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Abstract

Static and dynamic polarizabilities of a range of small first row compounds have been calculated with time-dependent density

functional theory in the local spin-density approximation using numerical atomic basis sets. The results are compared to earlier

computational work, in particular the work of Van Caillie and Amos [C. Van Caillie, R.D. Amos, Chem. Phys. Lett. 291 (1998)

71], as well as experimental values. The results for static isotropic and anisotropic polarizabilities of H2O, N2, CO, NH3, and

CH4 are in good agreement with previous calculations. The results for the dynamic polarizabilities as expressed in the S(24)

Cauchy coefficients and their anisotropies for H2O, N2, CO2, NH3, CH4, C2H2, C2H4 and C2H6 are also in good agreement with

previous results. We have also explored the scaling of our implementation of the time-dependent coupled-perturbed Kohn–

Sham equations by evaluating the static and dynamic polarizabilities of bifurcated water chains ranging from 1–20 molecules

in size. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Molecular dipole polarizability is a basic and

important property that can be used to understand

intermolecular forces [1] and the propagation of light

through molecules and solids. For example, the

frequency dependence of the polarizability can be

used to determine the dielectric constant and the

conductivity of materials. Also, the poles in the

polarizability at real frequencies give the positions of

electronic absorptions and the polarizabilities at

imaginary frequencies can be related to the dispersion

energy [46].

The calculation of frequency dependent polariz-

abilities and related properties based on ab initio

quantum chemistry is well established for both

molecules and periodic systems [2–10]. The calcu-

lation of these properties has been extended to

correlated electronic structure methods such as

Møller–Plesset theory, coupled-cluster theory and

recently to density functional theory (DFT) [11–30].
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Due to its favorable balance of accuracy and

computational expense, DFT has become a widely

used method [11,17,20,31,32]. Linear response prop-

erties of electronic systems, such as dynamic

polarizabilities, can be treated within the time-

dependent density functional theory (TDDFT) frame-

work through the coupled Kohn–Sham equations [33,

34]. There are two categories of TDDFT methods

[11], one based on the linear response of the electron

density and the other based on the linear response of

the density matrix of the Kohn–Sham model system.

As with traditional correlated electronic structure

calculations, the nature of the basis set employed to

calculate the response properties with TDDFT is an

important issue. Due to the long-range effects of

response properties, the use of augmented and diffuse

functions in the basis is particularly important [35].

Recently York and co-workers we have developed

an efficient implementation of TDDFT for molecular

systems using atomic numerical basis functions and a

completely numerical approach to solve the Poisson

equations required to determine the response density

[36]. We use numerical atomic basis sets similar to

those developed by Delley [31,37–40]. Compared to

commonly used Gaussian basis functions, numerical

atomic basis functions have the correct long-range

behavior and are therefore expected to be better for

determining the dynamic polarizability of molecules

and related properties [35]. In this paper, we present

calculations on the dynamic polarizability, Cauchy

coefficients, and their anisotropies for small first row

element compounds with TDDFT in the local spin-

density approximation (LDA) using numerical atomic

basis sets. The dynamic polarizabilities are empha-

sized since they are less commonly reported with

DFT. The efficiency and effective scaling of our

implementation will be examined by determining the

dynamic polarizabilities of water chains.

2. Theoretical and computational details

Static and dynamic polarizabilities have been

calculated based on a recent implementation of the

time-dependent coupled-perturbed Kohn – Sham

equations using atomic numerical basis functions

and a completely numerical approach to solve the

Poisson equations required to determine the response

density [36]. We will only briefly describe the method

we have used to calculate molecular dynamic

polarizabilities [11,16,17,20,32,33,41] since it fol-

lows the work of Delley [31] and Görling et al. [11].

Since numerical basis functions are used to expand

the Kohn–Sham orbitals, it is convenient to calculate

the induced density and effective potentials on a real

space molecular grid, ~ri; using the time-dependent

Kohn–Sham density functional formulism [17,21,22,

42]. The Fourier component drð~ri;vÞ of the induced

density with the Fourier component of a time-

dependent perturbation potential, dvextð~ri;vÞ; is deter-

mined by linear response as follows:

drð~ri;vÞ ¼
ð

d~r0XKSð~ri; ~r
0;vÞdveffð~r

0;vÞ; ð1Þ

where dveffð~r
0;vÞ is an effective potential defined as:

dveffð~ri;vÞ ¼ dvextð~ri;vÞ þ
ð

d~r0
drð~r0;vÞ

l~ri 2 ~r0l

þ
dvLDA

xc ð½r�; ~riÞ

drð~riÞ
drð~ri;vÞ ð2Þ

In Eq. (2), the second term is an induced Coulomb

potential and the third term is an induced exchange-

correlation potential with the local density approxi-

mation (LDA). The induced potential for a general-

ized gradient approximation exchange-correlation

functional has one more term associated with it, but

in this contribution we present only results using

LDA. From Eq. (2), an induced Coulomb potential

dVeð~r;vÞ is satisfied with the Poisson equation for

response density drð~r;vÞ as follows:

72dVeð~r;vÞ ¼ 24pdrð~r;vÞ

In Eq. (1) the response function XKSð~r; ~r
0;vÞ is given

by,

XKSð~r; ~r
0;vÞ ¼

Xo:c:c
i

ni

Xvir

a

fið~rÞfað~rÞfað~r
0Þfið~r

0Þ

� ½
1

v2 ea þ e i

2
1

vþ ea 2 e i

�; ð3Þ

where ni is the occupation number, fið~rÞ and fað~rÞ

denote the spatial parts of the occupied and virtual KS

orbitals with corresponding KS eigenvalues e i and ea;

A. Hu et al. / Journal of Molecular Structure (Theochem) 591 (2002) 255–266256



respectively. Here, we assume that KS orbitals to be

real. The response density drð~r;vÞ is coupled through

the induced Coulomb and exchange-correlation

potentials, and is evaluated with a self-consistent-

field procedure when complete knowledge of KS

orbitals and eigenvalues are available. Finally, if

dvextð~r;vÞ is replaced by the xj component of the

dipole operator, the aijðvÞ component of the polariz-

ability tensor is determined from the following

integral:

aijðvÞ ¼ 2
ð

d~rxidr
jð~r;vÞ ð4Þ

where drjð~r;vÞ represents the response density due to

the jth component of the dipole field with frequency

v.

The molecular isotropic polarizability, aðvÞ; is

defined as the mean value of three diagonal elements

of the polarizability tensor, i.e.

aðvÞ ¼ 1
3
ðaxxðvÞ þ ayyðvÞ þ azzðvÞÞ ð5Þ

For axially symmetric molecules, the polarizability

anisotropy is given by,

DaðvÞ ¼ azzðvÞ2 axxðvÞ ð6Þ

More generally, for any polyatomic molecules, it is

defined as:

DaðvÞ2 ¼ 1
2

�
ðaxxðvÞ2 ayyðvÞÞ

2 þ ðaxxðvÞ

2azzðvÞÞ
2 þ ðayyðvÞ2 azzðvÞÞ

2
� ð7Þ

The isotropic Cauchy coefficients, Sð24Þ; also known

as the dipole oscillator strength sums, have been

determined by calculating the quadratic regression

constants of the following second-order frequency

dependent approximation:

aðvÞ ¼ að0Þ þ Sð24Þv2 ð8Þ

at several low frequencies. Frequency points were

determined by the following relation:

f ðiÞ ¼ 0:95 £ eHOMO–LUMO

i

Nsample

ð9Þ

where eHOMO2LUMO is the HOMO–LUMO gap and

Nsample the number of frequency points. The factor of

0.95 is used to avoid the singularity in Eq. (3). For

calculations of the water chains, as the number of

water molecules increases, the HOMO–LUMO gap

decreases. Thus, the high frequency points were not

stable due to the singularity in the linear response

function (Eq. (3)). As a result, for all of the water

chain calculations, the quadratic regression constants

of the Cauchy coefficients were determined using the

first five frequency points, only.

All calculations were carried out with the F95

numerical DFT package [43]. The KS orbitals are

expanded in terms of numerical atomic basis

functions [31] xað~r 2 ~aÞ; which are given numeri-

cally as tabulated values on an atomic spherical-

polar mesh centered at ~a: The angular portion of

each atomic orbital is real solid harmonics Cl
mð~r 2

~aÞ and radial one Rðk~r 2 ~akÞ; obtained with the

solution of atomic Kohn –Sham equations, is

stored as set of cubic spline coefficients. The

method to generate the numerical atomic basis sets

that we have used is similar to the method

developed by Delley [31,37–40]. We describe

the procedure briefly. A minimal basis set is

generated from an exact spherical DFT calcu-

lations on the neutral atom. Additional polariz-

ation and diffuse functions are generated from

DFT calculations of ions, excited-state atoms and

hydrogenic orbital calculations. Using a standard

double numerical basis set with polarization

functions available in Dmol, Guan et al. have

calculated static molecular polarizabilities within

the finite field approximation [35]. The polariz-

abilities calculated for small molecules were in

good agreement with experimental values. Later,

Dickson and Becke calculated molecular polariz-

abilities using their basis-free method [44] within

the finite field approximation, and compared them

to the results of Guan et al. [35]. The results were

in excellent agreement except for the calculated

hyperpolarizabilities. It is known that molecular

polarizabilities can be sensitive to basis set effects.

As a result, for this work we have included an

extensive augmentation set to our basis. Following

Delley’s procedure to generate numerical basis

functions [31], we have used a larger group of

hydrogenic calculations. For hydrogen, a basis set

with a 4s 3p 2d 2f structure has been employed.

This compares to the 2s 1p numeric basis set used

by Guan and co-workers. For first row elements

(C, N, O) basis set with a 8s 7p 5d 5f structure
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was used in comparison to a 3s 2p 1d basis set,

which was used by Guan et al. [35].

All calculations have been performed using the

LDA in the parameterization of Vosko et al. [45]. For

the majority of the molecules considered, the

geometries have been taken from the work of Sekino

and Bartlet [3], as well as Van Caillie and Amos [46].

The geometries of CH4, C2H2 and C2H6 are given in

Ref. 46 whereas the geometries of H2O, CO, CO2, N2

and NH3 are given in Ref. 3 and references therein.

Geometries of the water chains were obtained by

geometry optimization at the LDA level imposing a

C2V symmetry constraint. To visualize induced

density components drxxð~ri;v ¼ 0Þ; drzzð~ri;v ¼ 0Þ;
and the HOMO and LUMO orbitals, a 10 £ 10 £ 40

rectangle box was used with a 0.3 a.u. grid mesh.

3. Results and discussion

This work follows two recent studies of molecular

polarizabilities determined with DFT at the LDA level.

Using a basis set free method, Dickson and Becke [44]

determined static isotropic and anisotropic polariz-

abilities of some small molecules. Van Caillie and

Amos [46] have determined both static and dynamic

molecular polarizabilities using two Gaussian basis

sets. The first basis set is due to Sadlej [47,48] has a 3s

2p structure for hydrogen and a 5s 3p 2d structure for C,

N and O and can be characterized as medium sized. The

second basis set used was the doubly augmented

correlation consistent basis (d-aug-ccpVTZ) of Dun-

ning [49,50] which has a 5s 4p 4d structure for H and a

6s 5p 4d 3f structure for C, N and O. Compared to the

Sadlej basis set, the d-aug-ccpVTZ basis set has more

high angular momentum and diffuse functions. The

numerical basis set we have used in the present

calculations has a 4s 3p 2d 2f structure for H and a 8s 7p

5d 5f structure for C, N and O. Thus, this basis has even

more diffuse high angular momentum functions. The

available experimental data are also listed for ease of

comparison, which are given by Spackman [51]. The

Cauchy moments are given in Table 2 together with the

results from Amos and co-worker, and the available

experimental data largely from the work of Meath and

co-workers [52–57].

Table 1

Static dipole polarizabilities in atomic units

Molecule Property Numerical basis (this work) Basis set freea d-aug-ccpVTZ basis setb Expt.c

H2O �a 10.52 10.60 10.60 9.64

lDal 0.16 0.02 0.04 0.67

axx 10.38 10.59

ayy 10.64 10.61

azz 10.55 10.59

N2 �a 12.19 12.30 12.23 11.74

lDal 4.76 4.63 4.59 4.59

axx 10.61 10.73

azz 15.36 15.43

CO �a 13.68 13.70 13.08

lDal 3.30 3.30 3.6

axx 12.58 12.61

azz 15.88 15.88

NH3 �a 15.40 15.54 15.55 14.56

lDal 2.72 2.90 2.88 1.94

axx 14.49 14.59

azz 17.21 17.46

CH4 axx 17.37 17.69 17.98 17.27

a Results of Dickson and Becke in Ref. 44.
b Results of Van Caillie and Amos [46].
c Results of Meath and co-workers [52–57].

A. Hu et al. / Journal of Molecular Structure (Theochem) 591 (2002) 255–266258



3.1. Static and dynamic polarizabilities

The calculated static polarizabilities and their

anisotropies are listed in Table 1 along with the

basis-set free results of Dickson and Becke [44] and

the results of Amos and co-worker [46] computed

with the d-aug-ccpVTZ Gaussian basis set. The

available experimental data given by Spackman [51]

is also listed. Several studies of molecular static

polarizabilities with DFT at the LDA and GGA level

have been made [24,35,58,59]. Most employed the

finite-field approach, fewer studies have used the

coupled-perturbed scheme as in the present study. A

comparison of our results with previous DFT

calculations of the static polarizabilitiy are of interest

as a means of validating our implementation of the

coupled-perturbed scheme.

Our results are in excellent agreement with the

previous LDA calculations for the admittedly small

set of molecules we have tested. The static isotropic

polarizabilities show an rms difference of 1.05 and

1.81% compared to the basis free and d-aug-ccpVTZ

Table 2

S(24) Cauchy coefficients in atomic units

Molecule Property Numerical basis (this work) d-aug-ccpVTZ basisa Expt.b

H2O �Sð24Þ 50.11 48.91 35.42

lDSð24Þl 29.88 32.50

Sð24Þxx 68.45

Sð24Þyy 34.20

Sð24Þzz 47.68

N2
�Sð24Þ 34.57 34.25 30.11

lDSð24Þl 18.71 17.53 16.61

Sð24Þxx 28.34

Sð24Þzz 47.05

CO2
�Sð24Þ 52.54 52.39

lDSð24Þl 65.57 64.31

Sð24Þxx 30.69

Sð24Þzz 96.27

NH3
�Sð24Þ 104.05 99.26 71.44

lDSð24Þl 126.25 119.46

Sð24Þxx 61.97

Sð24Þzz 188.23

CH4 Sð24Þxx 68.15 72.12 62.41

C2H2
�Sð24Þ 140.23 130.96 113.5

lDSð24Þl 78.15 70.58

Sð24Þxx 114.17

Sð24Þzz 192.32

C2H4
�Sð24Þ 179.57 166.71 143.5

lDSð24Þl 115.39 114.13

Sð24Þxx 148.91

Sð24Þyy 104.49

Sð24Þzz 285.30

C2H6
�Sð24Þ 116.88 121.04 108.1

lDSð24Þl 31.52 35.43

Sð24Þxx 106.37

Sð24Þzz 137.90

a Results of Van Caillie and Amos [46].
b Results of Meath and co-workers [52–57].
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results, respectively. Our results are in closer agree-

ment with the basis set free results. This might be

expected since we have used a larger basis set than

Van Caillie and Amos and the results of Dickson and

Becke can be considered at the basis set limit.

Compared to experimental values, the LDA results

generally overestimate the static isotropic polariz-

abilities. The LDA results compared with experimen-

tal values and other ab initio and DFT results has been

previously discussed [46]. The polarizability aniso-

tropies, lDal, are also in excellent agreement with

earlier calculations with the exception of water. For

water we calculate a value of lDal ¼ 0:16 a:u:; while

the basis free and d-aug-ccpVTZ results give values of

0.02 and 0.04 a.u., respectively. The experimental

result which includes vibrational and dispersion

effects has been determined to be 0.67 [60]. Other

calculations have also shown anomalous values of the

anisotropic polarizability of water [44,58]. At the

LDA level, Guan et al. predict lDal ¼ 0:43 with their

best basis set, while Sim et al. report a value of

0.328 a.u. It is unclear why there are such large

discrepancies in the reported values of the polariz-

ability anisotropy for water. The results of Van Caillie

and Amos suggest that it might be basis set dependent.

Using the d-aug-ccpVTZ basis they determine lDal ¼

0:04 while with the smaller Sadlej basis set this

changes to 0.24 a.u. at the LDA level.

Although reports of static molecular polarizabil-

ities determined at the DFT level are numerous,

reports of dynamic molecular polarizabilities at the

DFT level have been limited [11,14,20,25,26,46,59].

Reports of the Cauchy coefficients are particularly

scarce [11,46,61]. One purpose of this contribution is

to compare our results of the S(24) Cauchy

coefficients and their anisotropies, DS(24), to those

of Van Caillie and Amos. The primary difference in

our approach is the use of a rather large numerical

basis set compared to the Gaussian basis set used by

Van Caillie and Amos.

For a small set of molecules, the values of the

S(24) Cauchy coefficients as well as their aniso-

tropies are given in Table 2, along with the results of

Van Caillie and Amos. The available experimental

data due to the work of Meath [52–56,62] are also

given. Our results for the isotropic S(24) Cauchy

coefficient are in good agreement with the results of

Van Caillie and Amos, however, there is more

deviation than in the static polarizabilities. The rms

deviation in the S(24) Cauchy coefficient was found

to be 4.8% which compares to 1.8% for the static

isotropic polarizabilities. The LDA results, both ours

Fig. 1. Frequency dependence of the isotropic and anisotropic polarizability of a single water molecule calculated with time-dependent DFT at

the LDA level.
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and those of Van Caillie and Amos, generally

overestimate the experimental S(24) Cauchy coeffi-

cients. Our results for the anisotropy of the S(24)

Cauchy coefficient are also in reasonable agreement

with the results of Van Caillie and Amos with an rms

deviation of 7.44%.

The largest deviations between our results and

those of Van Caillie and Amos for the isotropic S(24)

Cauchy coefficients occur for C2H2 and C2H4. For

acetylene, C2H2, Van Caillie and Amos suggest that

the results might be sensitive to the basis set used

since they obtained a value of 130.96 a.u. using the d-

aug-ccpVTZ basis and a value of 138.28 a.u. using the

smaller Sadlej basis set. Interestingly, our calculated

result of 140.23 a.u. using a large numerical basis for

acetylene compares more favorably to the smaller

Sadlej basis set result. To examine the convergence of

the numerical basis set, we have calculated the

Cauchy coefficient for acetylene using smaller basis

with a 8s 7p 5d structure for carbon and a 3s 2p 1d

structure for hydrogen. We find a difference of only

0.01 a.u. in the computed values suggesting that our

numerical basis set is well converged. Both the S(24)

Cauchy coefficient and its anisotropy for acetylene

show the largest deviations. However, for ethene the

discrepancy is only large for the isotropic value with

the anisotropy, DS(24), being in excellent agreement.

The origin of the inconsistencies between our

numerical basis set calculations and the results of

Van Caillie and Amoas is unknown. One possible

explanation aside from the differing basis sets has its

origin in the frequency window used for the quadratic

fit of the S(24) coefficient. In our calculations we

have used a frequency window that is at least twice as

large as that used by Van Caillie and Amos.

Specifically, they used a frequency window of

0.00–0.089 a.u. whereas we used a window of

0.00–0.2 a.u. or greater.

It is worth commenting on the dynamical isotropic

and anisotropic polarizabilities �aðvÞ and DaðvÞ; of

water at the LDA level. We have already mentioned

that the anisotropy of the static polarizability of water

is small and that there are notable discrepancies in the

reported values at the LDA level. Shown in Fig. 1 is

the frequency dependence of �aðvÞ and DaðvÞ over the

range for which the Cauchy expansion was per-

formed. As the frequency is increased from zero, the

anisotropy decreases and is close to zero at a

frequency of about 0.1 a.u. At this point it increases

again. High level coupled cluster singles and doubles

linear response function method (CCSDLR) calcu-

lations of Dalskov and Sauer [63] also reproduce this.

Fig. 2. Calculated static polarizabilities per water molecule as a function of the size of the water chain.
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3.2. Polarizabilities of water chains and scaling of the

calculations

In Section 3.1 we have examined the static and

dynamic polarizabilities of small molecules with

numerical atomic basis sets. Accurate methods to

calculate dynamic polarizabilities and hyperpolariz-

abilities of large molecular systems or infinite

periodic systems [5,6,64–66] is of increasing interest

due to applications in the field of non-linear optical

materials. To examine the efficiency of our approach

for treating large systems, we have calculated the

static and dynamic polarizabilities of a linear chain of

bifurcated water molecules ranging from 1 to 20

molecules in length.

Figs. 2 and 3 give the static polarizabilities per

molecule and the S(24) Cauchy coefficient per

molecule, respectively, of the bifurcated water chains.

The z-direction is defined as lying along the axis of the

chain (left to right in Fig. 4). The polarization along

the chain in the z-direction, increases as more

molecules are added, whereas it diminishes for the

components perpendicular to the chain axis. Conver-

gence occurs rapidly, at which point the polarizability

of the system is a linear function of the number of

water molecules. This suggests that there is very little

charge transfer between the molecules. Shown in Fig.

4(a) and (b) are isosurface plots of the HOMO and

LUMO Kohn–Sham orbitals, respectively, for the 12

molecule water chain. The HOMO and LUMO

orbitals are highly localized at opposite ends of the

chain, thus, suggesting that charge transfer is

inhibited. Fig. 4(c) shows the induced density when

the applied field is parallel to the axis of the chain. The

induced density does not show a build-up at the ends

of the water chain, again suggesting little charge

transfer.

In order to perform practical simulations of large

molecular systems, it is of interest to understand how

the computational effort of our approach scales with

the size of the system. Shown in Fig. 5 are the total

CPU times required for the polarizability calculations

of water chains of varying size. Up to the twenty water

molecule chain tested, the calculation scales as

O(N1.8). A detailed discussion using numerical basis

sets has been provided by Delley [31]. For response

property calculations, the most time consuming

portion of the calculation is the evaluation of the

matrix of effective potentials over basis functions and

induced densities. This is done numerically over a real

space molecular grid. The time required for this

component of the calculation is shown in Fig. 5. The

evaluation of the matrix element of the effective

potential consists of integrating dveffð~r
0;vÞ in Eq. (2).

Fig. 3. Calculated S(24) Cauchy coefficient per water molecule as a function of the size of the water chain.
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In evaluating the effective potentials over molecular

grids, there are three terms from Eq. (2). The

evaluation of the first and third terms scales as

O(N). This is because with the numerical integration

procedure the number of operations is proportional to

the number of grid points, which is proportional to the

number of atoms contained in a molecule. To evaluate

the second term in Eq. (2), the induced Coulomb

potential, there are corresponding Poisson equations

to be solved. In our calculations, we used the

partitioning approach of Delley [31], in which

induced molecular densities are first partitioned into

induced atomic densities with a rapidly convergent

multipolar expansion. Then, these atomic densities are

decomposed into multipolar components using the so-

called projection methods of Delley. However,

instead of using spherical harmonics, we utilized

real solid harmonics in the density projections. There

are two reasons for this. First, the angular parts of our

numerical basis functions are expanded in terms of

real solid harmonics. Second, the multipolar com-

ponents are simply given by the products of multi-

polar strengths and solid harmonics. The

corresponding Coulomb potential components are

calculated using Green’s function of the Laplacian.

Up to this point the determination of the induced

Coulomb potential scales as O(N). Finally, the

total induced Coulomb potential is obtained with

Fig. 4. Isosurface plots at 0.003 a.u. of the HOMO (a) and LUMO (b) orbitals of the 12 molecule water chain (c) is an isosurface plot of the total

induced density when the applied field lies along the chain of the water molecules. Dark isosurface is an increased density, while the light

surface is a diminished density.
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summations of these multipolar components over the

atoms and the angular momenta. This step scales as

O(N2) [31]. Although the calculation of the induced

Coulomb potential formally scales as O(N2), this is

only a small portion of the whole computational effort

required to evaluate the matrix elements. So, in the

range tested the evaluation of the matrix elements of

the effective potential scales as O(N1.4).

The determination of the response densities (Eq.

(1)), is the next most time consuming component of

the overall calculation. The timings of this component

is also shown in Fig. 5. Since summation over

occupied orbitals is required here, the determination

of the response densities scales beyond O(N).

However, as can be seen in Fig. 5, the time required

for this component is less than half of that required for

the effective potential matrix elements.

4. Conclusions

The use of atomic numerical basis functions

within the TDDFT framework provides an efficient

approach for determining static and dynamic

polarizabilities that give results that are in

excellent agreement with basis set free and more

common Gaussian basis sets. Static polarizabilities

and their anisotropies of small first row element

compounds agree well with previous LDA results.

The only exception is the anisotropic polarizability

of water for which a number of groups have

reported inconsistencies. DFT reports of S(24)

Cauchy coefficients and dynamic polarizabilities

are rare, but our calculations agree well with past

results of Van Caillie and Amos for a set of small

molecules. However, the agreement between our

results and those of Van Caillie and Amos is not

as good as the agreement observed with the static

polarizabilities. This suggests that the dynamic

polarizabilities calculated with DFT may be more

basis set dependent or that the calculations are

sensitive to the size of the frequency window used

to determine the Cauch coefficients.

Using a linear chain of water molecules ranging

between 1 and 20 molecules in size, we have

determined that the calculation of the dynamic

polarizability with our implementation, scales as

O(N1.8). This shows that the straightforward

evaluation of induced densities and effective

potentials over molecular grids with numerical

basis functions is an efficient approach for

determining response properties and therefore has

Fig. 5. CPU timings for the polarizability calculations the water chain as a function of the size of the chain. Shown are the total time, and the

times required to evaluate the matrix elements of the effective potential as well as the response density.

A. Hu et al. / Journal of Molecular Structure (Theochem) 591 (2002) 255–266264



promise for the accurate determination of these

properties for large molecular systems. Although

the results shown in this paper are calculated with

the local spin density approximation, the scaling

of the calculation will not be different when using

the generalized gradient approximation. The

method also allows for easy parallelization,

which we are planning to address in the near

future.
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