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6.1  INTRODUCTION

Over the last few decades, molecular dynamics (MD) simulations have attracted a great deal of attention 
due to their wide range of applications in many fields such as condensed matter physics, materials 
science, polymer chemistry, and molecular biology. They provide researchers access to examine the 
behavior of atoms or molecules, which is valuable and has the potential to enrich our knowledge, 
especially when conducting experiments is difficult, expensive, or even impossible.

It is well recognized that the accuracy of the PES ultimately limits the quality of MD simulations, and 
accurately representing the PES is a significant challenge in the field of MD simulations. Empirical 
atomic potential and quantum mechanical (QM) models have long been two commonly used models. 
The empirical atomic potential models consist of simple low-dimensional terms. They often show 
excellent computational efficiency but have limited accuracy. The QM models determine the energies 
and forces on atoms by approximately solving the Schrödinger equation, typically under the Kohn-
Sham density functional theory (DFT) formulism (Kohn and Sham, 1965), for electronic structure 
and exhibit higher accuracy. However, quantum mechanical models are computationally demanding, 
and they are not reasonably practical for large-scale and/or long-time calculations. Overall, a dilemma 
exists between the choice of an empirical atomic potential for high efficiency and that of a quantum 
mechanics model for increased accuracy.

Machine learning (ML) models are emerging as valuable tools to address this dilemma. Descriptors and 
ML algorithms are two primary components of the current ML models. The former is used to guarantee 
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the system’s natural symmetries. The latter is used to establish a direct functional relationship between 
atomic configurations and potential energy by training on reference data generated by quantum 
mechanics. Once trained, ML models can provide the same accuracy as the quantum mechanical 
method used to generate the reference data. Meanwhile, the computational cost scales cubic for DFT 
with system size, whereas it scales linearly for ML models. So far, different types of ML models have 
been reported in the literature, such as Behler-Parrinello neural network potentials (BPNNP) (Behler 
and Parrinello, 2007), Gaussian approximation potentials (GAP) (Bartók et al., 2010), spectral neighbor 
analysis potentials (SNAP) (Trott et al., 2014), ANI-1 (Smith et al., 2017), SchNet (Schütt et al., 2017), 
and Deep Potentials (DP) (Han et al., 2018; and Zhang et al., 2018a, 2018b). It is worth pointing out 
that despite great successes, many challenging issues remain to be tackled (Deringer et al., 2019). For 
example, neglecting interactions beyond the cut-off radius may lead to systematic prediction errors 
(Yue et al., 2021).

This chapter focuses on the DP models. In addition to enabling quantum mechanical accuracy, 
current DP models have the following characteristics: (i) preserving the symmetry of the system, 
especially when there are multiple elemental species; (ii) having high computational efficiency, 
being at least five orders of magnitude faster than DFT; (iii) being end-to-end and therefore having 
little human intervention; (iv) supporting MPI and GPU, making it highly efficient on modern 
heterogeneous high-performance supercomputers. Thanks to these points, the DP models have 
been successfully employed in studies of water and water-containing systems (Calegari Andrade 
et al., 2020; Sommers et al., 2020; Xu et al., 2020; and Tisi et al., 2021), metals and alloys (Zhang 
et al., 2019; Wang et al., 2020; Jiang et al., 2021; and Wen et al., 2021), phase diagrams (Niu et al., 
2020; Yang et al., 2021; and Zhang et al., 2021), high-entropy ceramics (Dai et al., 2020, 2021), 
chemical reaction (Zeng et al., 2020, 2021a, 2021b), solid-state electrolytes (Huang et al., 2021), 
ionic liquids (Liang et al., 2021), etc. We refer to Wen et al. (2022) for a recent review of DP for 
material systems. In the following sections, we will introduce the basic theory of the DP method 
and show how to train a DP model.

6.2  THEORY

Before introducing the DP method, we define the coordinate matrix R ∈ ×�N 3  of a system containing 
N atoms,

R = { } =r r r r1
T

i
T

N
T T

i i i ix y z, , , , , ( , , )… … 	
(6.1)

ri  contains 3 Cartesian coordinates of atom i and R  can be transformed into local environment 
matrices { }Ri

i
N
=1 ,

Ri
i
T

ji
T

N i
T

T

ji ji ji jii
x y z= { } =r r r r1 , , , , , ( , , ),… …

	
(6.2)
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where j and Ni are indexes of the neighbors of atom i within the cut-off radius rc, and r r rji j i≡ −  is 
defined as the relative coordinate.

In the DP method, a system’s total energy E is constructed as the sum of atomic energies.

E Ei

i

=∑
	

(6.3)

with Ei being the local atomic energy of the atom i. Ei depends on the local environment of the atom i:

E E Ei

i

i

i

= =∑ ∑ ( )R

	
(6.4)

The mapping of Ri  to Ei is constructed in two steps. First, each Ri  is mapped to a feature matrix, also 
called the descriptor, Di  to preserve the translational, rotational, and permutational symmetries of 
the system. As shown in Fig. 6.1, Ri Ni∈ ×� 3  is first transformed into generalized local environment 
matrix �Ri Ni∈ ×� 4 .

{ , , } { ( ), , , }x y z s r x y zji ji ji ji ji ji ji�   	 (6.5)
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(6.6)

Here, rji is the Euclidean distance between atoms i and j, and rcs is the smooth cut-off parameter. By 
introducing s (rji) the components in the �Ri  smoothly go to zero from rcs to rc. Then, s (rji), i.e., the 
first column of Ri, is mapped to an embedding matrix G i N Mi1 1∈ ×�  with M1 outputs, through an 
embedding neural network N e , i.e., G Ni e

jis r1 = ( ( )). By taking the first M M2 1( )<  columns of G i1 , 
we obtain another embedding matrix G i N Mi2 2∈ × . Finally, we define the feature matrix Di M M∈ × 1 2  
of atom i:

D G R R Gi i T i i T i= ( ) ( )1 2� � 	 (6.7)

In Eq. (6.7), translational and rotational symmetries are preserved by the matrix product � �R Ri i T( ) , 
and permutational symmetry is preserved by the matrix product ( )G Ri T i� . Next, each Di  is mapped 
to a local atomic energy Ei through a fitting network N f , i.e., Ei

f i= N D( ) .
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Both the embedding network N e  and the fitting network N f  are feed-forward neural networks 
containing several hidden layers. The mapping from input data dl

in  of the previous layer to output data 
dk

out  of the next layer is composed of a linear and a non-linear transformation.

d w d bk kl l k

kl

out in= +










∑ϕ
	

(6.8)

In Eq. (6.8), wkl is the connecting weight, bk is the bias weight, and ϕ is a non-linear activation function. 
It needs to be noted that only linear transformations are applied at the output nodes. The parameters 
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FIG. 6.1
Graphic illustration of the mapping from the local environment of local atomic energy. Figure adapted from Zhang et al., 
Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS’18 (Association for 
Computing Machinery, 2018b), pp. 4441–4451. Copyright 2018b Association for Computing Machinery.
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contained in the embedding and fitting networks, i.e., wkl and bk, are obtained by minimizing the loss 
function L:

L p p p
p
N

p

N

p

Nf
f

i

i

( , , ) | | || ||ε ξ
ε ξε ξ= + +∑∆ ∆ ∆2 2 2

3 9
F

	
(6.9)

where Δε, ΔFi, and Δξ denote root mean square error (RMSE) in energy, force, and virial, respectively. 
During the training process, the prefactors pε, pf, and pξ are determined by
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(6.10)

where rl (t) and rl
0  are the learning rates at training step t and training step 0. rl (t) is defined as

r t r dl l r
t ds( ) /= ×0

	 (6.11)

where dr and ds are the decay rate and decay steps, respectively. The decay rate dr is required to be less 
than 1. The reader is referred to the original papers (Han et al., 2018; and Zhang et al., 2018a, 2018b) 
for more details.

6.3  MATERIALS

The DP model is generated using the DeePMD-kit package (v2.1.0) (Wang et al., 2018). The training data 
are converted into the format of DeePMD-kit using a tool named dpdata (v0.2.5). We noted that dpdata 
only works with Python 3.5 and later versions. The MD simulations are carried out using LAMMPS 
(29 Sep 2021) (Plimpton, 1995) integrated with DeePMD-kit. Details of dpdata and DeePMD-kit 
installation and execution can be found in the DeepModeling official GitHub site https://github.com/
deepmodeling/. OVITO (Stukowski, 2010) is used for the visualization of the MD trajectory. All input 
files can be found at https://github.com/deepmodeling-activity/AIP-chapter-tutorial.

6.4  METHODS

In this section, we will introduce to the readers the primary usage of the DeePMD-kit, taking 
a gas-phase methane molecule as an example. Typically, the DeePMD-kit workflow contains data 
preparation, training/freezing/compressing/testing and performing molecular dynamics. We notice 
that here the compressing step has not been commonly adopted by most ML-based physical models, 
but it deserves to consider this 10-minute step after training since the compressed DP model typical 
speeds up DP-based calculations by an order of magnitude, and consumes an order of magnitude less 
memory. More information can be found in Lu et al. (2022).

https://github.com/deepmodeling/
https://github.com/deepmodeling/
https://github.com/deepmodeling-activity/AIP-chapter-tutorial
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6.4.1  Data preparation
The training data contains the atom type, the simulation box, the atom coordinate, the atom force, 
the system energy, and the virial. A snapshot of a molecular system having this information is called 
a frame. A data system includes many frames with the same number of atoms and atom types. For 
example, a molecular dynamics trajectory can be converted into a data system, with each time step 
corresponding to a frame in the system. The DeePMD-kit adopts a compressed data format. All training 
data should first be converted into this format and then used by the DeePMD-kit.

6.4.2  Training
6.4.2.1  Preparing training data
As an example, go to the data folder:

$ cd 00.data
$ ls
OUTCAR

The OUTCAR file was produced by an ab initio molecular dynamics (AIMD) simulation of a gas-
phase methane molecule using VASP (Garcia-Viloca et al., 2004; and Giese et al., 2021). Now start an 
interactive python environment, for example,

$ python

then execute the following commands:

import dpdata
import numpy as np
data = dpdata.LabeledSystem(’OUTCAR’, fmt=’vasp/outcar’)
print(’# the data contains %d frames’ % len(data))

On the screen, you can see that the OUTCAR file contains 200 frames of data. We randomly 
pick 40 frames as validation data and the rest as training data. The parameter set_size specifies the 
set size.

index_validation = np.random.choice(200,size=40,replace= False)
index_training = list(set(range(200))-set(index_validation))
data_training = data.sub_system(index_training)
data_validation = data.sub_system(index_validation)
data_training.to_deepmd_npy(’training_data’)
data_validation.to_deepmd_npy(’validation_data’)
print(’# the training data contains %d frames’ % len(data_training))
print(’# the validation data contains %d frames’ % len(data_validation))
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The commands import a data system from the OUTCAR (with format vasp/outcar) and then dump it 
into the compressed format (NumPy compressed arrays). The data in DeePMD-kit format are stored 
in folder 00.data.

$ ls training_data
set.000 type.raw type_map.raw
$ cat training_data/type.raw
0 0 0 1

Since all frames in the system have the same atom types and atom numbers, we only need to specify 
the type information once for the whole system,

$ cat training_data/type_map.raw
H C 

where element H is given type 0, and element C is given type 1.

6.4.2.2  Preparing input script
Once the data preparation is done, we can proceed with training. Now go to the training directory,

$ cd ../01.train
$ ls
input.json

where input.json gives you an example training script. The options are explained in detail in the 
DeePMD-kit manual, so they are not comprehensively explained here. The model has two subsections, 
descriptor and fitting_net, in which the parameters of embedding and fitting networks are 
specified, respectively.

"model":{
  "type_map": ["H", "C"],
       "descriptor":{
                "type": "se_e2_a",
                "rcut": 6.00,
                "rcut_smth": 0.5,
                "sel": [4, 1],
                "neuron": [10, 20, 40],
                "resnet_dt": false,
                "axis_neuron": 4,
                "seed": 1,
                "_comment": "that’s all"
        },
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        "fitting_net":{
                "neuron": [100, 100, 100],
                "resnet_dt": true,
                "seed": 1,
                "_comment": "that’s all"
        },
        "_comment": "that’s all"
},

The se_e2_a descriptor is the one introduced in this book chapter. The item neurons set the size 
of the embedding and fitting network to [10, 20, 40] and [100, 100, 100], respectively. The 
components in �Ri  to smoothly go to zero from 0.5 to 6 Å.

The following are the parameters that specify the learning rate and loss function.

"learning_rate":{
        "type": "exp",
        "decay_steps": 5000,
        "start_lr": 0.001,
        "stop_lr": 3.51e-8,
        "_comment": "that’s all"
},
        "loss":{
        "type": "ener",
        "start_pref_e": 0.02,
        "limit_pref_e": 1,
        "start_pref_f": 1000,
        "limit_pref_f": 1,
        "start_pref_v": 0,
        "limit_pref_v": 0,
        "_comment": "that’s all"
},

In the loss function (Eq. 6.9), pε increases from 0.02 to 1 eV−2, and pf  decreases from 1000 to 
1 Å2 eV−2 progressively, which means that the force term dominates at the beginning, while 
energy and virial terms become important at the end. This strategy is very effective and reduces 
the total training time. pξ is set to 0 eV−2, indicating that no virial data are included in the training 
process.

The starting learning rate, stop learning rate, and decay steps are set to 0.001, 3.51e-8, and 5000, 
respectively. The model is trained for 106 steps. According to Eq. (6.10), we can derive the decay rate 
value as 0.95.
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The training parameters are given in the following:

  "training":{
     "training_data":{
       "systems": ["../00.data/training_data/"],
       "batch_size": "auto",
       "_comment": "that’s all"
},
   "validation_data":{
       "systems": ["../00.data/validation_data/"],
       "batch_size": "auto",
       "numb_btch": 1,
       "_comment": "that’s all"
},
   "numb_steps": 1000000,
       "seed": 10,
       "disp_file": "lcurve.out",
       "disp_freq": 1000,
       "save_freq": 10000,
},

6.4.2.3  Training a model
After the training script is prepared, we can start the training process with the DeePMD-kit by simply 
running

$ dp train input.json

On the screen, you see the information of the data system(s)

-----------------------------------------------
---Summary of DataSystem: training ------------
found 1 system(s):
       system natoms bch_sz n_bch prob pbc
../00.data/training_data/ 5 7 22 1.000 T
-----------------------------------------------
---Summary of DataSystem: validation ----------
found 1 system(s):
      system natoms bch_sz n_bch prob pbc
../00.data/validation_data/ 5 7 5 1.000 T

and the starting and final learning rate of this training

start training at lr 1.00e-03 (== 1.00e-03), decay_step
    5000, decay_rate 0.950006, final lr will be 3.51e-08
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If everything works fine, you will see on the screen information printed every 1000 steps, like

 batch 1000 training time 7.61 s, testing time 0.01 s
 batch 2000 training time 6.46 s, testing time 0.01 s
 batch 3000 training time 6.50 s, testing time 0.01 s
 batch 4000 training time 6.44 s, testing time 0.01 s
 batch 5000 training time 6.49 s, testing time 0.01 s
 batch 6000 training time 6.46 s, testing time 0.01 s
 batch 7000 training time 6.24 s, testing time 0.01 s
 batch 8000 training time 6.39 s, testing time 0.01 s
 batch 9000 training time 6.72 s, testing time 0.01 s
 batch 10000 training time 6.41 s, testing time 0.01 s
 saved checkpoint model.ckpt

At the end of the 10000th batch, the model is saved in Tensorflow’s checkpoint file model.ckpt. At the 
same time, the training and testing errors are presented in file lcurve.out.

$ head -n 2 lcurve.out
#step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr
0 1.34e+01 1.47e+01 7.05e-01 7.05e-01 4.22e-01 4.65e -01 1.00e-03

and

$ tail -n 2 lcurve.out
999000 1.24e-01 1.12e-01 5.93e-04 8.15e-04 1.22e-01 1.10e-01 3.7e-08
1000000 1.31e-01 1.04e-01 3.52e-04 7.74e-04 1.29e-01 1.02e-01 3.5e-08

Columns 4, 5 and 6, 7 present energy and force training and testing errors, respectively. After 106 
steps of training, the energy testing error is less than 1 meV/atom and the force testing error is around 
120 meV/Å. It is also observed that the force testing error is systematically (but slightly) larger than 
the training error, which implies a slight over-fitting to the rather small dataset. See Fig. 6.2 for the 
visual illustration.

When the training process is stopped abnormally, we can restart the training from the provided 
checkpoint by simply running

$ dp train --restart model.ckpt input.json

In the lcurve.out file, you can see the training and testing errors, like

538000 3.12e-01 2.16e-01 6.84e-04 7.52e-04 1.38e-01 9.52e-02 4.1e-06
539000 3.37e-01 2.61e-01 7.08e-04 3.38e-04 1.49e-01 1.15e-01 4.1e-06
#step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr
530000 2.89e-01 2.15e-01 6.36e-04 5.18e-04 1.25e-01 9.31e-02 4.4e-06
531000 3.46e-01 3.26e-01 4.62e-04 6.73e-04 1.49e-01 1.41e-01 4.4e-06

Note that input.json needs to be consistent with the previous one.
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6.4.2.4  Freezing and compressing a model
At the end of the training process, the model parameters saved in TensorFlow’s checkpoint file should 
be frozen as a model file that is usually ended with the extension.pb. Simply execute

$ dp freeze -o graph.pb

On the screen, you will see information printed, like

Restoring parameters from ./model.ckpt-1000000
1264 ops in the final graph

and it will output a model file named graph.pb in the current directory.

The graph.pb file can be compressed in the following way:

$ dp compress -i graph.pb -o graph-compress.pb

On the screen, you will see information printed, like

stage 1: compress the model
built lr
built network
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FIG. 6.2
The training and validation errors of the DP model: the square root of loss for training (solid yellow) and validation 
(dashed yellow), root mean square errors (RMSEs) in force for training (solid blue) and validation (dashed blue), and 
RMSEs in energy for training (solid grey) and validation (dashed grey). The RMSEs in the energy are normalized by 
the number of atoms in the system.
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 built training
 initialize model from scratch
 finished compressing

 stage 2: freeze the model
 Restoring parameters from model-compression/model.ckpt
 840 ops in the final graph

and it will output a model file named graph-compress.pb.

6.4.2.5  Testing a model
We can check the quality of the trained model by running

$ dp test -m graph-compress.pb -s ../00.data/
     validation_data -n 40 -d results

On the screen you see the information of the prediction errors of validation data

# number of test data : 40
Energy RMSE: 3.168050e-03 eV
Energy RMSE/Natoms : 6.336099e-04 eV
Force RMSE: 1.267645e-01 eV/A
Virial RMSE: 2.494163e-01 eV
Virial RMSE/Natoms: 4.988326e-02 eV
# ---------------------------------------

and it will output files named results.e.out and results.f.out in the current directory. See 
Fig. 6.3 for the visual illustration.
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FIG. 6.3
Comparisons of DFT and DP predicted energies (a) and forces (b) on 40 frames of a gas-phase methane molecule.
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6.4.3  Run MD with LAMMPS
Now let’s switch to the lammps directory to check the necessary input files for running DeePMD with 
LAMMPS.
$ cd ../02.lmp

Firstly, we soft-link the output model in the training directory to the current directory
$ ln -s ../01.train/graph-compress.pb

Then, we have three files
$ ls
conf.lmp graph-compress.pb in.lammps

where conf.lmp gives the initial configuration of a gas-phase methane MD simulation, and the file 
in.lammps is the lammps input script. One may check in.lammps and find that it is a rather standard 
LAMMPS input file for a MD simulation, with only two exception lines:
pair_style graph-compress.pb
pair_coeff ∗∗

where the pair style deepmd is invoked and the model file graph-compress.pb is provided, which 
means that the atomic interaction will be computed by the DP model that is stored in the file graph-
compress.pb.

One may execute LAMMPS the standard way
$ lmp -i in.lammps

After waiting for a while, the MD simulation finishes, and the log.lammps and ch4.dump files are 
generated. They store thermodynamic information and the trajectory of the molecule, respectively. 
One may want to visualize the trajectory by, e.g. OVITO
$ ovito ch4.dump

to check the evolution of the molecular configuration.

In this case, the performance of training models and MD simulations is listed in Table 6.1.

Table 6.1
Performance of training and MD simulations using different hardware (unit: ms/step).a

Hardware

Training MD simulations

FP64 FP32 FP64 FP32

AMD EPYC 7742 (32 cores) 5.10 3.87 0.615 0.506
NVIDIA GeForce RTX 3080 Ti 7.74 6.84 1.38 1.01
NVIDIA GeForce RTX 3090 13.39 12.54 3.80 4.12

a Both training and MD simulations were conducted following the example given in the previous sections. FP64 means that 
the NNs in the model use the double-precision floating-point format, while FP32 means that the NNs in the model use the 
single-precision floating-point format.
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6.5  BIOCATALYSIS SIMULATIONS WITH 
AMBER AND DeePMD-kit

In this section, we briefly introduce some recent progress on biocatalysis simulations that require a 
more delicate treatment on the DeePMD-kit. We refer to Zeng et al. (2021a) for more details.

Simulations of biomolecular processes present special challenges. These processes are carried out 
by large biological macromolecules (e.g., proteins and/or nucleic acids) in environments that may 
consist of water molecules, ions, lipids, and small molecules. This translates into a highly complex 
heterogeneous condensed phase environment, where intermolecular forces are governed by a delicate 
balance of electrostatic, hydrophobic, and hydrogen bonding interactions mediates by the aqueous 
environment and ion atmosphere.

In this type of environment, biological catalysts are able to accelerate the rates of chemical reactions 
necessary to carry out life processes under ambient conditions with unequivocal efficiency—in some 
cases up to 19 orders of magnitude (Garcia-Viloca et al., 2004)! In order to achieve these remarkable 
rate enhancements, protein and nucleic acid enzymes must fold into 3-dimensional structures 
able to selectively bind substrates and create active sites that tune electrostatic interactions and 
position chemical functional groups and bound ions to participate in catalysis. While the reactive 
residues within the active site may only contain up to a few hundred atoms (and require a full 
quantum mechanical treatment), the equally critical-surrounding environment may consist of tens 
to hundreds of thousands of atoms. Taken together, this presents not only considerable challenges 
with respect to the efficient evaluation of the energy and forces but also introduces new challenges 
with respect to the requirement to appropriately sample the necessary degrees of freedom in order 
to determine the reaction-free energy surface (Giese et al., 2021) from which mechanistic pathways 
can be determined.

In order to tackle these biological problems, recently, the DeePMD-kit was integrated with the AMBER 
molecular simulation software suite (Case et al., 2020) in order to perform biocatalysis simulations 
(Zeng et  al., 2021a). This interface enables ab initio combined quantum mechanical/molecular 
mechanical (QM/MM) simulations with a rigorous treatment of long-ranged electrostatic interactions 
under periodic boundary conditions (Giese and York, 2016; and Pan et al., 2021), and affords a powerful 
tool to gain insight into the pathways of biocatalysis reactions, their transition states and intermediates, 
and environmental factors that modulate reactivity (Gaines et al., 2019; and Ganguly et al., 2020). In 
order to achieve high (ab initio level) accuracy at low computational cost, a new deep potential range 
correction (DPRc) has been developed that enables short-ranged QM/MM interactions to be tuned 
for higher accuracy, and the correction smoothly vanishes within a specified cutoff such that it can 
be easily integrated with molecular mechanical (MM) force fields that utilize a non-bonded list such 
as those in AMBER. An active learning training procedure has been developed and validated (Zeng 
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et al., 2021a), and very recently applied to develop DPRc potentials that closely reproduce ab initio 
QM/MM-free energy profiles (Giese et al., 2022).

Mechanistic pathways from QM/MM + DPRc simulations provide important insights that can be 
further validated experimentally (Figs. 6.4 and 6.5).
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6.6  NOTES

1.	 Deep Potential-Smooth Edition (DeepPot-SE) model. In this chapter, the DP model introduced 
is the smooth edition. The original DP model (Han et al., 2018; and Zhang et al., 2018a) satisfies the 
symmetries of the system by establishing a local coordinate system for each atom and its neighbor 
in the cut-off radius rc, which introduces discontinuities in the model. This has negligible influence 
on a trajectory from canonical sampling but might not be sufficient for calculations of dynamical 
and mechanical properties.

2.	 Cut-off radius and deep potential long-range (DPLR) model. For covalent and metal-based 
materials, a cut-off radius of 6 Å is recommended. For systems where long-range interactions 
are important, such as ionic solids, careful testing is required before determining the cut-
off radius. In addition, long-range interactions can be included by training the DPLR model 
(Zhang et al., 2022).

3.	 Generating training data with concurrent learning. In Sec. 6.4.1, the training data are 
converted from the trajectory generated by the AIMD simulation. However, neighboring 
configurations in the trajectory are often highly correlated, resulting in redundant training 
data. A concurrent learning platform named Deep Potential GENerator (DP-GEN) has been 
developed to avoid this issue. The reader is referred to the original papers of DP-GEN for details 
(Zhang et al., 2020).

4.	 Train an atomic dipole or polarizability model. In Sec. 6.4.2, we trained an energy model 
(potential energy surface) for a gas-phase methane molecule using energy and force data. 
The DeePMD-kit also allows training a model based on other physical quantities, such as the 
dipole moment or polarizability. A detailed explanation of how to train an atomic dipole or 
polarizability model for a water system is provided in the DeePMD-kit’s documentation (https://
docs.deepmodeling.org/projects/deepmd/en/v2.1.0). The training data and input scripts for 
the water system can be found in the /examples/water_tensor/ folder of the DeePMD-kit’s 
source code.
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