO/d QM/MM + DPRc potential was
trained to reproduce the PBE0/6-31G* target energies and
forces at different stages along the reaction coordinate (i.e.,
different subdomains of the ξPT reaction coordinate) such that
the reference potentials disagree with each other and the target
in the regions they were not trained. We will show that the
wTP estimates of the target FES (based on a single reference
potential) are inaccurate in the untrained regions, whereas the
gwTP analysis of the aggregate sampling from all reference
potentials accurately reproduces the PBE0/6-31G* surface.

The native model reaction (Figure 1b) is used as a case
study to emphasize the benefits offered by the reference
potential approach. This reaction was one of the six
nonenzymatic models used to parametrize the DFTB2/MIO
QM/MM + DPRc potentials in ref 88. FESs of the PBE0/6-
31G* QM/MM, DFTB2/MIO QM/MM, and DFTB2/MIO
QM/MM + DPRc potentials were obtained from identical
simulation protocols. The DPRc correction was shown to
improve the comparison with the ab initio results; however,
some discrepancies between the PBE0/6-31G* QM/MM and
DFTB2/MIO QM/MM + DPRc native model profiles
remained. In the present work, we revisit the calculation of
the native model FES. We show that gwTP analysis of the
DFTB2/MIO QM/MM + DPRc sampling performed in ref 88
results in excellent agreement with the PBE0/6-31G* FES.
Furthermore, we extend the DFTB2/MIO QM/MM + DPRc
sampling from 100 ps/window to 1.2 ns/window of aggregate
sampling�an amount of sampling well beyond what is
routinely affordable using ab initio QM/MM simulation. The
extended sampling made possible by the reference potential
approach allows us to demonstrate that the native model
reaction ab initio QM/MM free energy profiles presented in
ref 88 are not converged. We show that a better estimate of the
ab initio FES can be made using reference potentials with
extended sampling than what can reasonably be afforded from
ab initio QM/MM simulation.

■ THEORY
Multistate Bennett Acceptance Ratio Method. In this

section, we introduce our notation by reviewing the MBAR
approach for calculating FESs. The description also serves to
aid the reader’s understanding of the differences between the
MBAR, wTP, and gwTP methods. The FES of a system
composed of 3N atomic coordinates r is typically expressed in
a reduced set of relevant collective variables ξ(r), called
reaction coordinates. Umbrella sampling is used to enhance the
statistics in the high-energy regions of the FES by performing a
series of Kh simulations of biased potential energy (PE)
functions Uhk(r) that differ only by varying the bias Whk(r)
applied to the unbiased potential Uh(r).

U U Wr r r( ) ( ) ( )hk h hk= + (1)

The subscripts h and k denote the unbiased PE function and
biasing potential, respectively, and one can interpret (hk) as a
combined index of biased states. The goal is to use MBAR to
analyze the biased sampling performed with Uhk(r) to estimate
the unbiased FES of Uh(r). One could write the MBAR
expressions without introducing the h subscript because only a
single unbiased PE function is ever considered; however, the
utility of its inclusion will become apparent when describing
the wTP and gwTP methods in the ensuing sections. A

simulation performed with Uhk(r) at temperature Thk produces
an ensemble of Nhk structures. The 3N array of atomic
coordinates of sample n in the ensemble of state hk is denoted
as rhkn. We write the PE and biasing potential in reduced
e n e r g y u n i t s : u Ur r( ) ( )hk h k n h k hk h k n= ,
u Ur r( ) ( )h h k n h k h h k n= , a n d w Wr r( ) ( )hk h k n h k hk h k n=
where k T( )hk hkB

1= and kB is the Boltzmann constant.
The unbiased FES Fh(ξ) is, to within an additive constant,

related to the probability of observing a sample at ξ, ρh(ξ).

F ( ) ln ( )h h
1= (2)

In practice, the probability is approximated by discretizing ξ
into histogram bins consisting of centers ξm and widths Δξ. Let
δ(ξm − ξ(rhkn)) denote the indicator function, which is 1 only
if the sample is contained within bin m.

r

r

( ( ))

1, if /2 ( ) /2

0, otherwise

m hkn

hknm=
< <l

moo
noo (3)

The probability of observing a sample in bin m is then given by
eq 4, where ωh(rhkn) is the weight of sample rhkn (see eq 6).

r r( ) ( ( )) ( )h m
k

K

n

N

m hkn h hkn
1 1

h hk

=
= = (4)

The MBAR expression for the FES of uh(r) within histogram m
is given by inserting eq 4 into eq 2.

F r r( ) ln ( ( )) ( )h m
k

K

n

N

m hkn h hkn
1

1 1

h hk

=
= = (5)

If the sampling was performed with an unbiased PE, then the
sample weights would be uniform and eqs 4 and 5 would
merely count the fraction of samples observed within each bin.
The situation is more complicated when umbrella sampling is
performed because the distributions are skewed by the artificial
bias. Reference 43 developed the equations to reweight
trajectories using MBAR, and ref 50 specialized these
equations to combine the biased sampling in FES applications.
The result of these previous developments is shown in eq 6.

f u

N f u

f

N f w

r
r

r

r

( )
exp ( )

exp ( )

exp( )

exp ( )

h hkn
h h hkn

k
K

hk hk hk hkn

h

k
K

hk hk hk hkn

1

1

h

h

=
[ ]

[ ]

=
[ ]

=

= (6)

The f hk values are the free energies (in reduced energy units)
of the Kh biased states obtained from solution to the MBAR/
UWHAM equations.

f
u

N f u

l K

r

r
ln

exp ( )

exp ( )
,

1, ,

hl
k

K

n

N
hl hkn

k
K

hk hk hk hkn

h

1 1 1

h hk

h
=

[ ]
[ ]

= ···
= = =

(7)

The f h value is the free energy of unbiased PE uh(r). The
numerator of eq 6 includes the factor f Qexp( )h h

1= ; this
factor is the inverse of the unbiased state’s partition function,
which formally normalizes the weights.43,50 In practice, the
normalization constant shifts the entire FES by a constant.
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f
u

N f u

r

r
ln

exp ( )

exp ( )h
k

K

n

N
h hkn

k
K

hk hk hk hkn1 1 1

h hk

h
= [ ]

[ ]= = = (8)

Weighted Thermodynamic Perturbation Method.
The wTP method has been developed over a series of recent
articles.50−55 The purpose of the method is to predict the FES
of an expensive “target” PE function from the umbrella
sampling performed with an inexpensive “reference” PE
function. The unbiased target ut(rhkn) and reference uh(rhkn)
PE functions of each sample are evaluated, and the energy
differences Δuth(rhkn) = ut(rhkn) − uh(rhkn) are used to predict
the target FES. In this sense, the wTP method is analogous to a
“reference potential method” often encountered in alchemical
free energy applications.

The wTP FES estimate of the unbiased target potential is
given by eqs 9 and 10.

F r r( ) ln ( ( )) ( )t m
k

K

n

N

m hkn t hkn
1

1 1

h hk

=
= = (9)

f u

N f u
r

r

r
( )

exp ( )

exp ( )
t hkn

t t hkn

k
K

hk hk hk hkn1
h

=
[ ]

[ ]= (10)

The f t quantity is the free energy of the unbiased target
potential.

f
u

N f u

r

r
ln

exp ( )

exp ( )t
k

K

n

N
t hkn

k
K

hk hk hk hkn1 1 1

h hk

h
= [ ]

[ ]= = = (11)

Multiplying the numerator and denominator of eq 10 by exp
[uh(rhkn)] allows one to rewrite the expression in terms of the
energy difference.

f u

N f w

u f f

r
r

r

r r

( )
exp ( )

exp ( )

( )exp ( ) exp( )

t hkn
t th hkn

k
K

hk hk hk hkn

h hkn th hkn t h

1
h

=
[ ]

[ ]

= [ ]
=

(12)

The second line of eq 12 suggests that one can interpret the
wTP method as effectively performing “exponential averaging”
between the reference and target potentials in each histogram
bin upon reweighting the biased simulations. The exp ( f t − f h)
factor is a ratio of partition functions that merely shifts the FES
by a constant.
Generalized Weighted Thermodynamic Perturbation

Method. The gwTP method extends the wTP approach by
considering situations where umbrella sampling has been
performed with NPE reference potentials. We place no
restrictions on the relationship between the sets of biasing
potentials used to enhance the sampling of each reference
potential, that is, Kh does not need to be the same as any other
Kh′, and whk(r) does not need to be the same as any other
wh′k′(r). It is for this precise reason why the biasing potentials
are written with both h and k subscripts. With this freedom,
there are a total of N Kh

N
hsim 1

PE= = biased states, and
expressions which sum all biased states must now be written
either as a double summation h

N
k
K

1 1
hPE

= = or by viewing hk as a

combined index of biased simulations hk
N
( ) 1

sim
= . The MBAR/

UWHAM equations for the solution of the Nsim biased free
energies are shown in eq 13.

f
u

N f u

il N

r

r
ln

exp ( )

exp ( )
,

( ) 1, ...,

il
h

N

k

K

n

N
il hkn

h
N

k
K

h k h k h k hkn1 1 1 1 1

sim

h hk

h

PE

PE
=

[ ]
[ ]

=
= = = = =

(13)

The target potential free energy (eq 14) and the target FES (eq
15) are similarly rewritten to account for the additional
umbrella sampling.

f
u

N f u

r

r
ln

exp ( )

exp ( )t
h

N

k

K

n

N
t hkn

h
N

k
K

h k h k h k hkn1 1 1 1 1

h hk

h

PE

PE
=

[ ]
[ ]= = = = =

(14)

F r r( ) ln ( ( )) ( )t m
h

N

k

K

n

N

m hkn t hkn
1

1 1 1

h hkPE

=
= = = (15)

All that remains is to generalize the wTP expression for the
target potential sample weights (eq 12). As previously stated,
the wTP method can be interpreted as a weighted exponential
averaging procedure within each histogram bin, so it may be
perplexing how this could be adapted to treat multiple
reference potentials because exponential averaging has tradi-
tionally been applied to the calculation of free energy
differences between pairs of potentials. Our approach is to
reinterpret the biased potentials as using a single reference (the
“selected reference”) perturbed by an effective bias that
accounts for the difference in unbiased energies. This is
more clearly described by eq 16 which re-expresses the biased
PE uh′k′(r) in terms of the selected reference uh(r) and the
effective bias wk′(r) + Δuh′h(r), where Δuh′h(r) = uh′(r) −
uh(r).

u u w

u w u

r r r

r r r

( ) ( ) ( )

( ) ( ) ( )

h k hkn h hkn k hkn

h hkn k hkn h h hkn

= +

= + [ + ] (16)

The decision of which potential to select as the reference is
arbitrary; it has no effect on the predicted FES. Our
convention is to select the potential which produced the
sample. That is to say, the sample rhkn is a member of the
ensemble generated from uhk(r), whose reference potential is
uh(r); thus, we choose uh(r) to be the selected reference. The
gwTP expression for the sample weights (eq 17) differs from
eq 12 only by considering the additional simulated states and
by replacing the biasing potential with the effective bias.

f u

N f w u

r
r

r r

( )
exp ( )

exp ( ) ( )

t hkn

t th hkn

h
N

k
K

h k h k h k hkn h h hkn1 1
hPE

=
[ ]
[ ]= =

(17)

Multiplying the numerator and denominator by exp
[−uh(rhkn)] yields an expression that illustrates more clearly
that the weights are independent of the selected reference.

f u

N f u
r

r

r
( )

exp ( )

exp ( )
t hkn

t t hkn

h
N

k
K

h k h k h k hkn1 1
hPE

=
[ ]

[ ]= = (18)

The weights shown in eqs 6, 10, and 18 are very similar
because they are all specialized forms of the general
expressions for the MBAR weights developed by Shirts and
Chodera.43 In their work, an ensemble average of a target
thermodynamic state is expressed using the samples obtained
from a collection of explicitly simulated states (which may or
may not include the target state). To apply the MBAR
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approach in a novel way, one must define the target and
sampled potentials in the context of the new application and
describe how the weights are used. In the context of umbrella
sampling, the target state corresponds to an unbiased potential,
the sampled states are the biased simulations, and the weights
are used to approximate the spatial distribution of the density
(eq 4). The methods described in the present work differ only
in their choice of target and sampled potentials.

The RE is a useful index to gauge the reliability of a
calculated FES.64 It can be interpreted as being a measure of
“flatness” in the sample weights, such that it is 1 when the
distribution of weights in a bin is uniform, and it approaches 0
when the sum of weights is dominated by only a few samples.
The gwTP expression for the RE is given by eqs 19 and 20.

r

r

( )

( ( )) ln

ln ( ( ))

t m

h
N

k
K

n
N

m hkn s s

h
N

k
K

n
N

m hkn

r r
1 1 1

( ) ( )

1 1 1

h hk t hkn

tm

t hkn

tm

h hk

PE

PE
=

= = =

= = =
(19)

s r r( ( )) ( )tm
h

N

k

K

n

N

m hkn t hkn
1 1 1

h hkPE

=
= = = (20)

■ COMPUTATIONAL MODELS AND METHODS
All simulations described below were performed with a
development version of SANDER.89 The simulations were
propagated with a 1 fs time step. All production sampling was
performed in the canonical ensemble using the Langevin
thermostat with a 5 ps−1 collision frequency to maintain a
temperature of 298 K.90 The equilibration of the system
densities was performed in the isothermal−isobaric ensemble
using the Berendsen barostat to maintain an external pressure
of 1 atm.91 The long-range electrostatics were calculated with a
particle mesh Ewald (PME) method using a 1 Å3 regular grid
spacing, 8 Å real-space cutoffs, and tinfoil boundary
conditions.92 Specifically, the semiempirical QM/MM simu-
lations performed PME with Mulliken charges,93,94 whereas
the ab initio QM/MM calculations used the ambient-potential
composite Ewald method.87 The ab initio QM/MM
simulations were performed with the HFDF software package
developed within our group, which we interfaced to SANDER
and described in ref 87. The Lennard−Jones potential was
truncated at 8 Å, and a tail correction was applied to model the
interactions beyond the cutoff.95 The solute structures were
initially prepared with the GAFF force field,96 and the solvent
was modeled with the TIP4P-Ew water model.97 The MNDO/
d QM/MM + DPRc and DFTB2/MIO98−100 QM/MM +
DPRc potentials include a nonelectrostatic MLP correction to
the underlying QM/MM energy and forces. The DPRc
potential is an extension of the DeepPot-SE model101 that
includes corrections for both the QM−QM and QM−MM
interactions, and the neural network parameters are optimized
to reproduce the target QM/MM energies and forces. The
DPRc model has been previous described,76,88 and additional
details are provided in the Supporting Information.
Simulations of the Ethylene Phosphate Reaction. The

ethylene phosphate (Figure 1a) FES was calculated from
umbrella sampling performed at 48 values of ξPT ranging from
−3.1 to 1.6 Å in steps of 0.1 Å that bias the PE with a spring
force constant of 200 kcal mol−1 Å−2. An initial structure for

the unimolecular reactant state was prepared by solvating the
system in a truncated octahedron containing 2974 TIP4P-Ew
water molecules. A 100 ps MNDO/d QM/MM simulation was
performed in the NPT ensemble to equilibrate the system
density, and the final real-space lattice vector lengths were
49.03 Å. A series of 3 ps NVT simulations were conducted to
slowly progress the structure along the reaction coordinate
(i.e., the brief simulation of window i + 1 was restarted from
simulation i) to generate initial structures for each window.
Each window was then equilibrated with MNDO/d QM/MM
for 100 ps in the NVT ensemble. This was followed by an
additional 20 ps of NVT equilibration with PBE0/6-31G*
QM/MM. Production sampling was performed with PBE0/6-
31G* QM/MM to obtain a target FES used to validate the
wTP and gwTP reference potential methods. The PBE0/6-
31G* QM/MM production simulations were performed for 80
ps/(window·trial) and repeated four times to analyze the
uncertainty in the FES values. The four trials differed only by
changing the thermostat random number seed value. The
aggregate amount of PBE0/6-31G* sampling corresponds to
320 ps/window or 15.36 ns of sampling for the entire FES.
The coordinates were saved every 10 fs for analysis.

The parametrization of MLPs often involves the use of an
active learning procedure that results in several network
parameter sets that produce similar corrections to the energies
and forces for the data they were trained against. If the training
data adequately represent the ensemble of structures observed
in production sampling, then the trial network parameter sets
can lead to similar FES values. For illustrative purposes, we
have chosen to construct four ad hoc MNDO/d QM/MM +
DPRc potentials that yield disparate FES values. These
potentials were trained to reproduce different regions of the
ethylene phosphate FES rather than the entire surface. Each
potential well-reproduces the ab initio FES in the region where
it was parametrized, but the FES values disagree with each
other and the ab initio target elsewhere. We will show that the
gwTP analysis from the combined sampling of all four
potentials reproduces the ab initio FES over the full range.
The MNDO/d QM/MM + DPRc potentials will be referred to
as ML0, ML1, ML2, and ML3. The potentials were trained to
reproduce different sets of target PBE0/6-31G* energies and
forces. Specifically, the ML0 potential was trained only using
the sampling obtained from −0.1 Å ≤ ξPT ≤ 1.6 Å, the ML1
potential was trained to −1.3 Å ≤ ξPT ≤ 1.0 Å, the ML2
potential was trained to −2.5 Å ≤ ξPT ≤ −0.2 Å, and the ML3
potential was trained to −3.1 Å ≤ ξPT ≤ −1.4 Å. In the present
work, we are making comparison with an FES obtained from
explicit ab initio sampling; therefore, we have reused the
sampling to serve as initial training data for each potential.
Specifically, 2.5% of the PBE0/6-31G* trajectory frames in the
desired range were chosen at random to parametrize each
potential. The optimization of the network parameters was
performed with the DeePMD-kit and DP-GEN software.102,103

The optimization consisted of 200k steps with initial and final
learning rates of 10−3 and 5 × 10−8, respectively. The initial
optimization was followed by nine cycles of active learning to
search for additional training data.76 Each active learning cycle
performs four parameter optimizations to yield four trial
parameter sets. One of the parameter sets is used to generate
20 ps of MNDO/d QM/MM + DPRc sampling for each
window in the selected range of ξPT values. The atomic forces
are then computed with each of the four trial parameter sets,
and if the maximum standard deviation of atomic forces is
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within the range 0.08 to 0.25 eV/Å, then the candidate
structure is included in the next round of optimization. Upon
completion of the active learning procedure, the “DP
Compress” compression algorithm was applied to the MLP
to improve computational performance during inference.104

The production sampling of each potential, described below,
was performed using only one of the four parameter sets. In
hindsight, the initial parameterization to the ab initio sampling
would have been sufficient for our purpose; each round of
active learning only labeled six candidate structures, on
average.

The MNDO/d QM/MM + DPRc production sampling of
the ethylene phosphate system was performed for 250 ps/
(window·potential·trial), and the coordinates were saved to a
trajectory file every 50 fs. Three trials were performed with
different random number seed values for error analysis. From
these simulations, one can use MBAR or wTP to evaluate 12
surfaces corresponding to the 3 trials of the 4 MNDO/d QM/
MM + DPRc potentials. One can further obtain four trial-
averaged surfaces. Each of the 12 surfaces is analyzed from 12
ns/(potential·trial) of sampling, and each of the 4 trial-
averaged surfaces are produced from 36 ns/potential of
sampling. We use the notation ΔA(target; reference) to
distinguish between the surfaces. This notation signifies that
the curve is the FES of the target PE function estimated from
the sampling performed with reference. When the target and
reference are the same PE function, then the FES is calculated
from the MBAR method. If the target FES is calculated from
the sampling performed with a single reference other than the
target, then the wTP method is used. If the target FES is
estimated from multiple reference potentials, then the gwTP
method is used. The trial-averaged estimates of the ML0, ML1,
ML2, and ML3 potentials calculated from the MBAR method
shall be labeled ΔA(MLi; MLi) (where i ∈ [0, 3]). The trial-
averaged estimates of the PBE0/6-31G* FES obtained from
wTP analysis of the individual potentials are denoted as
ΔA(PBE0; MLi). The gwTP method analyzes the combined
sampling from the four MNDO/d QM/MM + DPRc
potentials. Therefore, one obtains three gwTP surfaces
corresponding to the three trials; each surface consists of 48
ns/trial of sampling, and the trial-averaged gwTP FES includes
144 ns of aggregate sampling. The trial-averaged gwTP FES is
referred to as ΔA(PBE0; ML*). One can further make a “best
estimate” of the ab initio FES using gwTP to analyze the 144
ns of MNDO/d QM/MM + DPRc sampling and the 15.36 ns
of PBE0/6-31G* sampling. The best estimate is denoted as
ΔA(PBE0; All).
Simulations of the Native Model Reaction. The native

model reaction (Figure 1b) was previously examined in ref 88.
It was one of the six nonenzymatic transesterification model
reactions used to develop four DFTB2/MIO QM/MM +
DPRc potentials trained to reproduce PBE0/6-31G* QM/MM
energies and forces. The four potentials were generated from
an active learning procedure described in that work.88 In the
present work, we reuse the DFTB2/MIO QM/MM + DPRc
potentials without modification. The five analogous systems
included within the training differ from the native model by
having replaced one or more oxygens with sulfurs at key
positions. We do not reconsider the sulfur-substituted systems
in the present work; instead, our interest in the native model
reaction arises from noticeable discrepancies between the ab
initio and DFTB2/MIO QM/MM + DPRc FES values. We
will show that the native model reaction profiles presented in

ref 88 are not fully converged. The high computational cost of
ab initio QM/MM calculations, however, places practical
limitations on the amount of sampling that can be reasonably
achieved. We will demonstrate that gwTP analysis of extended
sampling performed with the reference potentials produces a
better estimate of the ab initio FES than what can be afforded
from ab initio QM/MM simulation.

An initial structure for the native model unimolecular
reactant state was prepared by solvating the system in a box of
1510 TIP4P-Ew waters and performing 200 ps of DFTB2/
MIO QM/MM simulation in the NPT ensemble to equilibrate
the system density. The final unit cell lattice vectors were
approximately 35.8 Å. This was followed by a series of 2 ps
DFTB2/MIO QM/MM simulations in the NVT ensemble
that slowly incremented the value of the reaction coordinate to
obtain initial structures for each window in the range −3.5 Å ≤
ξPT ≤ 5 Å in steps of 0.1 Å. The umbrella potentials biased the
simulations with a spring force constant of 100 kcal mol−1 Å−2.
Each of the 86 windows were equilibrated with DFTB2/MIO
QM/MM for 100 ps in the NVT ensemble, and this was
followed by an additional 25 ps of PBE0/6-31G* QM/MM
NVT equilibration. The 25 ps/window of PBE0/6-31G*
equilibration is not included in the analysis presented in this
work nor ref 88.

PBE0/6-31G* production sampling of the native model
reaction was run for 25 ps/(window·trial), and the coordinates
were saved every 25 fs. Each simulation was repeated four
times using different thermostat random number seed values to
yield four FES estimates. Each surface is the analysis of 2.15
ns/trial of sampling. The trial-averaged FES, denoted as
“ΔA(PBE0; PBE0) 100 ps”, includes all 8.6 ns of production
sampling (100 ps/window of aggregate sampling).

DFTB2/MIO QM/MM + DPRc production sampling of
the native model reaction proceeded similarly. However, the
active learning procedure yields four neural network parameter
sets, so we performed 25 ps/(window·potential) of sampling
with each potential. Therefore, the average DFTB2/MIO
QM/MM + DPRc FES does not correspond to a single
potential; instead, it is the mean of the four reference
potentials. The average DFTB2/MIO QM/MM + DPRc
FES includes 100 ps/window of aggregate sampling, and it is
denoted as “⟨ΔA(ML; ML)⟩ 100 ps”. The gwTP method can
be used to estimate the PBE0/6-31G* from the combined
sampling of the DFTB2/MIO QM/MM + DPRc potentials,
referred to as “ΔA(PBE0; ML*) 100 ps”.

To examine the behavior of the predicted native model
reaction FES on a longer timescale, we extended the DFTB2/
MIO QM/MM + DPRc simulations and performed multiple
trials with each potential. The extended simulations were
sampled for 100 ps/(window·potential·trial), and we per-
formed three trials of each simulation with different random
number seed values. The 3 trials of the 4 potentials yield 12
surfaces. Each surface is the analysis of 8.6 ns/(potential·trial)
of sampling. The average FES is the mean of the 12 estimates,
such that it considers 103.2 ns (1.2 ns/window) of aggregate
sampling. The average DFTB2/MIO QM/MM + DPRc FES
from the extended sampling shall be labeled “⟨ΔA(ML; ML)⟩
1.2 ns”. The sampling from the three trials produces three
gwTP estimates of the ab initio surface. The PBE0/6-31G*
FES from the extended sampling is labeled “ΔA(PBE0; ML*)
1.2 ns”. An analogous set of profiles labeled “⟨ΔA(ML; ML)⟩
last 600 ps” and “ΔA(PBE0; ML*) last 600 ps” were analyzed
from the last 50 ps/(window·potential·trial) of sampling from
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each simulation. Finally, we shall refer to a profile labeled
“ΔA(PBE0; All)”. This FES includes all 103.2 ns of DFTB2/
MIO QM/MM + DPRc sampling and the 8.6 ns of PBE0/6-
31G* sampling.
Error Analysis. The uncertainties in the free energy values

can be estimated from the MBAR calculation of the sample
weight covariance43 between spatial bins, as was carried out in
ref 52. This approach uses the fluctuations of the statistically
independent samples within the observed ensembles to assign
error values. Another strategy for estimating errors is the
“ensemble average approach” which estimates the standard
errors from the distribution of calculated results produced from
independent simulations.105−108 The ensemble average ap-
proach can be viewed as a strategy to gauge the uncertainty
arising from limited finite sampling. In the present work, we
incorporate the ideas that motivate both strategies by analyzing
multiple trials with bootstrap analysis. Let F ( )t

i
m

( ) be the free
energy of target potential t in spatial histogram m from trial i (i
∈ [1, Ntrial]). The uncertainty of the FES value F ( )t

i
m

( ) is

estimated from circular moving block bootstrap error
analysis,109 where the block size of each simulation is chosen
from the autocorrelation of the biasing potential time series
whk(rhkn). The aggregate sampling from all trials can similarly
be analyzed to yield free energy values F ( )t

a
m

( ) and
uncertainties F ( )t

a
m

( ) . To compute a trial-average F( )t m , we
choose a set of constants Ci that uniformly shift each surface
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Figure 2. FESs (ΔA) of the ethylene phosphate model reaction (Figure 1a) calculated with MBAR and wTP analysis. REs are shown in the
subplots below each FES. Parts (a,e,i,m) are the four MNDO/d QM/MM + DPRc potentials (ML0, ML1, ML2, and ML3) evaluated from MBAR
analysis. Parts (b,f,j,n) are their corresponding wTP estimates of the PBE0/6-31G* FES. Parts (c,d,g,h,k,l,o,p) are the REs of the corresponding
MBAR and wTP analysis. The error bars are 95% confidence intervals.
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The average value F( )t m and its standard error F ( )t m are then
given by eqs 23 and 24, respectively.
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The first and second terms in eq 24 correspond to the
unbiased sample variance between trials and the average
bootstrap variance, respectively. The error bars shown in the
figures are 95% confidence intervals F(1.96 ( ))t m .

■ RESULTS AND DISCUSSION
Ethylene Phosphate Reaction Profiles. Figure 2 displays

free energy profiles of the ethylene phosphate reaction
calculated with the MBAR and wTP methods using each of
the four MNDO/d QM/MM + DPRc reference potentials

(ML0, ML1, ML2, and ML3). As previously mentioned, the
reference potentials were specifically designed to disagree with
each other and the PBE0/6-31G* target in various regions of
the FES. The surfaces estimated with the gwTP method are
shown in Figure 3. These figures demonstrate that the gwTP
method can improve upon the wTP estimate by combining the
sampling from multiple reference potentials.

Figure 2 parts (a, e, i, and m) show that the four MNDO/d
QM/MM + DPRc potentials agree with PBE0/6-31G* in the
regions they were trained to reproduce the target energies and
forces. Outside of these regions, the profiles disagree with ab
initio and each other. Figure 2 parts (b, f, j, and n) are the wTP
estimates of the target FES from each reference potential. The
wTP surfaces generally improve the agreement with the target;
however, they suffer from numerical noise and large
uncertainties in the untrained regions. This is further
emphasized by a corresponding decrease in the REs shown
in parts (d, h, l, and p). The results shown in Figure 2 are
consistent with previous work which found that reliable free
energies are produced by the wTP method when the RE is
larger than 0.6, but the results become questionable when the
RE decreases below 0.3.50 Every MNDO/d QM/MM + DPRc

Figure 3. FESs (ΔA) of the ethylene phosphate model reaction (Figure 1) calculated with gwTP analysis. REs are shown in the subplots below
each FES. (a) gwTP FES estimated from the combined umbrella sampling produced from the four MNDO/d QM/MM + DPRc potentials (ML0,
ML1, ML2, and ML3). (b) PBE0/6-31G* surface estimated from gwTP analysis of all available PBE0/6-31G* and MNDO/d QM/MM + DPRc
umbrella sampling. Parts (c,d) are the REs of the corresponding MBAR and gwTP analysis. The error bars are 95% confidence intervals.

Figure 4. FESs (ΔA) of the native model reaction (Figure 1). (a) Comparison of the PBE0/6-31G* FES to the average FES of the four DFTB2/
MIO QM/MM + DPRc potentials (ML0, ML1, ML2, and ML3). The listed times denote the total amount of sampling per umbrella window used
in the FES calculation. (b) Comparison of the PBE0/6-31G* FES to those predicted from gwTP analysis. The ΔA(PBE0; ML*) gwTP surfaces are
evaluated using the sampling from all four DPRc potentials. The ΔA(PBE0; All) surface is calculated from the 1.2 ns/window of DPRc sampling
and the 100 ps/window PBE0/6-31G* sampling. The error bars are 95% confidence intervals. The RE values shown in parts (c,d) are the REs.
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potential shown in Figure 2 exhibits REs below 0.3 for some
ξPT values.

The gwTP estimate of the ab initio FES is shown in Figure
3. Figure 3a uses the combined sampling from each MNDO/d
QM/MM + DPRc potential, and the resulting FES agrees with
the MBAR analysis of the ab initio sampling to within the
uncertainties of the calculations throughout the entire range of
ξPT values. Similarly, the REs shown in Figure 3c consistently
remain above 0.6. The gwTP FES shown in Figure 3b includes
sampling from both the ab initio and MNDO/d QM/MM +
DPRc potentials and represents our best estimate of the
surface. The inclusion of sampling from the target potential
increases the RE values, but the FES values do not significantly
change.

An approach for smoothing the density-of-states (DoS) in
wTP calculations is presented in ref 52. The motivation for
DoS smoothing is to effectively remove statistically unlikely
samples from a distribution that are over-represented within
the limited amount of finite sampling. We generalized the DoS
smoothing procedure in the Supporting Information. Figures
S1 and S2 are analogous to Figures 2 and 3 but include DoS
smoothing. The use of DoS smoothing does not significantly
improve the wTP estimates of the ab initio surface because the
failure is produced from the large differences in reference and
target potentials, not from the presence of a few, unlikely
samples. The gwTP formalism does not introduce any
mechanism to prevent the occurrence of over-represented
samples. Although the DoS smoothing procedure is unneces-
sary in the present applications, we continue to regard it as a
valuable technique which can help eliminate numerical noise
from the predicted free energies. Application of DoS
smoothing to the MBAR and gwTP analysis yields profiles
that are indistinguishable from those shown in Figures 2 and 3.
Native Model Reaction Profiles. FESs of the native

model reaction (Figure 1b) are shown in Figure 4 and 5. These
figures illustrate that the extended sampling made possible
using an affordable reference potential can result in a more
accurate FES than what can be estimated from limited
sampling performed with an expensive target potential.

The PBE0/6-31G* and average DFTB2/MIO QM/MM +
DPRc surfaces (the black and red surfaces, respectively) shown
in Figure 4a are originally presented in ref 88. These surfaces
include 100 ps/window of aggregate production sampling.
Additional ab initio sampling was deemed too costly to extend,
and the DFTB2/MIO QM/MM + DPRc sampling was chosen
to mimic the protocol used to perform the ab initio
simulations. The ab initio and reference potentials generally
agree except in the range ξPT ≈ [−1, 0.5 Å], where the
reference potential FES is noticeably higher in energy.

We used the gwTP method to estimate the ab initio FES
from the 100 ps/window of DFTB2/MIO QM/MM + DPRc
sampling, and the result is labeled “ΔA(PBE0; ML*), 100 ps”
in Figure 4b. This gwTP estimate agrees with the MBAR
analysis of the ab initio sampling to within the uncertainties of
the calculations, and the RE is larger than 0.6. This suggests
that there is a small discrepancy in the reference potentials’
ability to reproduce the ab initio QM/MM energies and forces,
which is corrected by reweighting the samples. However, if the
reference potential simulations are extended to include 1.2 ns/
window of aggregate sampling (the green surfaces shown in
Figure 4a,b), the predicted activation energy increases by 1
kcal/mol, even though the REs remain largely unchanged. The
large REs suggest that there is good phase space overlap
between the reference and target potentials in both the 100 ps/
window and 1.2 ns/window simulations. Similarly, the gwTP
ab initio FES values are nearly 1 kcal/mol higher near the
transition state when analyzing the combined sampling from
both the PBE0/6-31G* and extended DFTB2/MIO QM/MM
+ DPRc simulations (the blue surface in Figure 4b). These
results suggest that another reason for the observed
discrepancies between PBE0/6-31G* and the DFTB2/MIO
QM/MM + DPRc potentials may due to the limited amount of
sampling. In other words, the ab initio simulations may not
represent converged equilibrium ensembles. Consequently, the
ΔA(PBE0; PBE0) MBAR estimate should not be trusted, and
the ΔA(PBE0; All) gwTP result does not represent a “best
estimate” of the FES because it is potentially skewed by
nonequilibrium sampling.

Figure 5. FESs (ΔA) of the native model reaction (Figure 1). (a) Comparison of the PBE0/6-31G* FES to the average FES of the four DFTB2/
MIO QM/MM + DPRc potentials (ML0, ML1, ML2, and ML3). (b) Comparison of the PBE0/6-31G* FES to those predicted from gwTP
analysis. The surfaces labeled “last 600 ps” refer to aggregate sampling taken from the last 50 ps of the 12 DFTB2/MIO QM/MM + DPRc
simulations. The error bars are 95% confidence intervals. The RE values shown in parts (c,d) are the REs.
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We performed forward and reverse analysis of the
sampling110,111 to examine the convergence of the extended
simulations. The forward analysis generates a ⟨ΔA(ML; ML)⟩
FES from the first P % of samples, whereas reverse analysis
calculates an FES from the last P % of the simulations. From
these surfaces, we monitor the free energy values (and
uncertainties) of the two transition states and intermediate
relative to the unimolecular reactant state as a function of P %.
The convergence behavior of these properties is shown in
Figure S3 in the Supporting Information. In summary, the
reverse analysis is stable with respect to P %, but the forward
analysis display drifts in the free energy values. The forward
and reverse analyses do not agree to be within their estimated
uncertainties until the first 50% of the simulations are
discarded. It is difficult to ascertain if the simulations have
converged without having extended the sampling (see Figure
S4 in the Supporting Information); when the data contain a
slight drift, the reverse analysis artificially agrees with the
forward analysis simply because it has not been given ample
opportunity to approach an equilibrium value. The assertion
that the ab initio simulations are not converged is further
supported by umbrella integration analysis47−49 (see Figure S5
in the Supporting Information). The extended simulations
yield a smooth free energy gradient profile, whereas the
gradient profiles obtained from the limited sampling are
contaminated with noise. Figure 5 displays the ⟨ΔA(ML;
ML)⟩ and ΔA(PBE0; ML*) surfaces after discarding the first
half of each simulation. These surfaces represent our best
estimate of the profiles. It is notable that the best estimate of
the ab initio FES does not include any of the available PBE0/6-
31G* QM/MM sampling, and the best estimate of the rate-
limiting transition state barrier is 1.5 kcal/mol higher in energy
than the MBAR analysis of the PBE0/6-31G* QM/MM
simulations (see Table 1).

To reduce the number of target potential evaluations, one
should identify correlation within the simulations and only
consider the statistically independent samples. The “⟨ΔA(ML;
ML)⟩, last 600 ps” and “ΔA(PBE0; ML*), last 600 ps” surfaces
displayed in Figure 5 were analyzed from the correlated
samples, and the errors were estimated from block bootstrap
analysis. Figure S6 in the Supporting Information compares
these surfaces to the analysis performed with uncorrelated
samples from the last half of each simulation. The uncorrelated
data are the subset of samples extracted with a stride equal to
the statistical inefficiency of the biasing energy time series. In
summary, analysis of the uncorrelated samples produces
surfaces that are visually indistinguishable from the results
shown in Figure 5.

The obvious benefit of using gwTP (or wTP) is the reduced
computational effort associated with performing the sampling
with an affordable reference potential. The total cost of
performing MBAR and gwTP estimates of the target FES is
given by eqs 25 and 26, respectively.

C t t T
( ; )

t
=

(25)

C t h T f f f f T
( ; ) (1 )

h
eq file indep eval

t
= +

(26)

where T is the aggregate simulation time (ps) of all windows,
trials, and potentials (if applicable). νt and νh are the
simulation rates (ps/day) using the target and reference
potentials. Equation 25 is, therefore, the net cost of performing
the sampling with the target potential, and the first term in eq
26 is the cost of performing the reference simulations. The
second term in eq 26 is the additional cost of performing target
potential evaluations of the saved samples. feq and f file are the
fraction of simulation steps excluded as equilibration and the
fraction of samples written to file for analysis, respectively.
f indep is the fraction of statistically independent samples, and
feval is the fraction of the statistically independent samples used
to perform target potential evaluations. The ratio C(t; t)/C(t;
h) denotes the computational savings from using the reference
potential approach. If one assumes that the methods are
performed with equal sampling, then the ratio is given by eq
27.

C t t
C t h

f f f f
( ; )
( ; )

(1 )t

h
eq file indep eval

1

= +
i
k
jjjjj

y
{
zzzzz (27)

In practice, the goal is to use the information provided by the
reference simulations to reduce the number of target potential
evaluations, thus maximizing the savings. First, one should
estimate feq by verifying that the reference simulations are
converged to avoid unnecessary evaluations of unequilibrated
data. In the present work, we chose feq by monitoring the
energies of relevant stationary points from forward and reverse
analysis of the time series.110,111 Second, one should estimate
the correlation in the time series, so only the statistically
independent samples are evaluated with the target potential. In
principle, one could estimate the correlation from the energy
differences Δut,h, but this approach would defeat the purpose
of reducing the number of target potential evaluations. Instead,
we have chosen to estimate the correlation from the biasing
potential whk time series. Finally, the value of f file should
generally by chosen such that the statistical inefficiency of the
saved frames is close to 1 to avoid storing unnecessarily large
files.

To estimate the time savings of the native model reaction,
we measured the performance of the PBE0/6-31G* QM/MM
(νt = 1.565 ps/day) and DFTB2/MIO QM/MM + DPRc (νh
= 392.7 ps/day) simulations on a single 2.10 GHz Intel Xeon
Gold 6230 CPU core. We further note that the first half ( feq =
1/2) of each simulation was discarded as equilibration, the
samples were saved every 50 steps ( f file = 1/50), and the
fraction of statistically independent samples was found to be
f indep = 0.763. Equation 27 suggests that the gwTP method is

Table 1. Native Model Reaction Free Energies (kcal/mol) of the First Transition State ΔA(ξTS1), the Intermediate ΔA(ξint),
the Rate-Limiting Transition State ΔA‡, and the Reaction Product ΔAa

target ref sampling ΔA(ξTS1) ΔA(ξint) ΔA‡ ΔA

PBE0 PBE0 100 ps 10.4 ± 0.2 6.4 ± 0.2 19.6 ± 0.2 1.5 ± 0.3
PBE0 ML* 100 ps 10.0 ± 0.2 7.0 ± 0.2 19.9 ± 0.3 1.2 ± 0.3
PBE0 ML* last 600 ps 11.5 ± 0.2 8.3 ± 0.1 21.1 ± 0.2 3.6 ± 0.1

aThe uncertainties are standard errors.
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86 times faster than performing an equivalent amount of ab
initio QM/MM sampling for this system even if the full set of
uncorrelated samples were used to evaluate the target potential
( feval = 1).

One may question how many of the uncorrelated samples
are necessary to obtain a reasonable estimate of the target FES.
The required number of target evaluations will generally
depend on the agreement between the target and reference
potentials. In the limit that the reference was the target
potential, an accurate target FES would require the minimum
number of samples needed to construct the reference FES. If
the target potential differed from the reference, then one would
expect this limit to be a lower bound on the number of target
evaluations. Furthermore, the required number of samples will
depend on the acceptable level of uncertainty. If one is
comparing different mechanistic pathways, for example, then a
high degree of certainty is not necessary to rule out a path
exhibiting a large rate-limiting transition state. Table 2 shows
how the free energy values, uncertainties, and REs behave
when gwTP analysis is performed with a varying amount of
uncorrelated samples. When feval = 1, the analysis is performed
with all available uncorrelated samples (after removing the
unequilibrated portion of simulations). On average, there are
381.4 samples/(trial·potential·window). In the remaining rows,
we perform the analysis using the first Neval uncorrelated
samples from each simulation. For example, Neval = 15 signifies
that the target potential was evaluated using the first 15
uncorrelated samples/(trial·potential·window), on average. In
the present application, we have four reference potentials and
each simulation was performed three times, so this corresponds
to 15 × 4 × 3 = 180 evaluations/window. As feval increases, the
value of Neval ceases to be an integer because there are one or
more simulations that had fewer samples than requested. From
a practical perspective, we cannot recommend a precise value
of Neval that the reader should use, for reasons already
discussed. Instead, we can offer guidance for a procedure that
the reader can follow. First, we perform evaluations with a
small number of samples and evaluate the FES. If the RE is less
than some tolerance (e.g., 0.6) or the uncertainty in the free
energy values is unacceptably large, then one should increase
Neval accordingly. One could even focus the evaluations in the
particular region(s) of the FES where the RE was low. Table 2
suggests that Neval = 15 samples/simulation are required for the
minimum observed entropy to exceed 0.6. If the activation
energy must be estimated to be within an uncertainty of 0.2
kcal/mol, then the number of samples must be increased to
Neval = 50. The surfaces evaluated with Neval = 15 and Neval =
50 are compared in Figure S7 in the Supporting Information.

The reader may question if MLPs are required for their
application or if it would suffice to perform wTP from
uncorrected semiempirical QM/MM sampling. After all, the
idea of training an MLP and also performing target potential
evaluations to analyze the results may seem formidable. The
gwTP method allows one to combine the MLP training and
analysis so that all of the target potential evaluations used to
train the MLP can also be used to estimate the target FES. For
example, one could first perform standard semiempirical QM/
MM sampling and estimate the target FES with the wTP
method from a limited number of target potential evaluations.
If the RE is high, then no refinement is necessary. If the
entropy is low, one may deem it worthwhile to reuse the target
evaluations to train an MLP correction. The trained MLP is
then sampled, and a limited number of target potential
evaluations are made to estimate the FES; however, the gwTP
method allows one to analyze the FES using the combined
sampling from the uncorrected and MLP-corrected simu-
lations. This process can be iterated, such that one performs
“active learning” in a manner which reuses the aggregate
sampling from previous iterations to improve the predicted
target FES while also generating new training data for the next
iteration.

■ CONCLUSIONS
We described a new reference potential approach for
calculating FESs called the gwTP method. The gwTP method
extends the formulation of wTP to include sampling from
multiple reference potentials. This work was motivated by the
growing interest in the use of MLPs being trained to correct
semiempirical QM/MM energies and forces to match target ab
initio values. The active learning procedure is often employed
to train these corrections results in several neural network
parameter sets. Each parameter set corresponds to a different
reference potential, and the gwTP method can be used to
analyze the aggregate sampling from each potential to estimate
the target free energies.

We envision other strategies where gwTP analysis may be
useful. One could train separate MLPs for different systems,
such as RNA catalysis reactions in different enzyme environ-
ments, or create a single MLP that tries to model all systems.
One can perform sampling with all of these potentials and use
gwTP to make a best estimate of another system not included
in the training. Alternatively, one could construct potentials
that specialize their parametrizations to have high accuracy at
different stages of a multistep enzyme reaction. In this way, the
gwTP method can be used to combine the sampling from

Table 2. Relative Energies of the Native Model Reaction Free Energy Surfaces Estimated from gwTP Analysis as a Function of
the Number of Target Potential Evaluationsa

Neval feval min RE ⟨RE⟩ ΔA(ξTS1) ΔA(ξint) ΔA‡ ΔA

5.0 0.013 0.42 0.78 12.0 ± 0.5 8.3 ± 0.4 21.2 ± 0.4 3.1 ± 0.4
10.0 0.026 0.56 0.80 11.7 ± 0.4 8.2 ± 0.4 21.0 ± 0.3 3.2 ± 0.3
15.0 0.039 0.64 0.81 11.7 ± 0.4 8.2 ± 0.4 21.1 ± 0.3 3.5 ± 0.2
25.0 0.066 0.70 0.83 11.8 ± 0.4 8.3 ± 0.3 21.2 ± 0.3 3.6 ± 0.2
49.7 0.130 0.75 0.85 11.7 ± 0.2 8.4 ± 0.2 21.5 ± 0.2 3.6 ± 0.1
97.9 0.257 0.71 0.86 11.5 ± 0.2 8.3 ± 0.2 21.1 ± 0.2 3.5 ± 0.1
381.4 1.000 0.82 0.88 11.5 ± 0.2 8.3 ± 0.2 21.1 ± 0.2 3.6 ± 0.1

aNeval is the number of statistically independent samples per simulation used to evaluate the target potential energies. feval is the fraction of the
statistically independent samples selected for target potential evaluation. The uncertainties are the standard errors. “min RE” and ⟨RE⟩ are the
minimum and average RE observed during the gwTP analysis of the aggregate sampling.
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several “specific reaction parametrizations”78−80 and thus
provide new opportunities in model design.

To this end, we created four ad hoc MNDO/d QM/MM +
DPRc neural network parameter sets to calculate the FES of an
ethylene phosphate model reaction. Each parametrization
limited the training data such that the potentials well-
reproduced PBE0/6-31G* energies and forces in the regions
they were trained, but the potentials disagree with each other
and the ab initio target in all other regions. We showed that the
wTP method fails to accurately predict the target free energies
in the untrained regions. We further demonstrated that the
gwTP method accurately reconstructs the ab initio surface
from the aggregate sampling.

We used the gwTP method to examine the FES of a
nonenzymatic RNA 2′-O-transesterification model with an
ethoxide leaving group. This system was used as a case study to
emphasize the benefits offered by the reference potential
approach. Because the reference potentials are much more
affordable, the sampling could be extended. The extended
simulations allowed us to determine that the ab initio QM/
MM sampling was not converged. Excluding the first half of
each simulation from the analysis produced a rate-limiting
transition state 1.5 kcal/mol higher than the value predicted
from ab initio QM/MM sampling; however, the RE remained
high. In other words, we made a better estimate of the ab initio
FES using gwTP analysis than what direct ab initio QM/MM
simulation can reasonably afford. For this system, the
computational cost of estimating the ab initio surface from
gwTP analysis of the DFTB2/MIO QM/MM + DPRc
sampling was found to be 86 times higher than an equivalent
amount of PBE0/6-31G* QM/MM simulation. The cost
savings are expected to increase for systems with larger QM
regions due to the inherent differences in the formal
computational scaling behaviors of ab initio and semiempirical
Hamiltonians. The computational cost is minimized by
choosing an efficient reference potential and reducing the
number of target potential evaluations. The number of target
potential evaluations is reduced by analyzing the reference
potential simulations to identify and eliminate the unequili-
brated portions of the simulations and by extracting the
statistically independent samples.
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